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Epigenetics is a rapidly developing field focused on deciphering chemical

fingerprints that accumulate on human genomes over time. As the nascent

idea of precision medicine expands to encompass epigenetic signatures of

diagnostic and prognostic relevance, there is a need for methodologies that provide

high-throughput DNA methylation profiling measurements. Here we report a novel

quantification methodology for computationally reconstructing site-specific CpG

methylation status from next generation sequencing (NGS) data using methyl-sensitive

restriction endonucleases (MSRE). An integrated pipeline efficiently incorporates raw

NGS metrics into a statistical discrimination platform to identify functional linkages

between shifts in epigenetic DNA methylation and disease phenotypes in samples

being analyzed. In this pilot proof-of-concept study we quantify and compare DNA

methylation in blood serum of individuals with Parkinson’s Disease relative to matched

healthy blood profiles. Even with a small study of only six samples, a high degree of

statistical discrimination was achieved based on CpG methylation profiles between

groups, with 1008 statistically different CpG sites (p <0.0025, after false discovery

rate correction). A methylation load calculation was used to assess higher order

impacts of methylation shifts on genes and pathways and most notably identified

FGF3, FGF8, HTT, KMTA5, MIR8073, and YWHAG as differentially methylated genes

with high relevance to Parkinson’s Disease and neurodegeneration (based on PubMed

literature citations). Of these, KMTA5 is a histone methyl-transferase gene and HTT

is Huntington Disease Protein or Huntingtin, for which there are well established

neurodegenerative impacts. The future need for precision diagnostics now requires

more tools for exploring epigenetic processes that may be linked to cellular dysfunction

and subsequent disease progression.
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1. INTRODUCTION

Non-infectious diseases were once considered to be the result
of faulty genes. The push of the last 50 years to decode the
human genome carried the hope that we would be able to
identify gene mutation errors and ultimately develop corrective
gene therapies. Identifying the associations between diseases and
genetic variants has been a major challenge to improving human
wellness (Weitzel et al., 2016). The hope is that sequencing
genomes of thousands of people andmatching genome sequences
to medical histories will reveal connections between genome
sequence variations and root causes of diseases (Sudmant et al.,
2015).

Epigenetic modifications of genomes are now recognized
as playing central interacting roles in genetic determinants of
health and disease (Ladd-Acosta and Fallin, 2016). Knowledge
of epigenetics is essential to predict integrated genetic processes
(Biémont, 2010). DNA methylation occurs on cytosines in
a cytosine-guanine dinucleotide motif (CpG) and is one of
the important forms of DNA epigenetic modification (Feng
et al., 2010; Jones et al., 2010; Cyr et al., 2013; Nielsen et al.,
2016). In general, when methylation is present gene activation
is suppressed. This gene expression regulation directed by
epigenetics in a large part explains why an individual is not
simply a pre-programed reflection of a parentally inherited
genome, but instead during their life they can develop alternative
paths toward different outcomes of health and wellness.

However, there is increasing uncertainty about how to best
profile site-specific CpG methylation. Despite the historical
prominence of bisulfite oxidation mutagenesis as a technique,
an issue of the journal Methods in 2015 presented multiple
approaches and ideas to make these measurements (Meissner,
2015). There is a clear need and opportunity for methods
development in the field epigenetics.

In this paper we present a pilot feasibility study for the
development of a high-resolution DNA methylation profiling
technology based on computational reconstruction of the
probabilities of cytosine methylation states from next generation
sequencing (NGS) data. A small trial study of Parkinson’s
Disease (PD) subjects was selected for application of the
methylation profiling and analysis tool set. Parkinson’s Disease
affects more than 200,000 individuals yearly in the US.
Although PD is currently incurable, medications can control
symptoms. The neuropathology of symptomatic-onset PD is well
established (Houlden and Singleton, 2012; Poulopoulos et al.,
2012). Unfortunately, at the point where a diagnosis can be
made with high confidence, neurodegeneration has generally
progressed 5–10 years (Miller and O’Callaghan, 2015). Thus,
most intervention therapies post-diagnosis have limited efficacy
to alter PD progression because heavy neuronal damage has
already caused up to 60–80% loss of nigral dopamine neurons
(Zwagerman and Richardson, 2013; Miller and O’Callaghan,
2015). There is an urgent need to develop early diagnostic
PD biomarkers that would enable clinicians: (i) to intervene
at the beginning of the course of neurodegeneration, and
(ii) to monitor progress of therapeutic treatment responses in
individual patients.

Given recent insights into potential methylation biomarkers
in PD (Masliah et al., 2013; Pihlstrøm et al., 2015; Tan et al., 2016),
we apply a novel NGS approach to profile blood DNA that reveals
subtle but quantitative shifts in epigenetic DNA methylation
profiles correlated with early symptomatic diagnoses. Blood was
selected as the genomic DNA source because of the ease of
collection that wouldmake a screening or diagnostic test easy and
accessible to all patients. We know lymphocytes are the largest
source of DNA in whole blood (106 cells per ml) and recent work
has shown that circulating lymphocytes in PD patients evidence
quantifiable changes in cellular activities (Masliah et al., 2013;
Alberio et al., 2014; Colasanti et al., 2014; Grozdanov et al., 2014;
Ide et al., 2015; Tan et al., 2016). Thus, we apply a novel high-
resolution, quantitative methylation measurement technology to
test the efficacy of this approach to reveal epigenetic profiles of
PD in blood.

2. MATERIALS AND METHODS

2.1. Sample Processing
A small sample size was chosen for this initial feasibility study
as a 3 vs. 3 comparison of early-age PD males (symptomatic in
their mid-30’s) and healthy males (n = 6). Our logic was that if a
blood-based epigenetic signal could to any degree be ascertained
in a cohort of only six individuals, then it would justify the time,
effort and expense of pursuing a much larger validation study.
Thus, the goal of this project was to simply assess if a methylation
signal could be discerned.

For this pilot study, blood serum samples from the Coriell
Institute Biorepository (www.coriell.org) were selected for three
males with early-age Parkinson’s Disease (#ND20108, #ND24665,
and #ND28170). Three healthy males in the same age and
demographic groups were selected as controls (#ND16294,
#ND19290, and #ND24642). Descriptions of each patient sample
are available via the Coriell Institute’s online catalog system.
Genomic DNA (1 µg each individual; comprised mostly
of B-cells) was shipped directly to commercial sequencing
providers. Sequence data reported here were obtained from the
Yale Core Center for Genomic Analysis (Illumina HiSeq 2500;
New Haven, CT).

