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A gene co-expression network (GEN) was generated using a dual RNA-seq study with
the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial
3 days of infection. The analysis deciphered novel pathways and mapped genes of
interest in both organisms during the infection. This network revealed a high degree
of connectivity in many of the previously recognized pathways in Z. mays such as
jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus,
a link between aflatoxin production and vesicular transport was identified within the
network. There was significant interspecies correlation of expression between Z. mays
and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an
interspecies subnetwork enriched in multiple Z. mays genes involved in the production
of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular
transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a
key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays
ROS producing genes within the network, suggesting AflS may be monitoring host ROS
levels. The entire GEN for both host and pathogen, and the subset of interspecies
correlations, is presented as a tool for hypothesis generation and discovery for events
in the early stages of fungal infection of Z. mays by A. flavus.

Keywords: Aspergillus flavus, Zea mays, networks, RNA-sequencing, gene co-expression analysis

INTRODUCTION

A systems biology approach can greatly aid in understanding the dynamics of fast changing
systems like stress and defense responses in plants, and allows for both discovery and novel
hypotheses generation. The rise of the systems biology field has been brought on by the recent
expansion of genomic, transcriptomic, and proteomic technologies and their large comprehensive
datasets. “Omics” based techniques, such as gene co-expression networks (GENs), have aided in
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the discovery and functional analysis of genes and pathways
involved in the response to biotic and abiotic stresses in plants
(Sekhon et al., 2013). Gene expression analysis has been done
individually on plants and fungi such as Zea mays, Glycine max
(Libault et al., 2010), Arabidopsis thaliana (Mao et al., 2009), and
Saccharomyces cerevisiae (Carlson et al., 2006).

In studies of host–pathogen interactions, however, two key
limiting factors of system biology approaches involving genome-
wide transcriptional studies have been typically observed. First,
co-expression networks, especially those that have relied on
microarrays, have been limited by the size of the array used
to generate the data, which can lead to a loss in information.
Secondly, the more extensive RNA-sequencing based studies thus
far have often been limited to either the host or the pathogen.

The opportunistic pathogen Aspergillus flavus produces the
potent mycotoxin aflatoxin upon infecting of Z. mays. This
interaction was chosen to study because the pathogen has been
reported to transition from a saprophytic to a necrotrophic
lifestyle during the infection process (Abdel-Hadi et al., 2012;
Fountain et al., 2014). Moreover, A. flavus typically infects maize
kernels at a specific stage of maize development (Diener et al.,
1987). A transcriptomic network study of this host–pathogen
interaction is thus a good complement to other developmental
RNA-seq based co-expression network studies in maize and
A. flavus (Sekhon et al., 2013; Schaefer et al., 2014). Additionally,
the A. flavus GEN represents the first GEN published for A. flavus.

What is currently known about A. flavus and Z. mays has
been primarily derived though a focus on either the host
or the pathogen. These approaches have been beneficial and
have resulted in the discovery and characterization of multiple
secondary metabolite clusters in A. flavus (Kale et al., 2008;
Chanda et al., 2010; Chang et al., 2013; Rohlfs, 2015). Examples
of this have been in the transcriptome analysis of clusters such as
the aflatoxin, aflatrem, and cyclapanozic acid (Chang et al., 1995,
2004; Ehrlich et al., 1999; Duran et al., 2007; Kale et al., 2008;
Hong et al., 2015). These whole transcriptome studies strongly
complemented bottom up experimental approaches, and filled in
gaps toward a better understanding of these secondary metabolite
pathways.

In Z. mays, multiple pathways have been discovered to be
involved in resistance to A. flavus. In fact, pathways such as
the phenylpropanoid, jasmonic acid, and salicylic acid pathways
have been reported to play a significant role in resistance to
the fungus (Warburton et al., 2015). Moreover, genome-wide
association studies (GWASs) have indicated that the jasmonic
acid pathway plays the largest role in conferring resistance across
the current publically available breeding studies involving maize
lines resistant to A. flavus (Tang et al., 2015; Warburton et al.,
2015).

In this dual transcriptomic study of A. flavus and Z. mays,
our focus was to infer a GEN of both host and pathogen during
the initial stages of infection, and to develop a tool that could be
utilized to understand the complex interaction between A. flavus
and Z. mays. The approach used in this study differs from
what has been previously reported in that the correlation of
expression between genes in host and pathogen (cross-species)
is captured along with correlations restricted to the host or the

pathogen. The network approach used reveals features that are
lost, particularly when relying on co-expression analysis using
only heat maps and gene clustering. This work shows that there
is significant cross-species co-expression during the initial stages
of infection. It also reveals resistance and virulence mechanisms,
particular to A. flavus and Z. mays, which are important at
the initial stages of the interaction between the two organisms.
The generated network maps can also serve as a tool to infer
functional annotation for poorly annotated genes in both Z. mays
and A. flavus.

MATERIALS AND METHODS

Growth and Inoculation of Maize
Maize B73 was grown in Clayton, NC during the years 2011 and
2013. Seeds were planted on April 16. Ears were hand pollinated
from July 5–8 and covered with a paper bag. A time course
study was performed by pin bar inoculating one ear (per time
point) of maize B73 with A. flavus NR3357 and harvesting at
0, 6, 12, 18, 24, 30, 36, 42, 48, and 72 h post-inoculation. Four
biological replicates for the samples were produced for the time
points 12, 24, 48, and 72 h post-inoculation. Samples were frozen
in liquid nitrogen, placed on dry ice and stored at −80◦C until
RNA was isolated. Maize B73 and A. flavus NR3357 were used
in this study because of the availability of genomic resources for
them, and because of the relatively large amount of studies that
were previously conducted using either or both of them. Maize
B73 and A. flavus NR3357 were therefore used in this study to
make comparisons to other available experimental data sets more
straightforward.

