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Targeted sequencing is commonly used in clinical application of NGS technology since

it enables generation of sufficient sequencing depth in the targeted genes of interest

and thus ensures the best possible downstream analysis. This notwithstanding, the

accurate discovery and annotation of disease causing mutations remains a challenging

problem even in such favorable context. The difficulty is particularly salient in the case

of third generation sequencing technology, such as PacBio. We present MICADo, a de

Bruijn graph based method, implemented in python, that makes possible to distinguish

between patient specific mutations and other alterations for targeted sequencing of a

cohort of patients. MICADo analyses NGS reads for each sample within the context of

the data of the whole cohort in order to capture the differences between specificities of

the sample with respect to the cohort. MICADo is particularly suitable for sequencing

data from highly heterogeneous samples, especially when it involves high rates of

non-uniform sequencing errors. It was validated on PacBio sequencing datasets from

several cohorts of patients. The comparison with two widely used available tools,

namely VarScan and GATK, shows that MICADo is more accurate, especially when true

mutations have frequencies close to backgound noise. The source code is available at

http://github.com/cbib/MICADo.

Keywords: targeted sequencing, third generation sequencing, patients’ cohort, cancer, de Bruijn graphs,

code:python

1. INTRODUCTION

Capturing known cancer genes by next generation sequencing, approach known as “gene panel”
or targeted sequencing, is commonly used for tumor genotyping. Such studies enable the
discovery of point mutations, insertions, and deletions (indels), copy number variations and gene
rearrangements.

Second-generation sequencing platforms, like Illumina, 454 Life Sciences (Roche), and Life
Technologies Ion Torrent (van Dijk et al., 2014), are currently widely used for diagnostic
applications in cancer. Comparatively, third-generation sequencing platforms, like Pacific
Biosciences (PacBio), are just now emerging in the area of biomedical research. The use of PacBio
technology in clinical context has been hampered by the high rate of sequencing errors. Indeed,
17.9% error rate has been reported (Chin et al., 2011), the majority of errors being indels according
to Eid et al. (2009). However, this high error rate is mitigated by the use of single-molecule
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circular sequencing, resulting in error-corrected consensus
sequences, namely ccs reads (Jiao et al., 2013). This approach
reduces error rate up to 2.5% in raw ccs reads. Another reported
positive characteristic of PacBio technology is the absence of
context-specific errors that affect other short-read sequencing
platforms (Carneiro et al., 2012) and potentially generate
false positive variation calls. However, in the case of targeted
sequencing, the polymerase chain reaction (PCR) step induces
context-specific errors (Robasky et al., 2014) thus potentially
reducing the benefit of stochastic nature of PacBio sequencing
errors. Indeed, PCR process can prevent distinction between
real mutations and context-specific polymerase artifacts, this
phenomenon being increased by low input and/or poor quality
DNA (Peng et al., 2015). This biais becomes particulary salient
during bioinformatics processing if the analysis algorithms
assume that errors occur randomly (Schirmer et al., 2015).

The goal of variant calling is to identify positions where at
least one of the bases differs from the reference genome, the
main types of such short differences being Single Nucleotide
Variations (SNVs) and indels. SNPs are SNVs that are present in
more than 1% of the population and most often do not have any
impact on health. In the context of cancer data, a somatic point
mutation – called somatic SNV – is an alteration which occurs in
a tumor sample, the control allele being the wild type. Usually,
somatic SNVs are identified by comparing a tumor sample
with its corresponding normal sample. A large number of tools
for variant calling has been developed in recent years (Leggett
and MacLean, 2014; Pabinger et al., 2014), including methods
specific for the identification of somatic mutations in cancer (see
Gonzalez-Perez et al., 2013; Wang et al., 2013 for review). A
number of comparative studies have shown that variant callers
available within the GATK pipeline (McKenna et al., 2010)
show the best performance (see e.g., Pirooznia et al., 2014; Yi
et al., 2014). For cancer data, VarScan (Koboldt et al., 2012)
is a popular choice. A recent study (Warden et al., 2014) has
compared the performance of these two tools and has shown a
significant overlap of high-quality GATK and VarScan variant
calls.

Despite the existence of these numerous computational
solutions, calling somatic mutations in cancer data remains
challenging due to a number of factors like technical artifacts,
sequencing errors, biases of alignment algorithms, DNA
contamination (control samples contaminated with tumor
DNA), and tumor heterogeneity. This issue is even more salient
for the third generation sequencing data, such as PacBio. Indeed,
since very high read depths are required for achieving sequence
accuracy close to that of Illumina and Ion Torrent (Quail et al.,
2012), variant calling potentially suffers from high false positive
and negative rates. Moreover, variant callers are notorious for
encountering difficulties with indels (Zook et al., 2014), which is
the most common error type in PacBio sequencing data. These
issues can be circumvented through the use of de Bruijn graphs
(DBG) structure. Indeed, some new approaches based on the
DBG structure have recently emerged (Iqbal et al., 2012; Rizk
et al., 2014; Uricaru et al., 2015) but either remain specific to the
detection of one variation type or are not appropriate for cancer
data. Therefore, only few variant callers are recommended for

PacBio data, such as the aforementioned GATK pipeline and the
PacBio’s Quiver algorithm.

In the clinical setting, distinguishing between true mutations
and artifacts introduced by sequencing errors and variant calling
tools, is essential. Indeed, systematic molecular characterization
of relevant genes within patient cohorts is key for understanding
cancer initiation and progression. When sequencing data
obtained from a patients’ cohort is analyzed for the presence of
SNVs, identification of genetic variants is performed for each
patient’s sample individually. These individual results can be
further jointly analyzed in the downstream statistical analysis.
Such standard analysis workflows do not fully exploit the
whole tumor cohort raw data. Concomitantly, multiple studies
have shown the existence of specific error profiles in second
generation sequencing. For example, GC rich regions and the
extremities of sequence reads exhibit higher error rates (Allhoff
et al., 2013), and both Roche 454 and Ion Torrent encounter
difficulties in the homopolymer regions (Ross et al., 2013). Based
on these observations, Bansal (2010) has proposed a statistical
method that identifies rare and common variants in DNA
pools of diploid individuals. However, the diploidy requirement
prevents its application to cancer data where samples are highly
heterogenous.