Fragmentation of the gDNA samples followed standard
Illumina protocols except for an additional restriction enzyme
digest step at the beginning of the work flow. A 1 µg aliquot of
the DNA was first cut with a single methyl-sensitive restriction
endonuclease, HpaII. Once digested, DNA was washed with
Qiagen’s QIAquick PCR Purification Kit and sheared to a median
size of 300 bp using a Covaris AFA sonicator. DNA libraries
were prepared using Illumina’s Sample Prep Kits, and 71-cycle
single-read sequencing was performed on genomic DNA libraries
using Illumina’s sequencing by synthesis (SBS) technology.
Fragmentation, library preparation and quality control checks
were all performed by the sequencing provider using industry
standard protocols.

2.2. Methylation Quantification
Overall, our strategy was derived from an earlier approach for
assessingDNAmethylation in the late 1990’s that used differential
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restriction fragment profiles to assess cytosine methylation sites
(Reyna-López et al., 1997). Over the last decade, we have
developed a computational approach to harness the power of
methyl-sensitive restriction enzymes with the base-pair specific
precision of NGS to statistically reconstruct CpG site-specific
methylation in heterogenous cell population samples (Marsh and
Pasqualone, 2014). In the hg19 reference genome, there are 2.4
million HpaII sites that can be quantified simultaneously in this
approach. In general, this approach falls into the category of
“MSRE-Seq” methods. There have been other methodological
implementations of methylation-sensitive assays like this, most
recently “DREAM” in 2012 (Jelinek et al., 2012; van Esterik et al.,
2015; Bouwmeester et al., 2016), but the challenge of assessing the
probability of methylation events fromNGS sequence data across
whole-genomes has limited earlier work from being successfully
adopted in the field beyond a few laboratories.

Quantification of CpG methylation profiles and subsequent
statistical processing were performed on a commercial
bioinformatic pipeline and software platform (Genome
Profiling LLC, Newark, DE). The gDNA preparation protocol is
non-mutagenic and when coupled with the analytics platform
enables concurrent gene variant and epigenetic analyses from
a single NGS run. Both GATK (Broad Institute, Cambridge,
MA) and Issac (Illumina, San Diego, CA) variant call pipelines
have been used to extract SNP and INDEL data from these NGS
fastq files in addition to the quantitative methylation profiles.
Ultimately these high-resolution measurements of fractional
methylation at CpG sites across a genome provide a deep data
resource for integrating profile data with potential functional
shifts in specific genes from know pathways.

2.2.1. Software Platform
The integrated platform workflow is managed via a shell pipeline
running python and R scripts, starting from raw-read QC
filtering of fastq sequence files to final analyses of methylation
profiling differences between patient groups. The platform
performs the following tasks: (1) quality control to filter sequence
tags for >97% read confidence, (2) isolation of target sequence
reads, (3) sequence compression to reduce complexity, (4) read
alignment to hg19 reference genome, (5) CpG quantification for
5’-methyl-cytosine site distributions, (6) methylation profiling
comparison between patient groups, and (7) output of data plots,
tables and analyses in a report package. The platform consists
of a series of python scripts optimized for distributed processing
on a multi-core server. All analyses were performed using virtual
machines under Amazon’s Web Services cloud infrastructure.

There are two metrics recovered from the raw sequence
read files that are based on independent characteristics of
DNA fragmentation via restriction digests and random shearing
and local scale differences in coverage bias. One metric is
proportional to the probability that a CpG site is fully methylated
in a heterogenous sample (all gDNA copies present in the sample
extraction) and the other is related to the probability that the
same CpG site is fully unmethylated. These metrics are derived
for each CpG site and are utilized in subsequent statistical
analyses. This multi-measurement approach provides greater
statistical sensitivity and robust error control. Using ordination

analytics to partition measured differences in CpG states into
discrete vectors (e.g., non-metric multidimensional scaling; see
below) allows for the identification of the most significant shifts
in CpG methylation states among subject groups.

All sequence data reported here are publicly available by
contacting the lead author or through the Sequence Read Archive
of the US National Center for Biotechnology Information
(Accession #PRJNA342035).

2.3. Analyses
2.3.1. Methylation Load
Analytics are executed at three levels of comparison: individual
CpG[i] methylation, individual genes by summation across
measured CpG sites, and higher-order pathways by assessing
methylation status of component genes. This is the concept
of methylation load across a defined sequence (Ordway et al.,
2007; Hogenbirk et al., 2013) and serves to highlight functional
differences that may exist when comparing different subject
groups. Here, we utilize Differential Methylation Load (1ML),
which is a summation of site-specific differences in CpG
methylation that are then summed across a gene or gene domain
or combination of genes (pathways). This is simply calculated as
the signed sum of the difference in %MET scores for each CpG
site within the defined gene or region being scored:

1MLj =
∑

i

CpGnorm[i] − CpGPD[i] (1)

where the differential methylation load of the jth gene or pathway
is calculated across all ith CpG sites contained within that gene
or pathway. This difference is ‘signed’ and always calculated as
NORM− PD so that positive numbers reflect higher methylation
loads in healthy males and negative numbers reflect higher
methylation in the PD subjects.

2.3.2. Differential Methylation
One approach employed here utilizes differential gene expression
(DGE) analyses using the R package, edgeR, (Bioconductor)
(Robinson et al., 2010; Zhou et al., 2014). Using DGE tools
for methylation analysis is common with other open source
tools, like RnBEADS (Assenov et al., 2014), where thousands
of quantitative variables are compiled across a much smaller
number of samples (<50). Methylation score data is well suited
for such an analysis because of the limited range of response (two
orders of magnitude) in the quantitative variables in contrast to
the higher range of responses that exist in DGE data sets. Also,
these DGE analytics packages have very well developed false-
discovery rate calculations and adjustment procedures. Briefly,
a methylation data table containing normalized “counts” (i.e.,
methylated cytosine counts normalized to total cytosines at
specific CpG sites) for all six sample libraries was loaded into an
edgeR library in R. These data were used as the source fromwhich
a DGEList (Digital Gene Expression List) object was created.
Differential response between two sample groups was calculated
for single CpG sites using a site-specific false discovery rate
correction applied to each pairwise comparison.
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2.3.3. Ordinate Analyses
An ordination procedure called non-metric multidimensional
scaling (NMDS, Legendre and Legendre, 2012) analysis was
used to analyze integrated pattern discrimination in methylation
profiles. This technique is like a principal components analysis.
The primary difference between DGE and NMDS is that DGE
analysis is executed at a pairwise level across separate, individual
CpG methylation score values, while in NMDS all CpG sites
for each sample are integrated as one pattern and the patterns
are then compared across samples to identify CpG sites that are
conserved within a sample group while also divergent between
different sample groups. The R package vegan contains several
robust ordinate analyses.