RNA Isolation
Eight kernels per ear were ground and used for RNA isolation.
Approximately, 100 mg of ground tissue was homogenized in
a Virtis homogenizer (Virtis, Gardiner, NY, USA) in Saturated
Phenol, pH 6.6 for 2 min. Samples were then dissolved in
Tris EDTA buffer, pH 8.0 (ACROS Organics, Morris Plains,
NJ, USA), purified with 5:1 Acid Phenol: Chloroform, pH 4.5,
and precipitated with ice-cold 100% ethanol overnight. Total
RNA was purified again with RNeasy Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The
quality and concentration of RNA was analyzed using an RNA
Pico chip on an Agilent Bioanalyzer (Agilent, Santa Clara, CA,
USA).

Sequencing and Mapping
cDNA library construction and sequencing was performed at the
Genomic Sciences Laboratory, North Carolina State University.
Libraries were made from each time point, pooled and run on
a single lane. Sequencing was performed on an Illumina HiSeq
(single reads, 100 bp). Raw reads were deposited in the Sequence
Read Archive (SRA) at NCBI, accession numbers [SRP082421].
Mapping, trimming and fastqc quality control of the reads, for
both Z. mays and A. flavus, were done with CLC workbench 4.9
(Qiagen, Hilden, Germany). CLC genomics workbench default
parameters were used for doing the mapping and trimming. The
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reference genomes used in this study where Z. mays (AGPv3,
INSDC Assembly GCA_000005005.5, April 2013) and A. flavus
(JCVI-afl1-v2.0, INSDC Assembly GCA_000006275.1, January
2009). Reads that had a total unique gene count of 1 were
removed from the counts table.

Gene Ontology Analysis
Gene ontology analysis of the co-expression subnetwork was
done with the gprofiler and significant go-terms were selected
based upon a false discovery rate (FDR <0.05) (Reimand et al.,
2016).

Regularized Log Normalization, M-Value
Calculation, and K-Means Clustering
Unique mapped read counts were normalized by regularized
log transformation using the DESeq2 package in the R software
environment (ver. 3.3). The mapped reads were than used to
calculate M-values for the different samples by using samples 0
and 6 h as controls for Dataset 1 (Love et al., 2014).

[M − value = log2(
treatment

control
)]

The DESeq2 function plotPCA() was used to generate principal
component plots to analyze the variation in the samples. For
Z. mays, mRNA extracted from samples collected 0 hpi were
used as control. As for A. flavus, samples collected 24 hpi
were used as control. The original matrix contains 7408 genes
(3331 Z. mays and 4115 A. flavus) showed significant differential
expression with a q-value cutoff <0.1 (after Benjamini Hochberg
FDR correction) and were selected for clustering and gene co-
expression analysis. After duplicate gene models were removed
the matrix was reduced to a size of 6035 genes (A. flavus 3290 and
Z. mays 2745). TM4 (Saeed et al., 2006) and Cluster 3.0 (de Hoon
et al., 2004) software platforms were used to analyze these genes
by K-means clustering using the absolute Pearson correlation
metric and average cluster sampling method into two different
bin sizes (10, 100) (Supplementary Table S1).

Correlation Calculation and Network
Analysis
Pearson correlation analysis was done on differentially expressed
genes by utilizing the cor() function in R using the Z-scores
calculated (see above). The resulting matrix was then transformed
into a pair-wise gene table using the reshape2 melt() package
in R. The resulting table (∼30 million gene pairs) was filtered
using the subset() function in R for gene pairs showing 0.95
or greater correlation. This resulted in 980,280 gene pairs.
In addition a randomly generated matrix was done similarly
for the data which was obtained generating random log2Fold
changes were generated in R for subsequent Kolmogorov–
Smirnov supplemental test (Massey, 1951).

Network Visualization and Cytoscape
To visualize the network 980280 gene pairs were load
into the cytoscape network. Gene Annotation was then
added to the network using the (AGPv3, INSDC Assembly

GCA_000005005.5, April 2013) and A. flavus (JCVI-afl1-v2.0,
INSDC Assembly GCA_000006275.1, January 2009). It is
important to note that the best method for visualizing the
network is to import the data into Cytoscape without building
the network if not using a large memory computer. To select gene
pairs of interest the user can refer to the Cytoscape manual in
order to select for genes of interest and first neighbors without a
high memory PC. Network topological analysis was then done
on this set of gene pairs using Cytoscape Ver. 3.2.1 (Shannon
et al., 2003; Maere et al., 2005; Cline et al., 2007). The network
analysis was performed using the NetAnalyzer tool in Cytoscape
and network clusters were identified using the MCODE app for
Cytoscape (Bader and Hogue, 2003).

RESULTS

RNA-seq
RNA-seq was carried out on mRNA extracted from Z. mays
kernels inoculated with A. flavus over a 3-day time course.
The individual reads were competitively mapped to a combined
gene model set of both A. flavus (13775 gene models) and
Z. mays (181929 gene models). 44264 gene models had unique
mapped reads in at least one pooled kernel sample, while 151440
gene models did not have any expression (0 unique mapped
reads) across all the samples. 6035 genes were then selected
for co-expression analysis based upon their significant level of
differential expression (see Materials and Methods). The A. flavus
3290 and Z. mays 2745 genes are stored in a matrix (Supplemental
File 1).