To overcome such difficulties in PacBio clinical applications,
some studies develop ad-hoc solutions to perform their analyses.
For example, in order to take advantage of the long read
technology for the analysis of highly polymorphic regions such
as e.g., human leukocyte antigen (HLA) genes, the authors must
resort to extremely stringent filtering of sequencing reads thus
avoiding noisy data, but also potentially getting rid of useful
information (Shukla et al., 2015). When classical variant calling
is used, such as GATK, the authors still make use of additional
ad-hoc strategies. In Orkunoglu-Suer et al. (2015) the authors
completely exclude indels known to be a particular difficulty of
PacBio sequencing, while Smith et al. (2012) restrain the analysis
to certain loci. There is thus a lack of a generic and efficient
algorithmic solutions for this application niche.

In this manuscript we pursue the idea that analyzing
sequencing data produced for a cohort of patients as a whole
should make it possible to distinguish between real patient
mutations and other alterations, including sequencing errors.
Indeed, one sample can be analyzed in the context of the
whole dataset, serving itself as statistical basis for filtering out
systematic alterations. This idea is even more pertinent in the
case of sequencing data carrying non-uniform sequencing errors
as, shown in this paper, it is the case for PCR targeted PacBio
data. We introduce a method called MICADo that distinguishes
patient-specific from cohort-specific alterations and show that
it efficiently performs even on samples carrying SNVs in the
context of contamination by germline DNA and in the presence
of technologic artifacts. MICADo is based on the well-known
representation of NGS sequencing reads, DBG, which provides
the double advantage of circumventing the alignment step
required by most SNV callers and avoiding additional biases due
to the alignment itself. In theory, MICADo can be used on any
kind of sequencing data, however its advantage with respect to
other variant calling methods should be lesser in the case of
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short read datasets with low error ratios. Therefore,MICADowas
evaluated on PacBio sequencing datasets: (i) a novel sequencing
of TP53 of a breast cancer cohort, (ii) a publicly available dataset
of FLT3 sequencing of an acutemyeloid leukemia cohort, and (iii)
a synthetic dataset.

2. MATERIALS AND METHODS

2.1. MICADo Approach
Our approach, called MICADo, takes as input the reference
sequences for a gene of interest and several read sets
corresponding to the gene panel sequencing of a cohort of
patients. This method allows for accurate detection of patient
mutations in such targeted sequencing data and their distinction
from other alterations. MICADo is built of three major steps.

First, the reference and the cohort sequencing data are
efficiently represented with de Bruijn graphs. ADBG, widely used
in NGS data processing methods (Pevzner et al., 2001; Compeau
et al., 2011) is a directed graph that depicts the redundancy
encountered in a read set by representing all k length words
contained in the data, i.e., k-mers, as vertices in the graph,
and all k − 1 overlaps between k-mers as directed edges in the
graph. Here we use an extension of the classical DBG, meaning
a colored DBG (Iqbal et al., 2012). A colored DBG comprises
several read sets and has multi-colored vertices meant to keep
track of the datasets to which every k-mer belongs. We build a
colored DBG reference graph for the gene reference sequences,
including splicing variants and known SNPs. The vertices of this
graph are colored according to their original reference sequences.
We then build a colored DBG sample graph per patient dataset.
The vertices of the sample graph are colored according to the
patient dataset, thus with only one color.

Second, we compare the reference graph to each sample
graph in order to highlight paths in the sample graph that are
not present in the reference graph, i.e., alternative paths, see
Figure 1A.

Finally, for each alternative path, we verify whether it is
specific to the sample or common within the cohort. This is
achieved by generating random samples populated by reads
from the whole cohort and checking the presence of each

alternative path previously identified within these random sets,
see Figure 1B. MICADo is implemented as a python program
(see Supplementary Section 1 for more details).

2.2. Datasets
MICADo was tested on three datasets: TP53 sequencing PacBio
dataset, FLT3 PacBio sequencing dataset, and a synthetic dataset.

2.2.1. TP53 Sequencing Data
The p53 protein is encoded by the tumor suppressor gene TP53,
the most frequently mutated gene in human cancers (Olivier
et al., 2010), given its major implication in response to cellular
stress. Most of mutations are found in its DNA Binding Domain
used to activate genes involved in apoptosis, growth arrest, or
senescence of highly damaged cells (Brosh and Rotter, 2009).

p53 sequencing data is a secondary output of the original
EORTC 10994/BIG 1-00 study, registered under NCT00017095
https://clinicaltrials.gov/ct2/show/study/NCT00017095. For the
original study and primary data, (see Bonnefoi et al., 2011; Iggo
et al., 2013).

We have sequenced 48 samples of TP53 transcripts extracted
from breast tumor biopsies (Bonnefoi et al., 2011) by PacBio
circular sequencing (PacBio RSII; P4-C2 chemistry). The PacBio
sequencing data is available from the NCBI SRA database under
the accession number SRP064161 BioProject PRJNA290142.
The main interest of this dataset for testing the accuracy of
SNV detection is the existence of SNV calling results obtained
from 454 Roche sequencing data generated for the 48 samples
(available from NCBI SRA database under the accession number
SRP020456, BioProject PRJNA193388; see Iggo et al., 2013
for details). Moreover, for these 48 samples there exists a
classification into three categories (based on the percentage of red
colonies in the yeast assay, (see Bonnefoi et al., 2011; Iggo et al.,
2013). These categories are:

• negative control: 12 samples considered to be wild type;
• positive control: 18 samples that are mutated with high rate of

altered reads;
• difficult group: 18 samples that are mutated with low rate or

complex mutations.

FIGURE 1 | Summary of MICADo. (A) Gref and Gs are respectively constructed from multiple reference sequences and the sample read set. (B) After capturing

differences between Gs and Gref in G*, the goal is to decide whether they are sample specific by checking their presence in random samples Ri constructed from the

whole readset of the cohortR.
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Sequencing was centered on the DNA Binding Domain of the
protein. TP53 transcripts were split into two distinct fragments,
482 nucleotides long N fragment and 454 nucleotides long
C fragment. After demultiplexing and primer cutting (see
Supplementary Section 2 for more details), the number of reads
varies from 132 to 8372 for the C fragment and from 89 to 8771
for the N fragment with respective averages of 974 and 826.

2.2.2. FLT3 Sequencing Data
The receptor tyrosine kinase FLT3 is highly involved in the
development of stem cells and in the immune system (Gilliland
andGriffin, 2002).Mutations of FLT3 have been detected in about
20% of patients with acute myeloid leukemia (AML) and are
associated with poor prognosis (Smith et al., 2012).