2.3.4. Hierarchical Clustering
To assess pattern similarities between individual CpG sites, we
used the R package pv-clust to run a hierarchical clustering tree
with iterative bootstrap support (n= 1000) using only the top 40
CpG sites that provided the most discriminating power between
sample groups in the NMDS analysis.

2.3.5. Graphics
The R package ggplot2 is extremely versatile at handling a broad
range of data types and graphic formats (Wickham, 2009). The
Perl module circos is an essential tool for representing multiple
data tracks at very dense genomic scales (Krzywinski et al., 2009).

3. RESULTS AND DISCUSSION

3.1. Methylation Quantification and
Profiling Analyses
Interest in DNA methylation profiling technologies has grown
rapidly in recent years. One of the first methods reviews appeared
only 6 years ago (Laird, 2010). Within the last year, one issue of
the journal Methods was devoted entirely to DNA methylation
profiling methods, highlighting the variety of work that is under
development (Meissner, 2015). The Methods review pointed to
several gaps in current approaches, the key being the transition
from qualitative to quantitative data. In addition, comparing
results between studies can be problematic when different
profiling methods are used. Epigenetic profiling research is wide
open for development of standard clinical diagnostic methods.
The broad application of a standard approach would advance
the quantitative understanding of the role of epigenetics in many
diseases.

To be effective, screening tests for disease risks should utilize
non-invasive sampling of easily obtained tissues. In addition,
genetic and epigenetic profiles would be obtained and interpreted
together, yielding a comprehensive genomic assessment. Recent
work has shown the relevance of integrating DNA methylation
profiles and DNA sequence analysis obtained from blood (both
cell-free and cell fractions) (McClay et al., 2015). Here we assess
the efficacy of a computational platform based on a methyl-
sensitive restriction enzyme approach to recover epigenetic
information in blood relevant to a known disease state in early-
age Parkinson’s Disease.

It is important that a methylation profiling approach also
yields variant calls (SNPs) with the same efficiency as a
commercial standard whole genome sequence (WGS) profile.We
used the “Genome in a Bottle” (GIAB) gDNA standard that has
been developed by the US National Institute of Standards (NIST)
to be used as a reference for assessing genome variant sequence
analysis pipelines (Cornish and Guda, 2015). There were only
minor differences in the number of SNPs recovered from a
standard WGS library preparation performed by Macrogen USA
and our restriction digest library protocol (Figure S1). Both
methods resulted in identifying 94% of the known SNP sites
in GIAB across all chromosomes. Of those SNP sites, both
methods yielded greater than 99% concordance with the known
GIAB genotype. Thus, the fragmentation step via restriction
digests during library synthesis does not impact the downstream
efficiency of variant call analyses.

The repeatability of replicate measures of CpG methylation
measurements between different replicate libraries is important.
Two samples (two replicates each) were assayed on independent
sequencing lanes on aHiSeq X10 (MacrogenUSA).Measurement
precision was expressed as the coefficient of variation (CV),
which represents a percentage deviation from the mean (n
= 2 independent libraries) for each CpG site scored by our
analytical platform (Figure S2). The frequency distribution of
precision for duplicate gDNA samples reveals that over 70%
of CpG sites have a CV deviation that is less than 2.5%. A
cumulative frequency distribution shows that overall 9̃0% of
the CpG sites were scored with a CV that is less than 10%,
indicating that the quantitative methylation metrics are highly
repeatable.

To assess raw CpG measurements, Figure 1 compares
frequency distributions of methylation scores for each individual.
Here we see that the blood gDNA samples are distinctly
bimodal for all individuals. There is a sharp peak of CpG
sites centered around 90% methylation. This peak comprises
about one third of the CpG observations for each sample. A
second broader peak is evident around 60% methylation and
comprises the remaining two thirds of the distribution in each
sample. At this broad level of comparison there is no apparent
difference between these healthy normal and Parkinson’s Disease
males.

The human reference genome (hg19) has 13 million CpG
sites, including 2.4 million CpGs found in the sequence CCGG,
which is the recognition sequence for HpaII. For analyses, a
quick filter for each CpG site was executed to identify those
for which the group means differed by more than 10%. The
final data matrix consisted of 504,373 CpG sites. Because
most of the HpaII CCGG sites are located in or near defined
gene bodies, this data set yielded a deep level of gene-specific
profiles.

As a first pass to assess potential patterns in methylation
between groups, the CpG data matrix was merged with
functional annotation information for each individual CpG site,
combining gene information bed files with KEGG functional
classification nomenclature (Kyoto Encyclopedia of Genes and
Genomes). Using this integrative information, we explored
potential functional impacts of these CpG patterns that could
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FIGURE 1 | Methylation (%) Frequency Distributions. Sample profiles for %MET as a frequency distribution (histogram) overlaid with a probability density

distribution function (filled logistic curve). Orange = Parkinson’s Patients. Green = Normal Healthy Males.

be related to disease stress or symptoms. This post hoc
processing is best described as data mining because it leads
to formulation of hypotheses about early disease phenotypes,
rather than specific conclusions about possible mechanisms.
This is true especially in light of the small number of
individuals in this exploratory pilot study with the primary
goal of assessing efficacy of this CpG methylation profiling
platform.

An agglomerative metric was used to assess differential
CpG methylation status between PD and healthy subjects at
higher genomic levels. Differential methylation load (1ML)
was calculated as a summation of the difference in %MET
scores for each CpG site within a defined region or gene group
being scored (Equation 1). Broad levels of methylation were
assessed for KEGG functional classes and gene body domains

(Figure 2). Here, methylation load was distinctly different across
gene domains and across functional KEGG groups. A large
difference appears in Cellular Processes where 3 kb-upstream
promoter domains of genes were more hypomethylated in PD
individuals, suggesting functional differences in gene expression
regulation within this broad gene/pathway group. Another
noticeable difference appears in the Disease Response class
where introns in this gene group are more hypermethylated
in PD individuals. This class contains genes involved with
many cell surface recognition and cell signaling processes
predominant in lymphocytes. Overall, methylation loading on
genes between PD and healthy individuals was not equivalent
across domains and functional KEGG groups. Thus, there
are distinct differences to be be pursued at lower levels of
analysis.
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FIGURE 2 | KEGG Class Processes. High-level breakdown of methylation load (1ML) among functional KEGG class designations and gene body domains. Positive

numbers indicate higher methylation in healthy males and negative numbers indicate higher methylation in Parkinson’s Disease patients. Values plotted are means ±

SE across the number of genes in each category.