Principal Component and K-Means
Clustering Analyses
Principal component analysis (PCA) showed a high level of
variation between samples, but many of the later time points
clustered together (Figure 1). The analysis also showed that a
high level of variation occurred between samples collected at
the same hpi (hours post-infection) for both host and pathogen
(Figures 1A,B). When visualized using centroid graphs from
K-means clustering to observe expression patterns there was
a high level of variation between Z. mays and A. flavus at
12 hpi (hours post-infection), 48 hpi, and 72 hpi for genes
in both systems. These observations lead us to conclude that
although these were indeed biological replicates, inoculated with
the same culture of A. flavus, and harvested for RNA at the
same time, the progression of the infection could be quite
different from replicate to replicate. These replicates thus likely
represent leading and lagging infection progress at early and
middle stages of infection. There is tight replicate grouping in
early time points (Figure 1A, 12–18 hpi) and clear separation
of these from later stages of infection (48–72 hpi). The pathogen
A. flavus (Figure 1B), seems to have a more variable expression
in early infection stages, but these have caught up to each
other and give a more consistent expression profile at 72 hpi.
For this reason, we treated each replicate as a separate data
point (representing a different stage of infection), rather than
using replicate averages in downstream clustering and correlation
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FIGURE 1 | Principal component analysis (PCA) of RNA-seq. Transcriptomic (global gene expression) data from each of the time points of (A) Zea mays and
(B) Aspergillus flavus were analyzed by principal component analysis using R statistical language. Colored dots represent individual biological replicates harvested at
different time points during the infection. These were grouped based on similarity of infection by hpi (hours post-inoculation).

analyses. When the genes were clustered into 10 bins (clustering
groups), the largest bin had 2599 correlated genes for Z. mays
and for A. flavus. This largest cluster had a similar overall
trend of down-regulation over time. Functional analysis of this
cluster found genes enriched in multiple biological processes
with no obvious pattern related to resistance to pathogens.
Examples included response to cadmium ion, response to
inorganic substance, protein folding, DNA replication, glucose
homeostasis, and nucleosome assembly. Other bins contained
smaller numbers of genes but produced similar results for
functional enrichment.

Genes were then K-means clustered into 100 bins to determine
functional enrichment of tightly inter-correlated groups of
A. flavus and Z. mays genes (Supplementary Table S2). These
bins had a smaller number of genes (3–1488) and many
included clusters with genes from a single species. Nineteen
clusters contained genes from both species. In many cases,
genes related to disease resistance in Z. mays, even those with

somewhat different biological roles (i.e., multi-domain genes and
resistance to different pathogen types), appeared in the same
cluster. For example, cluster 21 (from Supplementary Table S2)
contained multiple primary metabolism and signaling kinase
genes such as 3-Deoxy-Darabinoheptulosonate 7-phosphate
(DAHP) synthase (GRMZM2G396212) and Inositol 1 3 4
trisphosphate 5/6-kinase family protein (GRMZM2G084609).
Another cluster contained the genes encoding for SPP2 Sucrose-
phosphatase 2 (GRMZM2G097641) and LOX10 lipoxygenase-10
(GRMZM2G015419). These genes were found to be co-expressed
with multiple heat shock genes and with myb transcription
factors. Many of the genes in this cluster were noted in previous
studies involving resistance of maize to A. flavus and Fusarium
verticillioides. An example is the presence in our dataset of
WRKY19 (GRMZM2G063880), WRKY53 (GRMZM2G012724),
and PR10.1 in Z. mays which have been previously shown to
be up-regulated upon infection by A. flavus (Fountain et al.,
2015).
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FIGURE 2 | Histogram distribution of Pearson correlations. Histogram shows the correlation between differentially expressed genes identified in an in vivo
simultaneous RNA-seq experiment with A. flavus and Z. mays. The histogram includes all differentially expressed genes along with their Pearson correlation
distribution for (Z. mays vs. Z. mays), (A. flavus vs. A. flavus), and (Z. mays vs. A. flavus). The correlations that were found to be significant in the analysis were
greater >0.95 Pearson correlation.

Gene Co-expression Network
An alternative approach to K-means clustering is to examine
all significant pairwise correlations between genes as a network
graph. This overcomes limitations in arbitrary group number
selection. It also assays specific correlations between genes relying
on fitting genes based on the group average expression of a
bin. Moreover, networks can reveal patterns of interrelationships
between individual genes not readily apparent in other clustering
methods, and thus provide a complementary analysis to what can
be gaged from other analysis approaches.