This dataset is composed of 19 samples obtained by PacBio
circular sequencing of FLT3 transcripts for 8 AML patients before
treatment and the same patients after relapse, and 3 healthy
individuals with no cancer history. The data is available from
NCBI SRA database under the accession number SRP011010
Bioproject PRJNA85103. All patients present an internal tandem
duplication (ITD) which are co-located but patient specific and
associated after relapse with new point mutations; a complete
description of mutations carried by each patient can be found
in Smith et al. (2012). Sequencing was done on the FLT3 kinase
domain which is 1346 nucleotides long, with an average of 1348
reads per sample (the number of reads varies from 59 to 4856
reads).

2.2.3. Synthetic Data
Synthetic samples with artificially inserted alterations
were generated from the pooled TP53 dataset as follows.
Approximately 20k reads from all the TP53 samples from the
negative control group were first pooled in a single file and
mapped with GMAP against the TP53 transcript variant 1 (NCBI
Reference Sequence: NM_000546.5). To build a synthetic
sample, we first sample n reads (n ranging from 150 to 1000)
from all the mapped reads (chosen with uniform probability),
we then sample i positions (i ranging from 1 to 3) to alter
between the minimal and the maximal mapped positions. For
each of the i alterations, we choose with uniform probabilities
between a mismatch, an insertion and a deletion, as well as
an alteration length l (l is 1 for mismatches and ranges from 1
to 5 for insertions or deletions). In the case of insertions, we
randomly generate a l-nt sequence. Finally, we generate a fastq
file with n reads, out of which a fraction ϕ (ϕ ranging from 3 to
80%) harbors the same randomly generated alterations. The base
qualitiy of each alteration was fixed to the highest base quality.

2.3. Construction of de Bruijn Graphs
A DBG is a directed graph whose vertices are words of a
given length k, called k-mers, and whose edges connect words
overlapping by k− 1 letters. Two definitions for de Brujn graphs
are encountered in the literature, depending on the way edges
are dealt with: the implicit definition that infers the edges from
the vertices, i.e., every k − 1 overlap is accounted for whether
the corresponding k-mers are consecutive or not within the
reads (Uricaru et al., 2015), and the explicit formulation that

specifically represents the edges in addition to the vertices, in
which case only k − 1 overlaps between consecutive k-mers
present in the reads can be considered (Iqbal et al., 2012). In this
work we employ the explicit formulation. Also, it is commonly
accepted that a vertex in a DBG represents both the k-mer
and its reverse complement. Here, as reverse reads are reverse
complemented prior to building the graph (see Supplementary
Section 2), we solely represent k-mers (and not their reverse
complements).

Moreover, we use an extended version of the DBG, a colored
DBG (Iqbal et al., 2012), best suited to the multi-sample case. A
colored DBG takes several read sets corresponding to multiple
samples, and aggregates them in a union DBG, while coloring the
vertices with respect to the samples they belong to. Amore formal
definition follows below.

DEFINITION 1. For n given sets of sequences S1, . . . , Sn and
k ≥ 2, the corresponding colored de Bruijn graph G = 〈V ,E, l〉
is such that its set of vertices V is composed of all k-mers of S1, . . . ,
Sn, its edge set is

E = {(v,w) : v,w ∈ V and v2 . . . vk = w1...wk−1 and

∃ i ∈ [1, n] s.t. ∃ s ∈ Si, v1v2 . . . vkwk ⊆ s},

and the labeling function l : V → P(L) provides colors for the
vertices with L being the set of n labels (colors) corresponding to the
n sets of sequences.

When it is clear from the context, we will use a shortcut
notation v = w for the equality of k-mers that are encoded by
the corresponding vertices and omit the notation of the labeling
function l.

To sum up, in this work we employ the definition of DBG
that (i) is extended by a labeling function l to distinguish between
reference sequences (such as SNPs and splicing variants) and (ii)
explicitely encodes edges corresponding to k-mers present in the
sequences. that are truly present in the sequences. Basically this
implies that every walk in the graph corresponds to a sequence
that exists in at least one dataset and its labels identify the datasets
to which the sequence belongs to.

For a gene of interest, its reference graph, noted Gref =

〈Vref,Eref, l〉, is a n-colored DBG constructed from the k-mer
decomposition of the n sequences corresponding to its splicing
variants and known SNPs. A sample graph, noted Gs = 〈Vs,Es〉,
is a 1-colored DBG, thus a simple DBG, constructed from the
sequencing reads of one sample. For the sample graph we define
the read support of a vertex v, denoted as r(v), as the number of
reads the corresponding k-mer appears in. In order to discard
indisputable sequencing errors, vertices having a read support
below a fixed threshold are removed from Gs (see Supplementary
Section 7).

2.4. Alternative Path Search
Given the reference sequences and the sample reads modeled by
Gref and Gs, detecting sequence alterations (insertions, deletions
and mismatches) comes to capturing the differences between
these graphs. This means that we have to identify paths, i.e.,
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sequences of vertices, present in Gs but absent in Gref, that we
call alternative paths. Basically, an alternative path corresponds
to a sequence of k-mers (vertices) within the sample that differ
from the reference sequence except for the two anchoring k-mers
which are common to both the sample and the reference (see
Figure 2A).

DEFINITION 2. We define the difference graph G∗ = 〈V∗,E∗〉
to be such that V∗ = Vs ∪ Vref and E∗ = Es \ Eref. A path
pa = (v∗1 . . . v∗n) in G

∗ is said to be an alternative path if there exists
a path pr = (v1 . . . vm) in Gref such that v

∗
1 = v1 and v

∗
n = vm.

We generalize the notion of read support, originally defined on
vertices, to paths in the sample graph: the read support of a path
p is the number r(p) of reads from the sample in which the
corresponding succession of k-mers composing p appears. We
say that a read supports a path if and only if it supports all k-mers
composing the path.

An alternative path pa can carry n ≥ 1 alterations with
respect to its reference path pr . We use the Levenshtein
distance lev(pa, pr) between the sequences defined by pa and
pr , to determine the minimal set δi (with 1 ≤ i ≤ n)
of edit operations (deletions, insertions and substitutions) that
transform pa into pr . This defines the set of atomic alternative
paths corresponding to {δi(pa)} (see Figure 2B). The read
support of these atomic alternative paths is set to be equal
to r(pa).