3.2. Individual CpG Methylation Patterns
Distinct differences in Figure 2 warrant a detailed CpG site-
specific analysis. The R package edgeR was utilized because of
the strong false discovery rate correction (FDR) that is calculated
for each single CpG site comparison. Only minor adjustments
in the input matrix were needed to translate the methylation
scores into a format appropriate for a DGE analysis. The resulting
differential library sizes for the six samples ranged from 1.71 to
1.77 M with a common dispersion factor of 0.034. Using an FDR
adjustment (Benjamini and Hochberg, 1995), rather than a fixed
threshold, the site specific dispersion estimates ranged from 0.001
to 0.231 with a median value of 0.035.

An exact pairwise T-test (edgeR) was performed using
dispersion adjusted CpG variances (FDR threshold 0.05). Results
for the top 40 CpG metrics sorted by P-value are shown in
Table 1. In total, 1008 CpG sites were statistically significant at
the p <0.0025 level (after FDR adjustment). Group differences
were evenly split with 499 sites showing highermethylation in PD
males while 509 sites had higher methylation in healthy males.
Table 1 shows how the top distinguished sites compare in terms
of log fold change ratios around 5.0 and highly significant FDR
P-values. It is important to point out that the analysis employed
the two metrics that are generated for each CpG site from the
analytics platform instead of a single extrapolated % methylation
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TABLE 1 | Top 40 CpG Sites by P-value.

CpG Site logMET logFC std P-val FDR P-val Response

M.chr19.0050595864 1.569 5.122 1.091e-20 4.438e-16 up

M.chr1.0148864870 1.305 5.131 1.641e-15 3.338e-11 up

M.chr8.0007469535 −1.209 5.122 1.384e-13 1.877e-09 down

M.chr5.0002151560 1.214 5.103 2.238e-13 2.276e-09 up

M.chr6.0161066486 1.275 4.997 4.233e-13 3.444e-09 up

M.chr6.0153451650 1.183 5.068 1.317e-12 8.930e-09 up

M.chr9.0045413153 −1.106 5.151 6.130e-12 3.563e-08 down

M.chr17.0079876105 1.113 5.094 1.007e-11 5.119e-08 up

M.chr8.0029207347 −1.134 5.039 1.207e-11 5.455e-08 down

M.chr13.0028499045 1.120 5.068 1.388e-11 5.646e-08 up

M.chr17.0027071641 −1.091 5.116 2.104e-11 7.405e-08 down

M.chr8.0011538630 1.109 5.075 2.184e-11 7.405e-08 up

M.chr7.0102330910 −1.106 5.082 2.522e-11 7.458e-08 down

M.chr3.0125648119 −1.105 5.063 2.567e-11 7.458e-08 down

M.chr10.0048186138 1.082 5.130 2.778e-11 7.533e-08 up

M.chr13.0045992725 1.101 5.058 3.484e-11 8.482e-08 up

M.chr2.0180871406 −1.116 5.035 3.545e-11 8.482e-08 down

M.chr2.0109834011 1.076 5.108 3.841e-11 8.680e-08 up

M.chr19.0033167362 1.106 5.046 4.095e-11 8.768e-08 up

M.chr4.0013536107 −1.095 5.075 4.624e-11 8.957e-08 down

M.chr13.0057715641 1.084 5.077 4.624e-11 8.957e-08 up

M.chr13.0021872770 −1.093 5.058 5.437e-11 1.005e-07 down

U.chr19.0050595864 −2.129 4.644 6.241e-11 1.059e-07 down

M.chr12.0130662189 1.081 5.069 6.249e-11 1.059e-07 up

M.chr9.0138980742 1.070 5.065 8.435e-11 1.372e-07 up

M.chr2.0152954469 1.075 5.034 1.018e-10 1.592e-07 up

M.chr3.0062364171 1.051 5.090 1.261e-10 1.901e-07 up

M.chr8.0049468828 −1.084 4.993 1.658e-10 2.409e-07 down

M.chr1.0234950494 1.058 5.052 2.059e-10 2.873e-07 up

M.chr10.0030723853 −1.065 5.035 2.122e-10 2.873e-07 down

M.chr20.0040246428 1.040 5.102 2.189e-10 2.873e-07 up

M.chr20.0037357841 −1.061 5.022 2.499e-10 3.177e-07 down

M.chr3.0147129204 1.039 5.071 2.672e-10 3.294e-07 up

M.chr4.0134072763 1.058 5.008 2.943e-10 3.521e-07 up

M.chr20.0062588163 1.034 5.069 3.578e-10 4.158e-07 up

M.chr5.0072861609 −1.030 5.072 4.060e-10 4.588e-07 down

M.chr7.0072494504 −1.006 5.150 4.569e-10 4.925e-07 down

M.chr17.0000029728 −1.023 5.085 4.601e-10 4.925e-07 down

M.chr7.0099149631 1.016 5.111 4.991e-10 5.206e-07 up

M.chr10.0090751531 1.038 5.022 5.146e-10 5.234e-07 up

Rank ordered listing of CpG sites by P-values that have been adjusted for the maximum false discovery rate (FDR) threshold using the Benjamini-Hochberg algorithm in the R package

“edgeR.” Site-specific dispersion was estimated to adjust CpG variances instead of using an overall sample FDR adjustment. Analysis utilizes independent methylation metric scores and

not extrapolated %methylation values. The “Response” colummn indicates: up (= higher) and down (= lower) methylation in normal healthy males relative to the Parkinson’s patients.

logMET = log[2] of the primary methylation metric scores;

logFC = log[2] of fold change.

value. These paired metrics are designated by a prefix “M” or
“U” in the table and indicate values that are proportional to the
probability that a CpG site is uniformlymethylated on all genome
copies in the sample and the probability that the site is uniformly
unmethylated among all genome copies, respectively. Overall,
these results suggest there is a small, defined set of CpG sites
whose methylation status discriminates post hoc between healthy

and PD males. The fact that these differences were detected in
blood is concordant with other studies (Masliah et al., 2013;
Alberio et al., 2014; Colasanti et al., 2014; Grozdanov et al., 2014;
Ide et al., 2015; Tan et al., 2016).