A co-expression network for the 6035 Z. mays and A. flavus
differentially expressed genes was generated using pairwise
Pearson correlation across all samples, and choosing an edge
adjacency matrix with a cutoff of a (0.95) correlation coefficient.
Surprisingly, even at this high correlation cutoff, the network
was quite dense, and 980,280 significantly correlated gene pairs
(edges) were discovered for 3638 genes (nodes). The distribution
of the correlation values is shown in Figure 2. It can be seen
from the distribution correlation values, that a majority of
the correlations are skewed to the right (positive correlations)
as has been shown in other co-expression analyses, including
Arabidopsis and rice (Geisler-Lee et al., 2007; Ho et al., 2012).
Further exploration of this network was to determine how
similar the distribution was to a randomly generated distribution
(see Materials and Methods). A Kolmogorov–Smirnov test
showed a significant difference between the random and
observed correlation value distributions (p-value 2.26 × 10−16)
(Supplemental Figure S1). The observed distribution represents
∼1% of all the possible edges in the network. The high density is
likely because we are looking at the small subset of differentially

expressed genes involved in a single (kernel) tissue, subject to
a large singular condition (pathogen attack) while most other
similar GENs tend to involve all genes in multiple tissues and
different stresses in their analysis. The selection of differentially
expressed genes also likely reduced the noise in the dataset from
spurious correlations between non-responding genes.

Maize Jasmonate Related Network
Jasmonate signaling, and especially the jasmonate biosynthetic
pathway have been implicated as a major determinant of
resistance to fungal infection in multiple studies involving
Z. mays and A. flavus (Lyons et al., 2013; Christensen et al., 2015;
Magnin-Robert et al., 2015). This has also been demonstrated
with multiple genes in Arachis hypogaea (Tsitsigiannis et al.,
2005), A. thaliana (Pauwels and Goossens, 2011; Christensen
et al., 2015), indicating some degree of conservation of these
pathways in plants. Mining the GEN specifically for known
genes in this pathway and identifying their neighboring genes
(those genes strongly co-expressed with individual genes in
this pathway) therefore provide one approach to discover new
candidate genes involved in fungal resistance in Z. mays.
The jasmonate pathway biosynthesis genes including OPR1
(GRMZM2G106303; 12-oxophytodienoic acid reductase), OPR2
(GRMZM2G000236; 12-oxophytodienoate reductase 2) and LOX
(GRMZM2G156861_P01; Lipoxygenase) were all in the same
co-expressed cluster of 446 A. flavus and Z. mays genes
when the genes were clustered into 10 bins. When 100 bins
(Supplementary Table S2) were used in the analysis, OPR1 and
LOX5 (GRMZM2G102760; Lipoxygenase 5) occurred in cluster
39 and OPR2, LOX2 (GRMZM2G156861; Lipoxygenase 2)
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and PRMS (AC205274.3_FGP001; Pathogenesis-related protein)
occurred in cluster 65.

In the co-expression network, OPR2 and OPR1 were
found to be connected (tightly co-expressed) to six A. flavus
genes, and one Z. mays gene (GRMZM2G371167) that is
annotated only for “a response to low sulfur.” The A. flavus
genes were (AFLA_061840) Xaa-Pro aminopeptidase P, Bax
inhibitor (AFLA_061840), BZIP transcription factor (Bzip)
(AFLA_083100), 4-nitrophenylphosphatase (AFLA_083100),
Endo-1, 4-beta-xylanase A, putative (AFLA_083100), and
Mitochondrial translation initiation factor IF-2 (AFLA_028660).
OPR2 gene expression was not consistently up-regulated in all
time points, but showed a complex pattern of induction and
suppression over time after infection. Significant correlations
were found for (LOX), SSP2 (GRMZM2G097641). The A. flavus
genes autophagy cysteine endopeptidase Atg4 was found to be
co-regulated with OPR2.

The COB co-expression network includes more than 100
experimental conditions and tissues; the network is typical of a
global comprehensive expression correlation map, but notably
does not include fungal pathogen experiments. When OPR2 was
analyzed in the COB online co-expression network for Z. mays,
no genes were found to be co-expressed with it Schaefer et al.
(2014). Thus, the co-expression and clustering of genes shown in
this study, including those involving OPR2, may reflect a specific
response to fungal infection.

Maize Ethylene Related Genes
Ethylene signaling and biosynthetic pathways were also
significantly up-regulated in response to fungal pathogenesis,
and many genes in those pathways were found to be co-
expressed in the co-expression network with novel genes, or
genes previously not associated with disease resistance. One
of the ethylene genes found in the co-expression network,
the ethylene signaling gene EREB129, an AP2ERE element
binding protein-transcription factor (GRMZM2G016434),
was found to have different connections (representing tight
co-expression) within the network; it was linked with avr9/C-
9 (GRMZM2G172695) an avirulence protein which has
been shown to be involved in pathogen resistance studies
involving A. flavus, Cladosporium fulvum (Chen et al., 2004;
Rowland et al., 2005; Luo et al., 2008, 2011). EREB108 was also
found to be connected to (GRMZM2G137802), a WRKY7
transcription factor (GRMZM2G154828) a cytochrome
P450 putative expressed gene, and to (GRMZM2G175076)
a chalcone-flavanone isomerase family protein.

The ethylene-responsive transcription factor
GRMZM2G474326 had 13 connections with multiple
Z. mays genes including two reactive oxygen producing
genes; (GRMZM2G087875) cytochrome P450, and AOX2, an
alternative oxidase gene which had been implicated as being
important in disease resistance by other studies (HanQing
et al., 2010). Additionally, GRMZM2G474326 was found to be
connected to (GRMZM2G104626) 3-ketoacyl-CoA synthase,
and (GRMZM2G086869) haloacid dehalogenase-like hydrolase
(HAD) superfamily protein. To our knowledge, these genes have
not been previously implicated in disease resistance. Some of the

other genes that were found to be linked to ethylene signaling
related genes in this study, were experimentally determined to
be involved in resistance to Fusarium graminearum (Hart et al.,
2015).