In the following, the set of tuples corresponding to the
alterations computed for a given sample is denoted by A =

{〈pa, pr , c〉}, where pa is an atomic alternative path in G∗,
pr its corresponding reference path in Gref, and c(pa) its
count ratio with c(pa) = r(pa)/(r(pa) + r(pr)), where
r(pr) is computed in the sample graph. For example, in
Figure 2A the count ratio for the alternative path pa is

computed as c(pa) = 8/(8 + 3) = 0.72. Notice that
pa is atomic as it carries only one alteration (G vs. T

mismatch).
Moreover, an alternative path has to be simple, that is

composed by at most two vertices from Vref, meaning that
composite paths are not considered. The existence of multiple
reference sequences can engender a combinatorial explosion of
reference paths for a given alternative path. Consequently, for pr
we retain the reference path that maximizes the intersection, in
terms of supporting reads, between the alternative path and the
reference paths.

To constructA, we apply the alternative path search algorithm
(Algorithm 1) presented below.

Algorithm 1: Alternative path search

1 A = ∅

2 Vstart = {v ∈ V∗ | deg+(v) > 0} // start vertices

3 Vend = {v ∈ V∗ | deg−(v) > 0} // end vertices

4 for each vs in Vstart do

5 for each ve in Vend do

6 compute A, the set of alternative paths pa between vs
and ve in G∗

7 if A 6= ∅ then

8 retrieve the best reference path pr between vs and ve
in Gref

9 for each pa ∈ A do

10 compute A′ = {δi(pa) | pa ∈ A} the set of atomic
alternative paths

11 for each p′a ∈ A′ do

12 c = r(p′a)/(r(p
′
a)+ r(pr))

13 A = A ∪ 〈p′a, pr , c〉
14 returnA

FIGURE 2 | Alternative path search. (A) Gref encodes the sequence CGATTTGAA for k = 3. The sequencing set corresponding to the sample is composed of 8

reads containing CGATGTGAA sequence, 2 reads with CGATTTGAA and 1 read containing CGATTTGA sequence followed by something else than A; Gs represents this

read set for k = 3. The difference graph G∗ contains the alternative path pa encoding the subsequence ATGTG with its read support r(pa) = 8, as well as the singleton

vertices (blue dots circled in red) for shared k-mers between Gref and Gs, but with no alternative path between them. The reference path corresponding to pr is circled

in red in Gref. (B) An alternative path pa encoding the sequence CGAGTAGAA is identified with the corresponding pr encoding CGATTCATGGAA. k-mers common to

pa and pr are depicted by striped boxes. pa carries 3 alterations, corresponding to the following edit operations: δ1 - substitution of T by a G (green triangle), δ2 -

deletion of C (lilac triangle) and δ3 - deletion of TG (blue triangle). pa is thus split in three atomic alternative paths, each carrying only one alteration.
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Notice that certain v ∈ Vstart may not belong to Vref. We call
such start or end vertices tips. Tips may appear in G∗ for three
reasons: (i) the presence of reads that do not start or end at the
beginning, respectively at the end of the region of interest, (ii) the
presence of reads that carry alterations at the very beginning or
end of their sequence, and (iii) because of the removal from Gs

of vertices having a read support below a fixed threshold. For the
algorithm to work in all cases, we have to define an appropriate
reference path for a pa starting or ending with a tip. This is
done by a heuristic lookup for the most plausible reference path
as shown in Figure 3. To do this, we look for anchors of these
tips in Gref. These anchors are defined as vertices that belong
to paths between the start node in Gref and the corresponding
ve (symmetrically, vs) having the smallest Levenshtein distance
between the associated k-mers. If there is more than one such
vertex, we choose the one defining the pr that is the closest in
length to pa.

2.5. Alternative Path Specificity and Variant
Calling
Once the set of atomic alternative pathsA is computed, MICADo
partitions it into sample-specific alterations (i.e., mutations)
and other paths corresponding either to non-specific alterations
(recurrent within the cohort) or to sequencing errors. To this
end, we use a permutation test based on rearranging reads and
sample assignments. This approach is justified by the following
two assumptions.

1. Mutations are assumed to be independent across samples
and non-recurrent across the cohort. This is particularly true
for loss of function mutations (such as those leading to the
inactivation of TP53).

2. Sequencing errors are supposed to be distributed non-
uniformly and are recurrent across samples. This is known
to be true for the base call errors within homopolymers
by second generation sequencing targeted strategies and we
suppose it to hold for PacBio targeted data.

Based on these assumptions, we can determine whether an
atomic alternative path pa is specifically associated with a given
sample by capitalizing on the background information contained
in the cohort. More specifically, an atomic alternative path pa
is specific to a sample graph Gs if it is rare in the whole set of

FIGURE 3 | Processing of tips. Given the Gref encoding the sequence

CTCGTTAACTTTGCGG (in blue) and Gs encoding TTCAACTGGCC (in red), there

are two tips: TTC and GCC. Two alternative paths are p1a corresponding to

TTCAAC and p21 corresponding to ACTGGCC. For TTC the closest k-mers

among those on the path from CTC to AAC in terms of Levenshtein distance

are CTC and TTA (depicted by gray dotted lines). We choose TTA since the

paths |CTC . . .AAC| = 6 and |TTA . . .AAC| = 2 - the latter path being the

closest in length to p1a . In the same manner we choose GCG as anchor for GCC.

reads for the cohort, denoted R. Mutations are Levenshtein edit
operations between sample-specific atomic alternative paths and
the corresponding reference paths.

We measure the probability of this association between pa
and Gs by computing the count ratio c(pa) statistics under the
null hypothesis of no association between reads and samples.
For an observed c(pa), we generate N random samples Ri by
sampling without replacement reads from R. For each of the Ri,
we compute the corresponding ratio ci(pa), that is the count ratio
of pa observed in the graph Gi

s that encodes Ri. We iterate this
step to obtain a distribution of ci(pa) under the null hypothesis,
and therefore deduce a p-value by comparing this distribution
and the sample read counts for each alteration. Once we have
performed N resamplings, we can reject the null hypothesis of
no association between the sample and the path if less than α-
percent of all ci(pa) are smaller than c(pa), where α is the required
significance level (0.01 in our experiments). In such cases, we
identify the altered nucleotides by identifying edit operations
(insertions, replacements or deletions) between pr and pa and

the associated p-value p =
|{ci(pa)>c(pa)}|

N for this alteration.
Finally, following the observation that most ci(pa) were normally
distributed during our simulations and executions, we also
determine a – standardized – z-score for c(pa) and only consider
alterations for which the ratio c(pa) is at least 10 standard
deviation away from the mean z(c(pa)) ≥ 10.