A heatmap of CpG methylation score patterns was generated
with the R package gplots using the heatmap.2 function. This
routine provides clustering across both rows (CpG[i]) and
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columns (samples) with cell values represented on a green to
blue color scale (Figure 3). Only CpG sites with an FDR adjusted
P-value <0.0025 were used. Stark visual differences in color
blocks point out two main contrasts: (1) low signal to mid-
signal, and (2) mid-signal to high signal. These contrasts arise
in comparing both PD to Healthy and Healthy to PD, so there
were four response groups of CpG sites evident in total. The
color differentiation in Figure 2 underscores the low P-values in
Table 1. Essentially, low sample variances in CpG measurements
within a group (PD vs. healthy) establish a statistical foundation
upon which error rates are extremely low.

A challenge with high-dimensional data sets arises from
concerns about applying pairwise comparisons across thousands
of non-independent data observations. To avoid this, we pursued
a second analysis approach based on group pattern recognition,
rather than multiple individual observation comparisons. Using

the same input matrix as in the DGE based analysis, we
applied an ordinate analysis technique, similar to principle
component analysis, that employed an iterative algorithm
solution using similarity rankings of CpG sites and repetitively
applied coefficients to the derived response variables to locate a
sample CpG data vector in a mutlidimensional space (Legendre
and Legendre, 2012).

This approach, called non-metric multidimensional scaling
(NMDS), established a clear and direct discrimination of
methylation score profiles of PD and healthy males. The
two sample groups are distinctly separated with the first two
ordinate dimensions plotted as x, y coordinates (Figure 4). Here,
differential CpG methylation patterns discriminated between
healthy vs. PD epigenetic profiles with high confidence. The
ellipses in the figure represent 95% confidence intervals around
the true group mean locations in the ordinate space. The spatial

FIGURE 3 | Dendrogram Heatmap of CpGs: p < 0.0025. Focusing on the most statistically significant CpG site changes, there are 1008 CpG sites with a

methylation score difference with a probability of a type-I error of p < 0.0025 (after applying a false-discovery rate adjustment). The resolution between Parkinson’s

Disease patients and healthy males reveals quantitative separation among these groups of CpG sites. Each row represents the score values for a single CpG[i] site,

with a hierarchical clustering association based on % methylation across all six individual samples in the study.
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FIGURE 4 | CpG discrimination of Parkinson’s individuals from healthy individuals. Using an ordinate analysis technique of non-metric multidimensional

scaling (NMDS), CpG methylation profiles were compared among individuals to isolate patterns conserved within groups while also differing between groups

(Parkinson’s patients vs. normal healthy males). The first two component axes are plotted to locate the individual sample points in a 2D plane. Ellipses drawn represent

95% Confidence Intervals around the location of the true group means.

gap between the ellipses indicates that there is a very low
probability that this separation between groups could have arisen
by chance alone. Iterative bootstrap analysis of randomized data
reveal a statistical probability of p < 0.0001. This separation
shows a distinct, conserved DNA methylation shift evident in
the blood profiles between PD and healthy males. The tight co-
localization of the PD sample points in the NMDS plane indicates
a strong and consistent cytosinemethylation profile that is shared
among all three PD patients, while the profiles of the heathy
individuals reveal higher interindividual variation.

The NMDS analysis does not produce a P-value for
significance of individual CpG sites because it is not a
multiple-pairwise test for significance. It is a combined pattern
analysis technique to establish the overall discrimination of
the underlying data matrix to separate between patient groups.
However, the contribution of each individual CpG site to the
overall separation between sample groups can be recovered and
allows for a ranking of the discrimination power of individual

sites. Using the top 60 ranked CpG sites a hierarchical clustering
with bootstrap replication was performed (Figure 5) to identify
parallel patterns of methylation shifts across samples. The color
shades in Figure 5 highlight lowest branches at which replicate
support is >97%. There are several distinct groupings of CpG
sites. The clustering indicates that the pattern of methylation
among these groups is highly similar and may suggest a
hypothesis of coordinate mechanisms of methylation status.

3.3. Gene Level Methylation Patterns
Clustering top discriminating CpG sites based on methylation
patterns (Figure 5) may indicate potential sites with similar
mechanisms of regulating methylation/demethylation. To assess
whether such cluster associations indicate parallel methylation
will require an analysis of howmethylation shifts between subject
groups compare at higher-levels of cell functioning. First, a
methylation load summation (1ML) was utilized to compare
methylation levels across defined genes between patient groups.
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FIGURE 5 | Hierarchical Clustering of Top Discriminating CpG Sites. The top ranked CpG sites that contribute to the group discrimination in the NMDS ordinate

analysis are isolated and compared for similarity in methylation patterns across all individuals. Iterative boot-strap analysis (1000 reps) using the R package pv-clust

established confidence levels of support for branches. Color shading represent the lowest order branch with significant association supported by >97% of the runs.

A list of the top 40 hypo-methylated genes in PD males (Table 2)
provides a look at genes that are the most under methylated
relative to healthy males. Because of the general release of
transcriptional gene controls associated with hypo-methylation,
we can postulate that these genes are likelymore active in PD than
in healthy controls, but direct testing is necessary before further
inferences can be made.

A top 40 list (Table 2) is just a beginning point for an analysis
with sufficient patient sample size (n = 20 to 50) to warrant
digging deeper to look for markers and mechanisms of disease
phenotype progression. The total number of annotated genes
for which a 1ML score could be calculated was 4044. In a
concerted biomarker study, an investigator would be able to parse

deeper into ranked gene lists to assess the functional relevance
of smaller shifts in methylation load. Also important to consider
in a deeper study is the break out of 1ML into gene body
structures, such as introns (miRNAs, transcript splice variants),
CpG Islands (coordinated local domain shifts, retrotransposons),
and 2 kb upstream promoters (transcriptional regulation). With
a sufficient patient sample size, a break-down 1ML could be
evaluated separately in different functional contexts within, or in
proximity to, a defined gene body. Thus, total 1ML across an
entire gene is a high-level integrated score that reveals “genes of
interest,” and focus research attention on gene body targets for
which an assessment of methylation shifts should be executed on
a finer-scale.
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TABLE 2 | Top 40 Hypo-methylated Genes in Parkinson’s patients.

