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RNA-Sequencing (RNA-Seq) has become a routine technology for investigating gene

expression differences in comparative transcriptomic studies. Differential expression

(DE) analysis of the isoforms of genes is just emerging now that expression (read

counts) can be estimated with higher accuracy at the isoform level. Estimating the

statistical power that can be achieved with a specific number of repeats is a key step

in RNA-Seq analysis. The R library proper was developed to provide realistic empirical

power analysis. However, proper uses differential expression methods more suited for

power calculation of gene-level expression data. We propose extensions to this tool that

would allow for power analysis which takes into account the specificities of isoforms

expression. This was achieved by enabling the use of EBSeq, a DE approach well-tailored

for isoform-level expression, as an additional analysis method within PROPER. The

new extensions and exemplar code for their usage are freely available online at:

https://github.com/agaye/proper_extension
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INTRODUCTION

PROspective Power Evaluation (PROPER) (Wu et al., 2015) is an R library developed for power
calculations in RNA-seq differential expression (DE) analysis. It allows one to determine the
probability of finding a true variation in expression between two groups (e.g., cases and controls).
In addition to the usual parameters included in power estimation such as sample size, effect size,
and within-group variance, PROPER takes into account other keys characteristics of count data that
influence power including the distribution of the mean expression level, the sequencing depth and
the threshold for filtering out molecules. By not treating these critical factors as fixed input, the tool
avoids strong assumptions such as exchangeability between genes and hence provides more realistic
statistical power estimations (Wu et al., 2015) than other methods and closed-form solutions.
PROPER uses existing DE analysis methods including edgeR (Robinson et al., 2010),DESeq (Anders
and Huber, 2010; Love et al., 2014), and DSS (Wu et al., 2013). However, these methods are better
suited for gene-level (the summed expression of the distinct isoforms of a transcript) DE analysis
because they were not designed to accommodate the differential uncertainty in isoform expression
estimation (Leng et al., 2013). A useful extension to PROPERwould be to include in its machinery a
tool such as EBSeq that takes into account specificities of isoform-level expression data. EBSeq uses
an empirical Bayesian approach to model a number of features observed in RNA-seq. This tool is
more suited for isoform level inference because it accommodates isoform expression estimation
uncertainty by modeling the differential variability observed in distinct groups of isoforms (Leng
et al., 2013) and takes into account colinearity between isoforms originating from the same
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transcript. In EBSeq, a posterior probability of being differentially
expressed (PPDE) is computed as measure of statistical
significance.

MATERIALS AND METHODS

We amended two functions of PROPER (runSims and
powerPlot) and wrote two additional functions (run.EBSeq
and plotFDR) to enable power calculations that require EBSeq
and to add new functionality.

runSims
This is the simulation function of the package PROPER; it carries
out simulations for a specified number of runs and for a given
sample size (two groups of equal size). At each run, a dataset
which has the characteristics of the data being investigated is
generated and analyzed, i.e., transcripts differentially expressed
between the two groups are detected, using one of the differential
expression (DE) analysis methods currently available in PROPER
(edgeR, DSS and DEseq). After each run the names of the
transcripts differentially expressed are returned along with their
p-value, log fold change and FDR.

The extensions we are proposing consist of changing the
argument/parameter that specifies the DE method to add EBSeq
to the list of methods and altering the core of the function to
enable DE analysis using EBSeq. Since for isoform analysis, unlike
gene-level analysis, isoform names are required in addition to
the gene name, we inserted a check to ensure this requirement is
met to prevent the function from crashing if input tables similar
to those for edgeR, DEseq, and DSS are provided while EBSeq is
specified as DE analysis method.

In the implementation of EBSeqwe enabled within runSims,
transcripts significantly differentially expressed are those with
PPDE ≥ (1–alpha) where alpha (type I error rate) is set to 0.05; a
value that can be changed in the code we provided. In this setting
significance is based on alpha so that all transcripts with FDR
≤ alpha are considered significantly differentially expressed and
FDR is similar to the idea of bonferroni correction. However it is
important to note that EBSeq does not require extra multiple test
adjustment since it uses a single large model to test all transcripts
simultaneously rather than a model testing one gene at a time
(Leng et al., 2013). Alpha is also called target FDR which in
the setting we described is based on a hard threshold. EBSeq
offers the possibility to compute a soft threshold via the function
crit_fun described in its R manual.