3. RESULTS

Three pipelines based on GATK, VarScan, and MICADo (see
Supplementary Sections 3 and 5 for details on how these pipelines
were executed) were evaluated on both synthetic and real data.
Even if Quiver algorithm is specifically developed for PacBio data,
it was not suitable for our evaluation since it assumes a haploid
sample with no admixture (see PacBio FAQ pages).

3.1. Evaluation on Synthetic Data
We evaluated the ability of the three pipelines to recover
artificially inserted somatic mutations. We developed to this
end a simple reads simulator based on sampling reads from
the TP53 dataset. Although, numerous synthetic read simulators
for NGS data are available, we opted to use a simple non-
parametric sampling-altering scheme based on existing samples
in order to preserve as much as possible sequencing biases
present within the data. We generated 9245 synthetic datasets
by sampling and altering reads from the pool of negative
control samples belonging to the TP53 dataset (see Section 2.2.3
and Supplementary Section 6 for details). Moreover, any
identified variants corresponding to known SNPs (described in
Supplementary Section 2) were excluded from this analysis.

The three pipelines were evaluated by computing, for each
sample, the number of true positives (number of correctly
identified mutations), false positives (number of wrongly
identified mutations), and false negatives (number of missed
mutations). The results are reported in Figure 4. In terms of
precision, GATK and MICADo offer similar performances when
more than 10% of the reads are altered. VarScan on the other
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FIGURE 4 | Comparison of three pipelines on synthetic data. Three pipelines, GATK, MICADo, and VarScan (vertical panels) were run on synthetic data

containing from 1 to 3 inserted alterations, harbored by a varying fraction of altered reads (x-axis) among a total of 150, 500, 700, and 1000 reads (horizontal panels).

TP- label indicates no True Positives and TP+ indicates that at least one True Positive was identified. The same notation applies for False Positives (FP) and False

Negatives (FN). We identify the results where all the true positives were retrieved, and only them, as “Perfect.” Each result thus belongs to one out of 7 classes

(sequential colors) and we report the proportion of results for each class (y-axis).

hand, systematically generates false positives (from 1 to 8 per
sample), which is not the case for GATK and MICADo.

When samples contain a limited fraction of altered reads
(<5%), we observe that the vast majority of mutations are not
identified by either GATK or VarScan (the first four classes
with “FN+” label depicted in Figure 4 indicate that at least one
mutation was missed). For VarScan, this is expected, since we set
the threshold of the minimum variant allele frequency to 5%; if
not, the results are riddled with false positives. On the contrary,
MICADowas run with a lower threshold of 3%minimum variant
allele frequency and still adequately identifies both with high
precision and recall the majority of mutations even when as few
as 3.5% of the total number of reads contain these mutations.

Note that synthetic samples were generated by sampling from
the negative control group of the TP53 dataset that were qualified
as being “wild-type” by an independent sequencing run as well as
by a yeast colony assay test (see Section 2.2 for details). Therefore,
any variant found in the negative control group is either a known
SNP or is considered to be a false positive. Consequently, only
variants that were inserted by our read simulator were considered
as true positives.

We then evaluated in more details the ability of MICADo to
identify single nucleotide variants and small indels (<5 nt). We
report in Figure 5 calling results for each of the three possible

classes of variants (substitutions denoted by “X,” deletions by
“D,” and insertions by “I”). We observe that MICADo adequately
detects most deletions and insertions, task considered to be
difficult for variant calling.

3.2. TP53 Targeted Data
The three pipelines based on MICADo, VarScan, and GATK,
were used to characterize the mutations of the newly sequenced
48 TP53 samples. See Section 2.2 for details on the samples
and Supplementary Section 3 for how these pipelines were run.
The results are depicted in Figure 6 and details of the identified
alterations are reported in Supplementary Table 1. Note that
known polymorphisms affecting the sequencing region were
filtered out, either by incorporating known SNPs in the reference
graph for MICADo; or by post-processing calls from GATK and
VarScan.

We previously reported (Iggo et al., 2013) by independent 454
sequencing that for samples of the difficult group and positive
control, we expect one or two significant alterations (mutations)
per sample, while we expect nomutations for the negative control
group. The only sample that carries two mutations is 276_1,
belonging to the difficult group, where MICADo correctly call
one of them (the other one is a false negative).
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FIGURE 5 | Accuracy of MICADo calling results on synthetic data. Proportion of correctly discovered alterations (y-axis) function of the fraction of altered reads

(x-axis). Vertical panels report substitutions (“X”), deletions (“D”) and insertions (“I”). Horizontal panels report results for various sample sizes (150, 500, 700, and 1000

reads). We see that MICADo identifies indels with high precision.

FIGURE 6 | Comparison of caller’s results for TP53 samples. Three pipelines (vertical panels) were applied on the TP53 samples (x-axis) to identify alterations in

the three groups (horizontal panels). We report here the number of identified significant alterations (y-axis) per category (vertical panels) and per sample.

We observe in Figure 6 and Supplementary Table 1 that both
GATK and VarScan exhibit high false positive rate, and that the
number of identified alterations seems to be independent of the
difficulty category. On the contrary, we observe that MICADo
adequately limits the false positive rate and that only one sample
from the negative control category is identified as being mutated.

Indeed, the sample 256_1 exhibits a significant alteration while
being in the negative control group. This sample is known to
contain a missense variant of doubtful functional significance
(Iggo et al., 2013).

Closers inspection (see Supplementary Table 1) shows that
alterations identified as significant for 83_1 and 83_2 are in fact
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false positives (these samples aremutated, but not at the positions
identified by MICADo).

We then determined if alterations identified by GATK and
VarScan were clustered around hotspots. In our case, we expect
loss of function mutations to be uniformly distributed over
the transcript. Therefore, if we observe hotspots, these hotspots
would likely be due to sequencing errors rather than to alteration
recurrence. We thus aggregated the results of the whole cohort
and determined wether some alterations were more frequent
than others. We detail in Table 1 the top 25 most frequently
altered locations, as well as the nucleotidic context before and
after the putative alteration. Note that MICADo is absent from
this table as by definition it reports no recurrent alterations.
We immediately observe in this table that alterations identified
by VarScan and GATK are (i) recurrent, with as much as 34
independent samples exhibiting the same deletion, (ii) frequently
found in the context of a homopolymer, and (iii) that the
deleted nucleotide is one of the homopolymer’s nucleotides. This
confirms that the sequencing exhibits a higher rate of error in
homo-polymeric regions, and that these errors are recurrent
across samples.