A. flavus Transport Genes
In A. flavus, a complex transport system is involved in secondary
metabolism (Linz et al., 2011; Amare and Keller, 2014; Rohlfs,
2015). Specialized vesicles, aflatoxisomes, have been identified
and were found to be involved in the transport of aflatoxin
and other secondary metabolites (Chanda et al., 2010; Roze
et al., 2011). Multiple vesicular transport genes were detected
among the genes induced after inoculation within the GEN for
A. flavus. These were genes that are conserved across eukaryotes,
including the SNARE protein Snc2 (AFLA_016950), Vacuolar
protein sorting associated protein vps17 (AFLA_057210) and
many others (Supplementary Table S1).

Interspecies Networks of Gene
Expression Correlation
One of the advantages of using GENs is the ability to identify
interspecific gene expression correlations. The GEN was
mined for interactions between A. flavus and Z. mays. This
yielded a subnetwork of 2046 genes comprised of 102 Z. mays
genes and 1944 A. flavus genes, and 9450 co-expression
edges that crossed species (Figure 3A). Functional analysis
was conducted on all 2046 genes. The 102 Z. mays genes
were found to be involved in biological processes such as
oxidation reduction (GO:0055114), oxidoreductase activity
(GO:0016491), hydrolase activity (GO:0016787). One of the
Z. mays genes, GST7, was connected with 776 A. flavus
genes. The 776 A. flavus genes fell into different significant
GO-terms including GO:0048193 (Golgi Vesicle Transport),
and (GO:0030163) protein catabolic process (Figure 3B;
Klionsky et al., 1990). An absence of maize intraspecific
correlation was observed when these 102 genes were mined
using the COB co-expression network (Schaefer et al., 2014).
In A. flavus, the 1944 genes in the sub-network included
genes involved in trehalose-related metabolic processes,
transferase activity, and L-amino acid peptides-related peptidase
activity.

The interspecies sub-network additionally revealed that
many known resistance genes in maize are co-expressed with
A. flavus genes. For example, the Z. mays pathogen resistance-
5 gene (PR-5; GRMZM2G402631), which has been shown to
be involved in systemic acquired resistance, was found to be
correlated with AFLA_002560 (60S ribosomal protein) (Gómez-
Ariza et al., 2007; Lanubile et al., 2015; Shu et al., 2015).
This particular A. flavus ribosomal protein had previously
been shown to be inhibited by antifungal activity (Delgado
et al., 2015). Additionally, PR5 expression was correlated with
4303 A. flavus genes and 76 Z. mays genes that consisted of
likely resistance gene candidates. The Z. mays gene included
GRMZM2G039639, a Thaumatin family protein which has been
shown to be transcriptionally up-regulated during host–pathogen
interactions (Petre et al., 2011; Scarpari et al., 2014; Christensen
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FIGURE 3 | Interspecific Z. mays and A. flavus co-expression network Pearson correlation analysis was performed on Z. mays and A. flavus genes to
generate a cytoscape network. The network contains edges (lines implying linkage) which had a Pearson correlation >0.95. Blue nodes (Z. mays) and yellow
nodes (A. flavus) are found within the network. Within the network (A) represents the Z. mays genes that were found to be co-expressed with at least one A. flavus
gene. (B) (GRMZM2G420988) Solute Carrier Protein which was found to be associated with 421 A. flavus genes. (C) Shows a subnetwork with the co-regulator for
the aflatoxin cluster AflS.

et al., 2015). The three other additional partners where two
cytochrome P450 and PR-1 which has also been implicated
in resistance to A. flavus (Guo et al., 2008; Lanubile et al.,
2015).

The most important finding of the interspecies sub-network
was the presence of secondary metabolism genes related to
aflatoxin biosynthesis. In fact, these genes formed a large
interconnected module within the sub-network. One of the
key regulatory genes of the aflatoxin biosynthesis cluster,
AflS (AFLA_139340 formerly AflJ), had a dense connection
of 1169 genes (nine maize, 1160 A. flavus). It was also
found to be co-regulated with seven Z. mays reactive oxygen
species (ROS) production genes including a Rmlc-like cupin
protein, a glutathione S-transferase and an alternative oxidase
3 (Figure 3C). The expression for this secondary metabolism
module of genes was highly similar, which is why it formed
such a hub in the co-expression network. Many of these
Z. mays genes co-expressed with AflS were involved specifically
in the production of peroxides, which have been typically
shown to be involved in the response of plants to abiotic
and biotic stress (Mori and Schroeder, 2004; Torres et al.,
2006). For example, Rmlc-like genes are involved in the
production of peroxides via oxalate oxidase (Lane et al., 1993).

Multiple germin-like proteins similar to these are known
to be present within the Z. mays kernel tissue. The group
of maize genes linked to AflS also included genes reported
to be indicators of resistance (induced upon infection and
associated with resistance in breeding studies) such as AOX,
an alternative oxidase (Simons et al., 1999; Fung et al.,
2004).