run.EBSeq
This is the function we wrote to carry out EBSeq isoform analysis
within runSims. It is analogous to the other three functions that
can be called to run DE analysis using egdeR, DEseq, and DSS.
The function analyzes the simulated isoform expression data
and outputs a matrix with all the transcript, p-values, log fold
changes, FDR values, and other statistics. This information is
then subsequently passed on respectively to comparePower,
powerPlot and plotFDR to evaluate power and generate
graphs. comparePower is central to PROPER as it is the
function that computes power by evaluating the success rate

over the multiple simulation runs. Success rate is determined by
comparing the p-values to the specified type I error rate (alpha)
to reject to null hypothesis. More details about this function are
available from PROPER tutorial document.

powerplot and plotFDR
Our changes to the function powerPlot consisted mainly in
amendments to allow for the plotting of just one curve instead
of multiple curves (one per sample size considered) and minor
additions related to the visualization of the curves. The function
plotFDR is similar to powerPlot save it plots FDR curves.
There is a function of the same name in PROPER and hopefully,
the code we generated can be integrated into that function to
enable the additional features we introduced.

CONCLUSIONS

We extended the package PROPER to allow for transcript
isoform analysis and have a more comprehensive tool. It
is important to note that for this work we made sure we
followed the strategy and nomenclature of the authors of
PROPER as to not disrupt their excellent work and to make
potential future integration of the new functions into their
R library easy; and this is the very reason why we kept our
code basic as more complexity for increased flexibility could
render future integrative more cumbersome. However, until that
integration takes place the current functions can be used as
standalone scripts that call elements required from PROPER
and EBSeq to carry out statistical power analysis for isoform-
level RNA-seq expression data. We also provide a succinct
tutorial as a guide for using the new functions. The code in
the guide on section guide to using the extensions of this
manuscript and the rest of thematerial (scripts and functions) are
available from GitHub at: https://github.com/agaye/PROPER_
Extension

GUIDE TO USING THE EXTENSIONS

Preamble
The aim of this short guide is to demonstrate the use of the new
extensions to compute statistical power for isoform expression
data using the EBSeq approach. An excellent PROPER tutorial
is available online at: https://www.bioconductor.org/packages/
devel/bioc/vignettes/PROPER/inst/doc/PROPER.pdf

This documentation along with the R manual of the PROPER
package provides a detailed explanation of the parameters we
set in the code on this document. Therefore, the arguments
required by PROPER functions used in this tutorial will
not be explained with great details. Similarly we refer the
user to EBSeq documentation (https://www.rdocumentation.org/
packages/EBSeq/versions/1.12.0) for a deeper understanding of
that method.

The data used in this guide (see Supplementary Material
Datasheet 1) and the scenario investigated are just meant for
demonstration and are by no means biologically meaningful.
They are only meant to help understand the formats of the input
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data and the steps to evaluate statistical power and visualize the
results.

It is important to note that a real world analysis typically
includes more than 10,000 genes and a PROPER analysis of such
large data can be computationally slow. For example an analysis
of 15,000 genes undertaken with 50 simulation runs on amachine
with 8GB memory took 2 hours to complete. This is because, in
addition to the iterative process of PROPER, each model fit in
EBSeq takes 2 or more iterations to reach convergence. The high
computational cost represents a limitation; but we believe this
weakness is worth the more realistic results achieved through this
approach.

Input Data
The data simulated and analyzed is a matrix where the first 2
columns of the table hold isoforms and transcripts IDs. The
process is stopped and a message printed on screen if the
information in these 2 columns is missing while the user has
specified EBSeq as DE analysis method. For the extensions

presented in the manuscript to run, the names of the first two
columnsmust be “transcript_id” and “gene_id” and the IDs in the
first column must be unique; here we used UCSC IDs but other
names such as RefSeq IDs are also valid. The rest of the columns
holds sample IDs. As shown below, rows store isoform expression
values for the samples in the columns.

The toy data used in this demonstration (Table 1) consist of
the expression of 208 isoforms across 8 samples (2 groups: 4 cases
and 4 controls). The first 4 samples (ID1 to ID4) represent to
control group whilst ID5 to ID10 are the case group. PROPER
requires an equal size for the 2 groups (e.g., cases and controls).

Along with this table we provide 3 variables (AveLogCPM,
logDispersion, libCount) which represent respectively the log
average Count Per Million [average expression of each isoform,
CPM= count/sum (counts) x 1 million] log taqwise (genewise)
dispersion (dispersion value for each isoform) and the depth of
the data (the total count for each sample). This information gives
the characteristics of “real” data (actually some hypothetical data)
we are analyzing. As already mentioned these parameters are
explained with ample details in the PROPER tutorial andManual.
For this tutorial we obtained the characteristics of our data from a
pilot analysis but as explained by Wu et al. one may also set these
parameters based on literature or other sources.

Power Analysis
In PROPER, power analysis is carried out in 3 steps: First
the simulation scenario is set up then the simulated data are

generated with the characteristics of the real data and finally the
power is evaluated.