Note that both VarScan and GATK were run with stringent
minimal base quality threshold (cf. Supplementary Section 3 for

TABLE 1 | Top 25 “alteration hotspots” along the DNA Binding Domain of

TP53 for VarScan (top panel) and GATK (bottom panel).

Pos Before R A Type After Count

412 AGGCTGCT TC T D CCCCCCGT 34

1099 ACGAGCTG GC G D CCCCCAGG 34

652 ATTCCACA AC A D CCCCCGCC 29

464 TGCACCAG GC G D CCCCCTCC 28

581 CACGTACT TC T D CCCCTGCC 16

729 AGGCGCTG GC G D CCCCCACC 16

1078 GCAAGAAA AG A D GGGGAGCC 13

767 TGGTCTGG GC G D CCCCTCCT 12

1147 GCTCCTCT TC T D CCCCAGCC 11

1201 AGATCCGT TG T D GGGCGTGA 11

475 CCTCCTGG GC G D CCCCTGTC 6

652 ATTCCACA A AC I CCCCCGCC 6

729 AGGCGCTG G GC I CCCCCACC 6

502 CTTCCCAG GA G D AAAACCTA 5

1126 GAGCACTG GC G D CCCAACAA 5

996 AATCTACT TG T D GGGACGGA 4

452 ACCGGCGG GC G D CCCCTGCA 26

652 ATTCCACA AC A D CCCCCGCC 13

412 AGGCTGCT TC T D CCCCCCGT 11

422 CCCCGTGG GC G D CCCCTGCA 10

729 AGGCGCTG GC G D CCCCCACC 10

1099 ACGAGCTG GC G D CCCCCAGG 9

767 TGGTCTGG GC G D CCCCTCCT 7

464 TGCACCAG GC G D CCCCCTCC 5

For each base (column Pos, reference transcript’s coordinate), we report in the column

Count the number of significant alterations reported by each caller, as well as the context

Before, the context After, the Reference sequence and the Alternative sequence. Column

Type reports the alteration type: insertions (I) and deletions (D).

details), and that we observed that quality for bases in these
homo-polymers very frequently received the highest possible
quality score output by PacBio sequencers. This implies that
callers relying on quality score to filter out false positives would
not be able to avoid these errors.

In summary, these results demonstrate that several alterations
that are significant at the individual level (such as those reported
by GATK and VarScan) are actually resulting from systematic
sequencing biases. With the MICADo algorithm, we measure the
specificity of each alteration by contrasting it with background
samples generated by resampling, thus accounting for the
systematic biases.

3.3. FLT3 Targeted Data
To further test MICADo, we applied it to the publicly available
PacBio sequencing targeted on the FLT3 kinase domain (see
Supplementary Section 4). For each patient, we check for absence
of mutations in samples before treatment and we search for at
least one mutation in samples after relapse in accordance with
Smith et al. (2012). Each sample before treatment and after
relapse carries an ITD that are co-localized between each samples
but specific to each patient. Normal samples (Normal Control
no. 1, no. 2, and no. 3) are not supposed to carry any alterations
which was confirmed by MICADo (data not shown). Alteration
results obtained by MICADo on the remaining samples were
compared with those reported in the original paper, results are
shown in Table 2.

In the original paper, authors have manually analyzed a small
region restricted to only 4 codons downstream from the ITD
region. We have processed the entirety of the targeted sequences,
but focused our analysis on the region after the ITD in the same
way as in the original paper. The pre-treatment samples all had
the percent of altered reads below 0.43%. We have consequently
set the number of expected alterations to be 0 (exp. # column
in Table 2). For the relapse samples we have counted only 1
alteration for each altered position, thus taking into the account
only the majority clone in our counting of expected alterations.

As can be seen in Table 2MICADo identified mutations with
high precision. Indeed, there are 2 mutation calls that were not

TABLE 2 | Results of MICADo variant calls for FLT3 PacBio sequencing

data.

Subject # Exp. pr # MICADo pr. Exp. pr # MICADo rel.

1009-003 0 0/0 1 0/0

1011-006 0 0/0 1 1/1

1011-007 0 0/0 2 1/1

1005-004 0 0/1 1 1/2

1005-006 0 0/0 1 1/1

1005-007 0 0/0 1 1/1

1005-009 0 0/0 1 1/1

1005-010 0 0/0 1 1/1

For each sample we provide its expected number of mutations for pretreatment (Exp.

pr. #) and relapse states (Exp. rel. #) and the number of correct calls (True Positives) (c)

over total calls (t) for pretreatment and relapse states obtained by MICADo (MICADo pr.

and MICADo rel., respectively) c/t.
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previously reported (identified as false positives in the Table 2)
and 1 false negative. The second mutation in the subject 1011-
007 (relapse) is identified by MICADo, but is filtered out by the
z-score threshold. The potential false positives in pretreatment
and relapse subjects 1005-004 are identical and correspond to
a mismatch in a region that has not been analyzed in the
original paper. For subjects 1009-003 (pretreatment and relapse),
1011-007 (pretreatment and relapse), and 1005-007 MICADo
identified large insertions corresponding to the ITD regions with
k = 30. In other subjects the duplication can be identified, given
k > 30.

4. DISCUSSION

We describe here a novel method for calling mutations
in sequencing data produced for a cohort of patients that
makes it possible to distinguish between real mutations and
other alterations, including sequencing errors. The originality
of MICADo is three-fold. First, it is based on de Bruijn
graphs and does not require reads to be aligned on a
reference sequence, a step known to be particularly error-
prone in the case of indels. Second, MICADo uses cohort
information and an exact test to correct for systematic and
recurrent alterations caused by technical biases. This has the
advantage of allowing correct identification of loss-of-function
mutations, which are known to be non-recurrent at the
nucleotide level over a cohort, but recurrent in a given sample.
Third, by construction, MICADo allows known alterations and
multiple reference sequences to be jointly analyzed in a single
run.

Our method is especially relevant in the case of clinical
targeted PacBio sequencing data for which a generic algorithmic
solution has been lacking. MICADo was able to achieve
significant improvement over widely used available methods
(GATK and VarScan) by controlling both the low false positive
and false negative rates.