MethyLoad UCid Pfam RefSeq Pathway

1293.2 uc002lwd.2 unk MIR7850 Alcoholism

1068.1 uc002pbu.2 Rad10 MIR6088 Fanconi.anemia.pathway

928.6 uc002ydf.3 unk NTSR1 Neuroactive.ligand-receptor.in

881.4 uc002xtw.1 RhoGEF PREX1 Chemokine.signaling.pathway

820.6 uc002ybs.3 TAFH TAF4 Herpes.simplex.infection

694.1 uc002hhu.3 ASC ASIC2 Taste.transduction

605.2 uc002ikv.3 unk WNT3 HTLV-I.infection

538.2 uc003wjq.1 CHGN CHPF2 Glycosaminoglycan.biosynthesis

525.1 uc002kog.2 unk RAB31 Endocytosis

520.5 uc002lov.3 unk CDC34 Herpes.simplex.infection

519.5 uc002wnw.2 DSL JAG1 Notch.signaling.pathway

513.2 uc002hgn.1 unk RAB11FIP4 Endocytosis

494.4 uc002fwo.4 VWA ITGAE Regulation.actin.cytoskeleton

492.8 uc002wmu.1 unk BMP2 Basal.cell.carcinoma

486.7 uc001zng.2 DSL DLL4 Notch.signaling.pathway

469.9 uc001mil.1 Adrenomedullin Adrenomedullin Vascular.smooth.muscle.contrac

467.7 uc010gke.1 Neur_chan_LBD Neur_chan_LBD Nicotine.addiction

459.3 uc002xqz.3 Peptidase_M10 MMP9 Hepatitis.B

444.2 uc002lry.2 Ephrin EFNA2 Axon.guidance

433.6 uc001ack.2 NtA AGRN ECM-receptor.interaction

428.0 uc001uii.3 Fz FZD10 HTLV-I.infection

412.7 uc002jqm.1 unk galanin.re Neuroactive.ligand-receptor.in

395.7 uc002ewa.3 Exo_endo_phos SMPD3 Sphingolipid.metabolism

369.6 uc003xhm.3 Y_phosphatase DUSP4 MAPK.signaling.pathway

357.6 uc002mmq.1 Laminin_G_2 COL5A3 Amoebiasis

357.2 uc002sgf.3 unk PCBP1 Spliceosome

348.5 uc003xpx.4 unk HGSNAT Lysosome

344.8 uc021pxg.1 FGF FGF8 Melanoma

343.5 uc003keo.3 unk F2RL1 African.trypanosomiasis

341.8 uc002kwg.2 unk CDH2 Arrhythmogenic.right.ventricul

334.1 uc002yet.2 Neur_chan_LBD LOC100130587 Nicotine.addiction

333.2 uc001uew.3 SET KMT5A Lysine.degradation

330.1 uc001hqd.4 WGR PARP1 Base.excision.repair

328.0 uc002xaa.3 ESCRT-III CHMP4B Endocytosis

323.6 uc010asv.1 Laminin_G_1 Laminin_G_1 Cell.adhesion.molecules.(CAMs)

312.4 uc002glw.4 Laminin_EGF NTN1 Axon.guidance

312.2 uc003yhp.3 TGF_beta GDF6 Cytokine-cytokine.receptor.int

310.1 uc002kmv.1 Band_41 EPB41L3 Tight.junction

305.2 uc010wnn.1 Dynein_light DYNLL2 Vasopressin-regulated.water.re

299.5 uc003kei.1 unk synaptic.v ECM-receptor.interaction

Genes are rank ordered by methylation load score (1ML) and are presented with PFAM and RefSeq name designations (where available) as well as KEGG pathway associations. The

gene list has been filtered for functional pathway assignments. Hypothetical genes or genes with unannotated functions were not included in this rank listing.

Overall, there is a noticeable representation of genes involved
with cell surface signaling events, cell-surface interactions, and
even neuron functioning. Keeping in mind that the primary
source of gDNA in these samples are B- and T-cells, plus
much smaller amounts of circulating cell-free DNA, the strong
“immune” based response suggests that in blood a traceable
signal indicative of PD exists at a functional gene level and not
just as independent CpG methylation events. A KEGG pathway

descriptor is included in the table but many genes are active in
several pathways and thus the primary descriptor does not always
relate to the most proximal function a gene may contribute to via
altered methylation states in this specific study. Given the small
number of individuals and the range of annotation possibilities,
the presented pathways should be considered as hypotheticals.

Similarly, a list of the top 40 hyper-methylated genes in
PD males (Table 3) provides a look at genes that are the most
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TABLE 3 | Top 40 Hyper-methylated Genes in Parkinson’s patients.

MethyLoad UCid Pfam RefSeq Pathway

−1707.0 uc001vqx.3 Collagen MIR8073 Amoebiasis

−1188.1 uc004cfb.2 zf-C4 RXRA Hepatitis.C

−802.5 uc004ays.3 7tm_3 GABBR2 Morphine.addiction

−770.9 uc011auw.2 Sec7 IQSEC1 Endocytosis

−761.9 uc003apg.3 Myosin_head MIR6819 Viral.myocarditis

−748.4 uc001vqw.4 unk COL4A1 Amoebiasis

−712.4 uc003bvw.3 unk MIR378B Pancreatic.secretion

−630.0 uc001vmw.4 HS6ST MIR4501 Glycosaminoglycan.biosynthesis

−604.7 uc011awl.2 unk LOC105376997 Non-small.cell.lung.cancer

−581.0 uc001qzz.3 SAM_PNT ETV6 Transcriptional.misregulation.