AflS was also found to be co-regulated with 1162 A. flavus
genes in the network; the aflatoxin cluster genes AflX, AflE,
AflW, AflV, AflK, AflL, AflN, AflM, AflH, AflS, AflA, AflD, and
AflC were all found to be co-expressed with AflS. AflS was
also found to be co-regulated with A. flavus secretion and
transport protein encoding genes including the endomembrane
trafficking proteins COPI vesicle (AFLA_044000), COPII vesicle
(AFLA_030110) and the Golgi to endosome transport protein
Ent3 (AFLA_092060). This agrees with a previous report of AflS
being found to interact with multiple A. flavus genes involved
in transport and development (Ehrlich et al., 2012). It is to be
noted that AflR, a known regulator of the aflatoxin biosynthesis
cluster, was absent in our network. This is mainly due to its
exclusion from the network since it did not meet the cut-off
criteria used in the initial filtering of the differentially expressed
genes (see Materials and Methods). Similarly, several A. flavus
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genes from the aflatoxin biosynthesis cluster were not present in
the network.

Network Analysis
One of the key advantages of working with GENs over utilizing
a traditional clustering approach, is exploiting the ability of
graph theory to assess genes of importance. A key metric,
connectivity, which is a measure of how many genes a given
gene is co-expressed with, can also be used to infer possible
biological connections including physical interactions and shared
common regulators. The connectivity of some of the genes
in the GEN is shown in Table 1. This type of connectivity
has been demonstrated in multiple interactomes, co-expression
networks for humans (Homo sapiens), A. thaliana and Z. mays
due to the overlap between interactomes and co-expression data
(Wachi et al., 2005; Gu et al., 2011; Musungu et al., 2015).
Among Z. mays genes, several ROS genes were found to have
the largest number of connections in the network. For example,
the Z. mays glutathione S-transferase 7 (GST7), which has
been previously implicated in ROS (Mideros et al., 2014; Yin
et al., 2014; Fountain et al., 2015), had 776 connections, while
cytochrome P450 family 72 (GRMZM2G147752), also involved

TABLE 1 | Connectivity for the interspecific co-expression sub-network.

Gene ID Annotation Connectivity

CADAFLAG00013514 Unknown 1153

GST7 Glutathione S-transferase 776

GRMZM2G099467 Gibberellin 20 oxidase 2 561

GRMZM2G143669 Oxidoreductase short chain
dehydrogenase

487

GRMZM2G049930 RmlC-like cupins superfamily
protein

464

GRMZM2G157298 (GSTL2) glutathione transferase
lambda 2

462

GRMZM2G071390 Germin-like protein 461

GRMZM2G320786 (LAC14) laccase 14 458

GRMZM2G087875 Cytochrome P450 superfamily
protein

423

GRMZM2G334181 Putative DUF26 domain family
protein

422

GRMZM2G420988 mitochondrial carrier protein
putative expressed

421

GRMZM2G093092 O-methyltransferase family protein 354

AOX3 Alternative oxidase 332

GRMZM2G170017 Carbonyl reductase 1 272

GRMZM2G147752 (CYP72A14) cytochrome P450
family 72

233

GRMZM2G036365 Eukaryotic aspartyl protease family
protein

205

GRMZM2G020631 NAD(P)-linked oxidoreductase
superfamily protein

157

GRMZM2G148355 NAD(P)-binding Rossmann-fold
superfamily protein

152

GRMZM2G466563 Calmodulin-binding protein 144

GRMZM2G039009 S-adenosyl-L-methionine-
dependent
methyltransferases

137

TABLE 2 | Connectivity of the top 20 most connected genes in the gene
co-expression network.

Gene ID Count Annotation

AFLA_003910 1572 Nuclear condensin complex subunit 3,
putative

AFLA_055600 1568 1,2-dihydroxy-3-keto-5-
methylthiopentene
dioxygenase

AFLA_090380 1562 Chromatin remodeling complex subunit
(Arp9), putative

AFLA_103750 1554 Phospholipase D1 (PLD1), putative

AFLA_022590 1554 YdiU domain protein

AFLA_080160 1553 UDP-N-acetylglucosaminyltransferase

AFLA_016890 1553 Rho GTPase activator (Lrg11), putative

AFLA_061950 1548 Autophagy-related protein 3

AFLA_051550 1547 Methylthioribulose-1-phosphate
dehydratase

AFLA_027290 1544 Proteasome activator subunit 4,
putative

AFLA_133590 1539 Cell polarity protein (Tea1), putative

AFLA_020340 1538 Sulfate transporter, putative

AFLA_027140 1535 ADAM family of metalloprotease
ADM-B

AFLA_111310 1534 Monosaccharide-P-dolichol utilization
protein, putative

AFLA_021530 1534 Putative uncharacterized protein

AFLA_127460 1531 SNF7 family protein

AFLA_130150 1530 NAD+ dependent glutamate
dehydrogenase, putative

AFLA_103810 1529 Spindle poison sensitivity protein Scp3,
putative

AFLA_041020 1529 Putative uncharacterized protein

in oxidative stress, had 223 connections in the interspecies
network. Interestingly, the top 20 most connected genes in
the network were A. flavus genes (Table 2). This group of
genes includes A. flavus genes involved in the biosynthesis of
methionine, carbohydrate metabolism genes such SNF1, and
vesicular transport gene. The presence of highly co-regulated
transport genes is not very surprising since endomembrane
transport is a highly coordinated process. In fact, transport
genes are typically found to be tightly connected in networks
such as in the interactomes of Z. mays, S. cerevisiae, and
A. thaliana (Yu et al., 2008; De Bodt et al., 2009; Musungu et al.,
2015).