Our analysis also suggests that PacBio targeted sequencing
harbors recurrent errors in homopolymer regions – observation

that goes counter to the often admitted hypothesis of uniform
distribution of sequencing errors in PacBio reads.

We believe that our method can be a useful addition to the
presently available mutation calling tools and could be effectively
used in targeted sequencing with high background noise from
cohorts of patients.

AUTHOR CONTRIBUTIONS

RI, JB, and HB conceived the biological study; methods and
bioinformatics experimental setup were designed by JR, HS,
RU, and MN; algorithms were implemented by JR and HS.
Manuscript was written by JR, HS, RU, and MN. All of the
authors approved the final manuscript.

FUNDING

This work was supported in part by the SIRIC BRIO. JB’s
research group was supported by grants from the Swedish Cancer
Society, Knut and Alice Wallenberg’s fund, the research funds
at Radiumhemmet, Karolinska Institutet and Stockholm County
Council, BRECT and ALF.

ACKNOWLEDGMENTS

The authors would like to thank Eric Rivals for valuable
discussions. The authors also acknowledge support from
EORTC, the Science for Life Laboratory, the National
Genomics Infrastructure funded by the Swedish Research
Council, and Uppsala Multidisciplinary Center for Advanced
Computational Science for assistance with massively parallel
sequencing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fgene.
2016.00214/full#supplementary-material

REFERENCES

Allhoff,M., Schönhuth, A., Martin, M., Costa, I. G., Rahmann, S., andMarschall, T.

(2013). Discovering motifs that induce sequencing errors. BMC Bioinformatics

14:S1. doi: 10.1186/1471-2105-14-S5-S1

Bansal, V. (2010). A statistical method for the detection of variants from

next-generation resequencing of dna pools. Bioinformatics 26, i318–i324.

doi: 10.1093/bioinformatics/btq214

Bonnefoi, H., Piccart, M., Bogaerts, J., Mauriac, L., Fumoleau, P., Brain,

E., et al. (2011). Tp53 status for prediction of sensitivity to taxane

versus non-taxane neoadjuvant chemotherapy in breast cancer (eortc

10994/big 1-00): a randomised phase 3 trial. Lancet Oncol. 12, 527–539.

doi: 10.1016/S1470-2045(11)70094-8

Brosh, R., and Rotter, V. (2009). When mutants gain new powers: news from the

mutant p53 field. Nat. Rev. Cancer 9, 701–713. doi: 10.1038/nrc2693

Carneiro, M. O., Russ, C., Ross, M. G., Gabriel, S. B., Nusbaum, C., and

DePristo, M. A. (2012). Pacific biosciences sequencing technology for

genotyping and variation discovery in human data. BMC Genomics 13:375.

doi: 10.1186/1471-2164-13-375

Chin, C.-S., Sorenson, J., Harris, J. B., Robins, W. P., Charles, R. C., Jean-Charles,

R. R., et al. (2011). The origin of the haitian cholera outbreak strain. New Engl.

J. Med. 364, 33–42. doi: 10.1056/NEJMoa1012928

Compeau, P. E., Pevzner, P. A., and Tesler, G. (2011). How to apply de bruijn

graphs to genome assembly.Nat. Biotechnol. 29, 987–991. doi: 10.1038/nbt.2023

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., et al. (2009). Real-

time dna sequencing from single polymerase molecules. Science 323, 133–138.

doi: 10.1126/science.1162986

Gilliland, D. G., and Griffin, J. D. (2002). The roles of flt3 in hematopoiesis and

leukemia. Blood 100, 1532–1542. doi: 10.1182/blood-2002-02-0492

Gonzalez-Perez, A., Mustonen, V., Reva, B., Ritchie, G. R., Creixell, P., Karchin, R.

et al. (2013). Computational approaches to identify functional genetic variants

in cancer genomes. Nat. Methods 10, 723–729. doi: 10.1038/nmeth.2562

Iggo, R., Rudewicz, J., Monceau, E., Sevenet, N., Bergh, J., Sjoblom, T., et al.

(2013). Validation of a yeast functional assay for p53 mutations using clonal

sequencing. J. Pathol. 231, 441–448. doi: 10.1002/path.4243

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012). De novo

assembly and genotyping of variants using colored de bruijn graphs.Nat. Genet.

44, 226–232. doi: 10.1038/ng.1028

Frontiers in Genetics | www.frontiersin.org 10 December 2016 | Volume 7 | Article 214

http://journal.frontiersin.org/article/10.3389/fgene.2016.00214/full#supplementary-material
https://doi.org/10.1186/1471-2105-14-S5-S1
https://doi.org/10.1093/bioinformatics/btq214
https://doi.org/10.1016/S1470-2045(11)70094-8
https://doi.org/10.1038/nrc2693
https://doi.org/10.1186/1471-2164-13-375
https://doi.org/10.1056/NEJMoa1012928
https://doi.org/10.1038/nbt.2023
https://doi.org/10.1126/science.1162986
https://doi.org/10.1182/blood-2002-02-0492
https://doi.org/10.1038/nmeth.2562
https://doi.org/10.1002/path.4243
https://doi.org/10.1038/ng.1028
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Rudewicz et al. MICADo

Jiao, X., Zheng, X., Ma, L., Kutty, G., Gogineni, E., Sun, Q., et al. (2013).

A benchmark study on error assessment and quality control of CCS reads

derived from the PacBio, RS. J. Data Mining Genomics Proteomics 4:16008.

doi: 10.4172/2153-0602.1000136

Koboldt, D. C., Zhang, Q., Larson, D. E., Shen, D., McLellan, M. D., Lin,

L., et al. (2012). Varscan 2: somatic mutation and copy number alteration

discovery in cancer by exome sequencing. Genome Res. 22, 568–576.

doi: 10.1101/gr.129684.111

Leggett, R. M., andMacLean, D. (2014). Reference-free snp detection: dealing with

the data deluge. BMC Genomics 15:S10. doi: 10.1186/1471-2164-15-s4-s10

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,

A., et al. (2010). The genome analysis toolkit: a mapreduce framework for

analyzing next-generation dna sequencing data. Genome Res. 20, 1297–1303.

doi: 10.1101/gr.107524.110

Olivier, M., Hollstein, M., and Hainaut, P. (2010). Tp53 mutations in human

cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect.