−571.0 uc021xkv.1 HEAT HTT Huntington’s.disease

−565.9 uc001urt.2 unk PDX1 Maturity.onset.diabetes.the.yo

−446.0 uc001mjo.2 Glycos_transf_2 GALNT18 Mucin.type.O-Glycan.biosynthes

−441.4 uc003iwc.3 Phosphodiest ENPP6 Ether.lipid.metabolism

−435.9 uc003bkv.4 Sema PLXNB2 Axon.guidance

−407.8 uc003qvl.3 unk FGFR1OP Chemokine.signaling.pathway

−404.2 uc003bye.1 unk WNT7A HTLV-I.infection

−394.5 uc003jcm.3 Acyltransferase LPCAT1 Ether.lipid.metabolism

−392.1 uc001lsx.1 unk MUC2 Amoebiasis

−384.3 uc003nzl.2 Fibrinogen_C CYP21A2 Focal.adhesion

−379.9 uc003eux.4 FATC ATR HTLV-I.infection

−369.6 uc003pvk.3 unk FYN Measles

−360.5 uc001mhu.3 unk WEE1.homol Cell.cycle

−349.8 uc003qmg.3 HS2ST LOC105378047 Glycosaminoglycan.biosynthesis

−339.0 uc031scj.1 unk LINC01014 Vascular.smooth.muscle.contrac

−333.9 uc003aps.2 unk CACNG2 Dilated.cardiomyopathy

−323.7 uc021ywr.1 RYDR_ITPR ITPR3 Alzheimer’s.disease

−323.7 uc003pwh.4 Sulfotransfer_1 HS3ST5 Glycosaminoglycan.biosynthesis

−321.8 uc001ykv.4 HATPase_c HSP90AA1 Prostate.cancer

−320.6 uc003bia.3 DAGK_cat CERK Sphingolipid.metabolism

−316.5 uc010smh.1 Tubulin_C TUBA1C Pathogenic.Escherichia.coli.in

−314.5 uc001tuk.1 WWE DTX1 Notch.signaling.pathway

−312.1 uc001ojv.3 unk RHOD Axon.guidance

−304.5 uc001rbt.2 Lig_chan GRIN2B Alcoholism

−288.9 uc011kgj.1 14-3-3 YWHAG Epstein-Barr.virus.infection

−285.6 uc010lee.1 unk SEMA3D Axon.guidance

−284.8 uc001luc.2 unk CTSD Tuberculosis

−283.9 uc003fwy.4 Pkinase_Tyr PAK2 Renal.cell.carcinoma

−278.8 uc001oph.3 FGF FGF3 Melanoma

−275.0 uc011bwl.1 unk actin.bind Axon.guidance

Genes are rank ordered by methylation load score (1ML) and are presented with PFAM and RefSeq name designations (where available) as well as KEGG pathway associations. The

gene list has been filtered for functional pathway assignments. Hypothetical genes or genes with unannotated functions were not included in this rank listing.

over methylated relative to healthy males, and thus likely to
be less active or repressed. Again there is an intriguing list
of genes associated with cell signaling, surface recognition,
cellular defense and neuron function. To assist in parsing
through these gene lists (Tables 2, 3) to identify significant
features we employed a custom PubMed (NCBI) literature
citation tool to screen all indexed publications on Parkinson’s
Disease and/or neurodegeneration. Instead of trying to manually

assess each gene in the list, this approach uses PubMed as
a knowledge base and efficiently determines literature support
for each gene in both tables in association with Parkinson’s
Disease.

Parsing through the PubMed citations (inclusive of Abstracts),
a threshold of >100 total publications was used to hunt for
genes in Tables 2, 3 that have been prominently linked to or
associated with Parkinson’s Disease or neurodegeneration or
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FIGURE 6 | Literature Citations for Parkinson and Neurodegeneration. The NCBI publication database PubMed was searched for research articles using the

words Parkinson* or neurodegenerat* between the years of 1980 and 2015. (Top) Total publications recorded by year matching these search criteria. (Bottom) Using

rank ordered genes from Tables 2, 3, the top methylated genes were used to search the PubMed citations and identify which of these highly differentially methylated

genes were associated with prior research on neurodegenerative diseases and processes.

neural function. Figure 6 presents the most prominent genes
identified: FGF3, FGF8, HTT, KMTA5, MIR8073, and YWHAG.
These genes all show substantial differential methylation in this
study as well as being prominently represented in the literature
with some connection to PD and/or neurodegeneration. In
Figure 6, the field of PD research has exponentially increased
from 1980 to 2016. The representation of genes in this
publication group are shown as percent of total publication
values, so the percentage of publication numbers in the lower
panel are normalized to the exponential increase already, and
increases in the percentage values are indicative of real increases
in the representation of specific genes within this literature.

Of the six genes in Figure 6, two stand out more prominently.
First, KMT5A or SETx, is a protein N-lysine methyltransferase
that monomethylates both histones and non-histone proteins.
Histone 4 (H4K20) is a target and is methylated during mitosis
and represents a specific tag for epigenetic transcriptional
repression (Kalakonda et al., 2008; West et al., 2010;
Malik et al., 2015). Second, HTT, is Huntington Disease
Protein or Huntingtin, for which there are well established
neurodegenerative actions (Gusella et al., 2014; Kaliszewski
et al., 2015; Kumar et al., 2015; Labadorf and Myers, 2015).
Simple literature based searches are not definitive and there

is a great deal of language complexity when parsing through
abstracts targeting in on just a few specific words. However, a
knowledge based approach is one of the most efficient ways to
tackle problems like this where long lists of genes (1000’s) can be
efficiently scored for topical relevance.

An ideogram figure combines differential methylation load,
CpG gene promoter densities, CpG clustering associations, and
impacted genes (Figure 7). Here, (1ML) is presented as the
outer track scatter plot and clearly shows how the vast majority
of chromosome domains (at 1 MB intervals) are equivalently
methylated between both groups (gray points). There are only a
very few regions where differential methylation is substantially
evident (red or green points), and these hyper- and hypo-
methylation deviations appear mostly in regions where CpG
density is highest in promoter regions.

The arcs in Figure 7 present the clustering similarities for
just the top 20 CpG sites (for visual clarity). The red arcs
connect CpG sites that are the most closely correlated, the
orange arcs connect second-best correlations. It is interesting to
note that the highest correlated CpG sites do not occur in the
same gene or chromosomal region. Their locations are separated
across chromosomes, but these CpG sites are rarely located in
domain regions where there is a large 1ML between groups.
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FIGURE 7 | Differential Methylation Load with Top 20 CpG Sites. A mean subtraction of CpG methylation scores (Healthy minus Parkinson) was used to

calculate a summation methylation load score across genomic domains (1ML). These data are presented as a scatterplot with red and green background to

accentuate areas where they are most different. Blue histogram bars present CpG densities in gene promoter domains. The correlative association between top 20

CpG sites are shown as red arcs that track the first highest correlation for each CpG site while orange arcs show the second highest. Gene labels indicate the loci

positions of the top 60 discriminating CpG sites, with red indicating higher methylation in Parkinson’s patients and green indicating higher methylation in healthy males.

The genes in which the top CpG sites are located are labeled
around the outside of the ring, color coded by whether that CpG
site is more methylated in the healthy group (green) or more
methylated in the PD group (red). Overall, mapping the changes
across methylation states helps to assist in identifying potential
or rational hypotheses for “mechanism of action” differences
between patient groups.