Let us begin by loading the R libraries and functions required.
We load the package edgeR because we use the Trimmed mean
of M-values normalization (TMM) method embedded in that
library to normalize the data in the EBSeq analysis step.

> library(PROPER)

> library(EBSeq)

> library(edgeR)

> source("run.EBSeq.R")

> source("runSims_ag.R")

> source("plotPower_ag.R")

> source("plotFDR_ag.R")

Now we load the characteristics of our “real” data and the
estimated log fold change of the differentially expressed isoforms
which represent a proportion (propDE) of 6% of all the isoforms.

In a real world power analysis it is probably better to obtain
these characteristics and a rough estimate of the number of
differentially transcripts and their fold change difference from the
real data by running a preliminary DE analysis. In such case the
analyst can:

(1) Estimate dispersion for each transcript (“genewise”
dispersion); this is possible by using for example
the empirical Bayes strategy (McCarthy et al., 2012)
implemented in edgeR. Dispersion outliers should not be
considered in the results or should be interpreted with
caution because outlying dispersion can indicate low quality.

(2) Compute the average expression of each transcript by fitting
a binomial generalized log-linear model to the expression
data (read counts); in such model the dispersion parameter
takes the dispersion values calculated as explained in (1).
This is possible using the implementation, in edgeR, of
generalized linear model, GLM (McCarthy et al., 2012).

(3) Obtain an estimate of the number of DE transcripts and their
log fold change difference from the results of the GLM fit in
edgeR or from a preliminary DE analysis in EBSeq.

> load("toy_data.RData")

> load("AveLogCPM.RData")

> load("logDispersion.RData")

> load("libCount.RData")

> load("logFC.RData")

> propDE <- 0.06

TABLE 1 | Six of the 8 columns and first 5 rows (5 isoforms of 2 transcripts) of the toy data.

Transcript_id Gene_id ID1 ID2 ID3 ID4 ID5 ID6

uc003ceg.2 AZI2 42 35 30 13 29 24

uc011axd.1 AZI2 31 72 23 29 37 49

uc003ceb.3 AZI2 1085 1190 843 707 806 948

uc003yky.3 AZIN1 3622 4095 2857 2750 2866 3458

uc003ykx.3 AZIN1 2043 1943 1500 981 1206 1569
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Set the simulation i.e. generate an object that stores the
parameters of the simulations.

> mm <- RNAseq.SimOptions.2grp(

Ngenes = dim(toy_expr)[1],

lBaselineExpr = AveLogCPM,

seqDepth = libCount,

lOD = logDispersion,

p.DE=propDE, lfc=logFC,

sim.seed=123)

We now can run the simulation, generating n datasets, where n
is the number of simulation runs, and analyzing each dataset. We
set the number of runs to 20 but in real world example one should
select at least 50 runs and the larger the number of runs the
more reliable the results are. The argument “Nreps” represents
the number of case-control pairs (4 in the toy data). The function
returns p-values and FDR values for each simulation run.

runSimsResults <- runSims_ag(Nreps=4,

sim.opts=mm,

DEmethod="EBSeq",

isoforms=toy_data[,c(1,2)],

nsims=20)

Finally power is evaluated across all the runs and the results
graphically displayed. The arguments and output of the below
function are described in details in the R manual for PROPER;
briefly: The function returns overall and marginal values for
power, type I error rate and FDR. In this example we used only the
arguments relevant for the isoform analysis process ran by calling
run.EBSeq from within this function; DE significance is based on

FDR and the cut-off for significance is 0.05. We assess power
for each expression strata (stratify.by = “expr”) and
all the expression strata we specified (strata) are considered
(strata.filtered=0).

powers <- comparePower(

runSimsResults,

alpha.type = "fdr",

alpha.nominal = 0.05,

stratify.by="expr",

filter.by="none",

strata=c(0,5,10,2^(1:6)*10,Inf),

strata.filtered=0)

Finally we visualize the results by generating a graph with 2
plots (Figure 1), one for power and one for FDR. If the parameter
“error bar” is set to “TRUE” uncertainty bars are displayed
around the estimates in the plot. For this demonstration we used
a very small dataset which results in large uncertainty that might
cause R to throw a warning message if the argument is set to
“TRUE.”

pdf("myPlots.pdf", width=10, height=7)

par(mfcol=c(1,2), oma = c(0, 0, 2, 0))

plotPower_ag(powers, error.bar=FALSE)

plotFDR(powers, error.bar=FALSE)

dev.off()

The code in this tutorial was run using R version 3.2.1, PROPER
version 1.0.0, EBSeq version 1.10.0 and edgeR version 3.8.6.

FIGURE 1 | Plots of the evaluated power and FDR for each of the six expression strata considered.
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