Biol. 2:a001008. doi: 10.1101/cshperspect.a001008

Orkunoglu-Suer, F., Harralson, A. F., Frankfurter, D., Gindoff, P., and

O’Brien, T. J. (2015). Targeted single molecule sequencing methodology

for ovarian hyperstimulation syndrome. BMC Genomics 16:264.

doi: 10.1186/s12864-015-1451-2

Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M.,

et al. (2014). A survey of tools for variant analysis of next-generation

genome sequencing data. Brief. Bioinform. 15, 256–278. doi: 10.1093/bib/

bbs086

Peng, Q., Vijaya Satya R., Lewis, M., Randad, P., and Wang, Y. (2015).

Reducing amplification artifacts in high multiplex amplicon sequencing by

using molecular barcodes. BMC Genomics 16:589. doi: 10.1186/s12864-015-1

806-8

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An eulerian path approach

to dna fragment assembly. Proc. Natl. Acad. Sci. U.S.A. 98, 9748–9753.

doi: 10.1073/pnas.171285098

Pirooznia, M., Kramer, M., Parla, J., Goes, F. S., Potash, J. B., McCombie,

W. R., et al. (2014). Validation and assessment of variant calling pipelines

for next-generation sequencing. Hum. Genomics 8:14. doi: 10.1186/1479-

7364-8-14

Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., et al.

(2012). A tale of three next generation sequencing platforms: comparison of

ion torrent, pacific biosciences and illumina miseq sequencers. BMC Genomics

13:341. doi: 10.1186/1471-2164-13-341

Rizk, G., Gouin, A., Chikhi, R., and Lemaitre, C. (2014). Mindthegap: integrated

detection and assembly of short and long insertions. Bioinformatics 30, 3451–

3457. doi: 10.1093/bioinformatics/btu545

Robasky, K., Lewis, N. E., and Church, G. M. (2014). The role of replicates for

error mitigation in next-generation sequencing. Nat. Rev. Genet. 15, 56–62.

doi: 10.1038/nrg3655

Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N. J., Hegarty, R.,

et al. (2013). Characterizing and measuring bias in sequence data. Genome Biol.

14:R51. doi: 10.1186/gb-2013-14-5-r51

Schirmer, M., Ijaz, U. Z., D’Amore, R., Hall, N., Sloan, W. T., and

Quince, C. (2015). Insight into biases and sequencing errors for amplicon

sequencing with the illumina miseq platform. Nucleic Acids Res. 43:gku1341.

doi: 10.1093/nar/gku1341

Shukla, S. A., Rooney, M. S., Rajasagi, M., Tiao, G., Dixon, P. M., Lawrence, M. S.,

et al. (2015). Comprehensive analysis of cancer-associated somatic mutations

in class i hla genes. Nat. Biotechnol. 33, 1152–1158. doi: 10.1038/nbt.3344

Smith, C. C., Wang, Q., Chin, C.-S., Salerno, S., Damon, L. E., Levis, M. J., et al.

(2012). Validation of itd mutations in flt3 as a therapeutic target in human acute

myeloid leukaemia. Nature 485, 260–263. doi: 10.1038/nature11016

Uricaru, R., Rizk, G., Lacroix, V., Quillery, E., Plantard, O., Chikhi, R., et al.

(2015). Reference-free detection of isolated snps. Nucleic Acids Res. 43, e11.

doi: 10.1093/nar/gku1187

van Dijk, E. L., Auger, H., Jaszczyszyn, Y., and Thermes, C. (2014). Ten

years of next-generation sequencing technology. Trends Genet. 30, 418–426.

doi: 10.1016/j.tig.2014.07.001

Wang, Q., Jia, P., Li, F., Chen, H., Ji, H., Hucks, D., et al. (2013). Detecting somatic

point mutations in cancer genome sequencing data: a comparison of mutation

callers. Genome Med. 5:91. doi: 10.1186/gm495

Warden, C. D., Adamson, A. W., Neuhausen, S. L., and Wu, X. (2014). Detailed

comparison of two popular variant calling packages for exome and targeted

exon studies. PeerJ 2:e600. doi: 10.7717/peerj.600

Yi, M., Zhao, Y., Jia, L., He, M., Kebebew, E., and Stephens, R. M. (2014).

Performance comparison of snp detection tools with illumina exome

sequencing data–an assessment using both family pedigree information

and sample-matched snp array data. Nucleic Acids Res. 42:e101.

doi: 10.1093/nar/gku392

Zook, J. M., Chapman, B. A., Wang, J., Mittelman, D., Hofmann, O. M., Hide,

W., et al. (2014). Integrating human sequence data sets provides a resource

of benchmark snp and indel genotype calls. Nat. Biotechnol. 32, 246–251.

doi: 10.1038/nbt.2835

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Rudewicz, Soueidan, Uricaru, Bonnefoi, Iggo, Bergh and Nikolski.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 11 December 2016 | Volume 7 | Article 214

https://doi.org/10.4172/2153-0602.1000136
https://doi.org/10.1101/gr.129684.111
https://doi.org/10.1186/1471-2164-15-s4-s10
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/cshperspect.a001008
https://doi.org/10.1186/s12864-015-1451-2
https://doi.org/10.1093/bib/bbs086
https://doi.org/10.1186/s12864-015-1806-8
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1186/1479-7364-8-14
https://doi.org/10.1186/1471-2164-13-341
https://doi.org/10.1093/bioinformatics/btu545
https://doi.org/10.1038/nrg3655
https://doi.org/10.1186/gb-2013-14-5-r51
https://doi.org/10.1093/nar/gku1341
https://doi.org/10.1038/nbt.3344
https://doi.org/10.1038/nature11016
https://doi.org/10.1093/nar/gku1187
https://doi.org/10.1016/j.tig.2014.07.001
https://doi.org/10.1186/gm495
https://doi.org/10.7717/peerj.600
https://doi.org/10.1093/nar/gku392
https://doi.org/10.1038/nbt.2835
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive

	MICADo – Looking for Mutations in Targeted PacBio Cancer Data: An Alignment-Free Method
	1. Introduction
	2. Materials and Methods
	2.1. MICADo Approach
	2.2. Datasets
	2.2.1. TP53 Sequencing Data
	2.2.2. FLT3 Sequencing Data
	2.2.3. Synthetic Data

	2.3. Construction of de Bruijn Graphs
	2.4. Alternative Path Search
	2.5. Alternative Path Specificity and Variant Calling

	3. Results
	3.1. Evaluation on Synthetic Data
	3.2. TP53 Targeted Data
	3.3. FLT3 Targeted Data

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