Further analysis of the GEN with the network analyzer module
in Cytoscape revealed that the characteristic path lengths of
the network was 2.773, which was smaller than the previously
reported co-expression network for A. thaliana (5.065) (Cline
et al., 2007; Carrera et al., 2009). This is likely due to the approach
we used to select the input genes from the initial analysis of
the network. In similar work described in the literature, all
possible genes, as opposed to a select few, are sometimes used
to generate co-expression networks (Schaefer et al., 2014). Our
network, however, had a larger clustering coefficient of 0.606 in
comparison to the reported 0.309 clustering coefficient in the
Arabidopsis network.
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FIGURE 4 | (A) Mcode Analysis of the Z. mays to Z. mays subnetwork from the gene co-expression network (GEN) was performed. (B,D) Shows subnetworks and
the functionally enriched terms present within each of subnets that had greater than two interactions. (C,E) Show the genes that had the largest clustering coefficient
in the subnetworks. (C) Represents the mcode analysis of (B,E,F) represents (D). For the tables show expression of the columns were order by a relative to the
abundance of A. flavus. The gene ontology values were calculated using gprofiler and only significant terms were kept in the table (FDR <0.1).

Module Discovery of the Gene
Co-expression Network Utilizing MCODE
MCODE clustering analysis identifies highly interconnected
subgraphs within the co-expression network to determine
significant clusters (Bader and Hogue, 2003). Initial analysis of
our network identified multiple modules specific to Z. mays-
Z. mays that were either coordinately up-regulated or down-
regulated (Figure 4A). A large number of the gene expression
patterns in Z. mays and A. flavus are oscillatory in nature due,
among other things, to the circadian rhythm. The network was
split into two subnets as shown in (Figures 4B,C). In one of the
down-regulated modules, a set of differentially expressed genes of
Z. mays included carrier proteins, protein biosynthesis genes, and
response to abiotic stress genes. Significant clusters determined
by MCODE clustering coefficient had functions that were related
to circadian rhythm and vacuolar processes and were down-
regulated through all of the samples (Figure 4C). Surprisingly, a
number of heat shock proteins were also found to be significantly
downregulated in these clusters; these genes are typically up-
regulated during biotic stresses (Figure 4C; Chen et al., 2002;
Jones and Dangl, 2006).

Multiple genes related to resistance to pathogens are
visualized in one of the subgraphs featuring up-regulated genes
(Figure 4D). These genes were highly enriched for fungal
specific responses, including the production of phytoalexins
and chitin sensing, as well as for abiotic stress response.
This sub-network seems to represent an up-regulated defense
module. Figure 4E displays a subgraph with 4 Z. mays genes
including (GRMZM2G358153) chitinase 1, GRMZM2G161472
(cytochrome P450), GRMZM2G122654 (cytochrome P450)
and GRMZM2G415529 (pleiotropic drug resistance 11). The

chitinase 1 gene has been often shown to be involved in
resistance to pathogens. Moreover, MCODE pulled a gene
subnetwork with a nine gene module believed to be related
to pathogen resistance (Figure 4F). The module included
(GRMZM2G129189) Endochitinase PR-4, which has been
associated to the resistance to A. flavus and to other ear rots
causing fungi (Wang et al., 1996; Borad and Sriram, 2008; Sels
et al., 2008; Fountain et al., 2010).

Similar steps were taken to identify highly interconnected
subgraphs within the A. flavus-A. flavus network. One
module contains the aflatoxin cluster genes, including
O-methyltransferase (AFLA_120990), O-methylsterigmatocytsin
oxidoreductase (AFLA_139200), Noranthrone monoxygenase
(AFLA_081900) as well as a previously uncharacterized gene
(AFLA_081900) which may represent a new gene associated with
the aflatoxin biosynthesis pathway.

Interactome Overlap
Interactomes have been noted to overlap with gene co-expression,
presumably due to the selection toward improved efficiency in
forming pathways and protein complexes (Bhardwaj and Lu,
2005). Therefore, Z. mays genes that were present within the
GEN were mined for any potential physical connections in the
maize interactome PiZeaM (Musungu et al., 2015). Of the 102
Z. mays genes that were found in the interspecies GEN (Figure 3),
a small subnetwork of interacting proteins and first neighbors was
identified. None of the Z. mays genes in that protein interactome
subnet were significantly co-expressed in the GEN. Many of these
proteins were involved in defense specific responses, such as
oxidative stress pathway and jasmonic acid pathway, and thus
may represent plant and maize specific patterns of co-expression
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FIGURE 5 | Gene co-expression and interactome overlap network. Genes found in the interspecies co-expression network (baits) were mined in the predicted
maize interactome (PiZeaM) to determine novel interacting protein partners (preys). Triangles indicate that a gene is a bait gene from the static co-expression network
and rectangles indicate first neighbors within the interactome.

not likely to be identified using the interlog method that produced
the maize interactome. In the first neighbor analysis of the
interactome proteins, we found multiple resistance genes that
can be utilized for further investigation, such as OPR2. The
interactome subnetwork analysis revealed that OPR2 was the
largest hub, and that it interacted with heat shock proteins,
glutathione proteins and PAD-1 domain containing proteins.
Some of these genes have been previously implicated in resistance
(Figure 5; Ferrari et al., 2003).