The differential methylation responses of CpG sites integrated
into a genome profile (Figure 7) shows the overlaying of
multiple data tracks that are necessary to bring some focus to
genomic-based differences. All these variables come into play

in piecing together the epigenome profile and assessing the
distinguishing characteristics that could define PD processes/risk
apart from healthy subjects. This integrated plot helps to
pin-point associations not evident in the large data tables to
suggest associations, correlations and response mechanisms that
we can mentally explore and determine if there are observational
patterns that warrant further focus.

3.4. PD Markers
The slow progression of many neurodegenerative diseases leaves
a window of time for therapeutic interventions that could
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potentially ameliorate disease symptoms, retard advance of the
disease and/or even cure the disease. There is a clear advantage
for early detection and intervention. To facilitate early diagnoses,
the hunt for markers of Parkinson’s Disease has traditionally
focused on behavioral, cognitive and motor activity profiling
(Mehta and Adler, 2016). Within the last decade, work is
progressing to identify quantitative molecular signals in blood,
cerebral spinal fluid, and other peripheral tissues to identify
any systemic traces of neurodegenerative stress or activity in
source tissues that could be readily obtained for a screening assay
(Schneider et al., 2016).

The idea that a neurodegenerative disease signal can be
detected within peripheral tissues other than the cerebral cortex
is well established. There are active efforts looking at skin tests
to detect signs of PD via alpha-synuclein (SCNA) in epidermal
nerves (Donadio, 2014; Donadio et al., 2016; Rodríguez-Leyva
et al., 2016). Even gastric and colonic mucosa have been profiled
for markers (Chung et al., 2016). Blood is probably the most
active area of PD marker research looking at a range of potential
targets from IGF-I titers (Bernhard et al., 2016), micro-RNA
signatures (Ding et al., 2016), mitochondrial densities (Pyle et al.,
2016), vitamins (Ding et al., 2013; Ide et al., 2015), lymphocytes
(Tan et al., 2014, 2016) and proteins like alpha-synuclein (SNCA)
(Pihlstrøm et al., 2015).

As the field of epigenetics has rapidly developed, some
attention has turned to assessing the potential for this genetic-
based chemical information system to serve as a diagnostic source
for PD (Ai et al., 2012). Pioneering work has been conducted by
Desplats et al. (2011) describing an interaction between SCNA
and DNMT1 (methylation maintenance) that likely contributes
to the broader hypomethylation shifts in neurons of PD patients.
Shifts in DNA methylation are a definite component of PD. The
work of Pihlstrøm et al. (2015) shows correlated methylation
of SNCA from both cerebral cortex and blood within PD
patients, so the SCNA signature of the disease can be traced in
blood. Likewise, Masliah et al. (2013) demonstrates genome-wide
correlates of genome methylation patterns between both brain
and blood samples in PD patients. An epigenetic signal linkage
is evident between brain and blood in PD. The ability to assess
epigenetic proximal signals of neurodegeneration in peripheral
tissues establishes the utility of using blood as a tissue source
for PD marker assays. An epigenetic response within peripheral
blood cells to PD progression within patients is demonstrable,
especially in circulating cells like lymphocytes (Tan et al., 2014,
2016). The functional role of white blood cells moving through
circulatory and lymph systems makes them an effective sentinel
target for disease response markers as they perfuse through
tissues in a high state of signal sensitivity monitoring micro tissue
environments.

Despite the apparent utility of assaying for DNA methylation
markers in PD, there are only a handful of studies published in
the literature in the last 5 years pursuing this avenue of research.
The main limitations seem to be methodological problems with
accurately quantifying gene methylation and the cost of NGS
based assay tools needed to cover large patient cohorts. Although
this present study is a feasibility test of a DNA methylation
platform, the low variance and high discrimination achieved

suggest that circulating lymphocytes in PD subjects may provide
gene-based epigenetic markers of disease states. The majority
of these markers are not likely to be proximally related to PD
symptoms, but instead secondarily related to the stress and
response of the body to the presence of neurodegenerative
processes. This disease signal is likely to be unique in terms of
an immune system response to maintain an individual’s current
state of health.

4. CONCLUSIONS

An important synthesis of Figure 7 is the potential
understanding of how methylation signals may transfer
molecular information from single CpG sites to genes to
pathways to cellular function. This cross level linkage is an
important evidentiary source for triaging a list of “most-
informative” CpG sites that could be combined into a targeted
panel assay. The real end goal is to utilize early-stage epigenetic
shifts that may indicate changing disease risks as a clinical
screening tool. The first step is to combine 96 CpG sites into a
high-throughput qPCR screening platform (technologies like
Fluidigm, NanoString) and begin testing for efficacy among
subjects with defined disease phenotypes. We are not at that
point with this study here, but we are a step closer to that
point with the technology platform that has generated the data
presented.

At a functional level, we can trace patterns in differential
methylation back to pathways and genes that support hypothesis-
level ideas about potential roles of DNA methylation in altered
molecular, cellular and physiological activities of PD. These
“signals” are evident in blood even though they convey a distinct
neurodegenerative signature. Even with a small pilot cohort, we
statistically recover epigenetic profiles that discriminate between
healthy and PD blood profiles, with a functional relevance in
many of the comparative differences. The quantitative sensitivity
and repeatability (across patients) of the DNA methylation
metrics presented here are substantial enough to warrant further
exploration with larger patient cohorts and with the goal of trying
to establish a blood-based marker screening test for early age
Parkinson’s Disease.

Overall, the results of this profiling work reveal a large number
of differentially methylated CpG sites that can be identified
with high statistical confidence. With a larger subject cohort,
these results would support the design and development of a
targeted panel assay of select CpG sites using qPCRmeasurement
platforms. Ultimately, targeted panels for detecting shifts in site-
specific CpG methylation could make it possible to diagnose
early onset stages of impending diseases or disease risks by
identifying pre-symptomatic genomic changes via epigenetic
mechanisms.
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Figure S1 | Efficiency of Genome Variant Analyses. The NIST standard

“Genome in a Bottle” was processed using a commercial sequencing lab

(Macrogen USA) comparing standard whole genome library preparation and

downstream variant analysis (WGS) to a HpaII fragmentation prior to library

preparation and then normal sequencing and variant analysis (GenPro). Both

methods recovered 94% of the known SNP variants in the Genome in a Bottle

genotype.

Figure S2 | Replicate Precision. The gDNA from two separate samples were

each split and used for replicate library preparations and NGS sequencing runs.

(A) Frequency distribution of the observed Coefficient’s of Variation (CV) for

individual CpG sites. (B) Cumulative frequency plot showing that almost 90% of

the measured CpG sites in the replicates had a CV < 10%.
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