DISCUSSION

This work represents the first cross species co-expression network
study of maize and A. flavus, and is also the first A. flavus
co-expression network study to our knowledge. Our approach
was taken to allow the mining of the data for non-traditional
information in order to determine significant pathways that are
correlated in A. flavus and Z. mays. The GENs are beneficial
tools that are able to address questions dealing with complex
biological systems. Because of the benefits of these types of
analyses, RNA-seq gene expression data from an A. flavus/Z. mays
time course experiment was used to identify novel genes of

interest that are involved in this interaction. Initial analysis of
the network demonstrated key properties that are shared with
co-expression studies such as the high density of edges produced
from the data set. One of the benefits from the gene co-expression
analysis is the ability to infer the functional characteristics of a
group of interacting genes. It also permits the analysis of genes
that can otherwise be lost when doing QTL analysis for polygenic
resistance studies. When combining these benefits with systems
biology, it is possible to build networks of interest that allow for
the use of guilt by association to infer possible common regulators
of co-expressed genes and pathways. Moreover, GENs allow the
use of a priori information to mine for new hypotheses.

In this analysis, novel genes identified by clustering and
network analysis may be involved in aflatoxin production and
transport, maize resistance to pathogens, and possibly host
recognition. The central importance of jasmonate, ethylene, and
ROS is clearly evident on the maize side, as is the co-expression
linkage between pathogen toxin production and transport. Gene
correlations were also detected across species. This subnetwork
was highly asymmetric, with only 102 maize genes and 1944
pathogen genes. For the 102 maize genes that were found in
the co-expressed network, it was determined that their functions
were highly related to resistance to pathogens. This was seen by
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the presence of genes such as PR1and PR5. This is highly unusual,
as roughly equal numbers of maize and A. flavus genes were
differentially expressed, thus equivalent numbers of genes for
host and pathogen co-expression would be expected by random
chance. That A. flavus had almost 20 fold more genes than maize
that responded across species may indicate that the pathogen was
closely monitoring and responding to the host through these 102
key maize genes. These “pathogen” genes may thus represent part
of the host recognition and response gene pathways.

One of the beneficial aspects of GENs is the ability to use
them to complement the data generated from differentially
expressed genes studies. One of the interesting findings in this
study that correlates with previously reported research is the
importance of Z. mays genes, such as LOX4, LOX6, OPR1, OPR2,
in the A. flavus/Z. mays interaction. In this study, these genes
were captured in the GEN. Also identified in the GEN were
A. flavus genes related to transport signaling, such as COPI
and COPII, as well as the ROS production genes in Z. mays
AOX, peroxidase, and glutathione S-transferase. This matches
previous studies reporting that mutations in lipoxygenases in
Z. mays can have downstream effects on disease development
and on aflatoxin production (Burow et al., 1997; Park et al., 2010;
Scarpari et al., 2014; Throckmorton et al., 2016). Additionally, the
GEN developed in this study revealed that several genes involved
in ethylene induction are correlated with multiple A. flavus genes,
exposing another facet of the interaction between A. flavus and
Z. mays. This correlation could reflect one of the mechanisms
A. flavus employs to respond to Z. mays ROS producing enzymes.

To fully exploit an A. flavus predicted protein–protein
interactome (SUBEDI et al., 2015) multiple clustering, and GEN
analyses were used. The generated data complemented the co-
expression analysis, and multiple A. flavus genes were found to
play a significant role in the A. flavus/Z. mays interaction as
revealed in GENs and by K-means clustering. In fact, a hub
containing 128 genes of interest was found to be co-expressed
with secondary metabolite genes and transport genes in A. flavus.
Each one of these 128 genes was mined in the String database
of A. flavus to determine which genes should be considered
as candidates for further studies (Szklarczyk et al., 2015).
Interestingly, the gene (AFLA_026380) UbiD/Ubi4 was a center
hub in the network interacting with multiple vesicle, endosome,
and carbohydrate metabolism genes. This gene also interacted
with (AFLA_025590) PalF, a pH regulator, and (AFLA_049870)
AreA, a nitrogen regulator. This interaction is a key one because
it has not been reported in previous studies, and involves two key
domains involved in pH and nitrogen metabolism (Ehrlich et al.,
2005; Tudzynski, 2014). Moreover, UbiD, also ranked the highest
by connectivity in the A. flavus interactome (PiAF; SUBEDI et al.,
2015), which reflects the biological importance of this protein.

Another interesting result from this study is the revealed
importance of ROS in both A. flavus and Z. mays during the early
interaction between these two organisms. The generated GEN
reveals an extensive co-regulation of A. flavus genes involved
in the aflatoxin biosynthesis cluster involving and Z. mays ROS
genes. For instance, AflJ/S was found to be co-regulated with
multiple Z. mays resistance genes that are known to be involved
in the production of peroxides. This is, to our knowledge, the

first report demonstrating that this interaction may be occurring
during the early interaction between A. flavus and Z. mays. It
also reveals one of the potential roles of AflJ/S which probably
has multiple functions as demonstrated by transformation studies
with AflJ/S orthologs (Chettri et al., 2015). It is to be noted here
that the majority of the previously reported studies investigating
genes such as AP-1, AtfB, Hsf-2, Skn-7, and Msn2-4, which
are known regulators of ROS, were performed in culture and
therefore not necessarily reflective of what actually occurs during
the interaction between a pathogen and its host (Reverberi et al.,
2005, 2008, 2010).

CONCLUSION

This work goes beyond the identification of genes relying
primarily on differential expression of genes and uses GENs
to infer functions of interest in A. flavus and Z. mays. Novel
information from this study shows that A. flavus utilizes different
mechanisms in response to the induction of resistance genes in
Z. mays during the early interaction between the two organisms.
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