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Cell proliferation includes a series of events that is tightly regulated by several checkpoints

and layers of control mechanisms. Most studies have been performed on large cell

populations, but detailed understanding of cell dynamics and heterogeneity requires

single-cell analysis. Here, we used quantitative real-time PCR, profiling the expression of

93 genes in single-cells from three different cell lines. Individual unsynchronized cells from

three different cell lines were collected in different cell cycle phases (G0/G1 – S – G2/M)

with variable cell sizes. We found that the total transcript level per cell and the expression

of most individual genes correlated with progression through the cell cycle, but not

with cell size. By applying the random forests algorithm, a supervised machine learning

approach, we show how a multi-gene signature that classifies individual cells into their

correct cell cycle phase and cell size can be generated. To identify the most predictive

genes we used a variable selection strategy. Detailed analysis of cell cycle predictive

genes allowed us to define subpopulations with distinct gene expression profiles and to

calculate a cell cycle index that illustrates the transition of cells between cell cycle phases.

In conclusion, we provide useful experimental approaches and bioinformatics to identify

informative and predictive genes at the single-cell level, which opens up new means to

describe and understand cell proliferation and subpopulation dynamics.

Keywords: cell cycle, cell size, single-cell gene expression, machine learning, variable selection, random forests,

cell subpopulations, cell transitions

INTRODUCTION

Cell proliferation is a tightly organized process that involves cell division and cell growth, where cell
division can be divided into distinct cell cycle phases: G0, G1, S, G2, and M. Transitions through
the phases are regulated by several layers of checkpoints and control mechanisms (Baserga, 1981;
Lubischer, 2007; Bertoli et al., 2013; Grant et al., 2013). The molecular processes behind cell cycle
progression have been dissected by numerous morphological studies on live or fixed single cells
using a plethora of techniques to visualize components and processes during cell division. Many
more investigations have been made on cells, sorted according to size, or artificially arrested at
various cell cycle checkpoints. However, most of our knowledge about cell proliferation comes
from studies that average data from large and mixed cell populations. Such data are only indirectly
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related to quantitative changes in cells at different states of
division and growth. Analysis at the single-cell level can
overcome most of these limitations. Detailed single-cell analyses
have shown that transcript numbers fluctuate in individual
cells, even in seemingly homogeneous populations (Raj et al.,
2006), and that features of the typical or average cell in a
population cannot be deduced from measurements on cell
population samples (Bengtsson et al., 2005). Variations in
transcript numbers allow cells to produce unique responses to
internal and external cues that lead to defined paths of cell
proliferation and differentiation (Levine et al., 2013). Recent
development of single-cell analytical platforms opens up new
possibilities to define the molecular profiles of cells at different
states and to determine the importance of cell heterogeneity on
cellular processes and cell fate decisions (Kalisky et al., 2011;
Ståhlberg et al., 2011b; Sanchez and Golding, 2013; Shapiro et al.,
2013).

Here, we employed single-cell gene expression profiling to
describe the dynamic transition between cell proliferative states
in three different cell lines using a panel consisting of 93 marker
genes. Function of selected genes related to cell proliferation,
cell cycle regulation, TP53 function, stemness, differentiation, cell
signaling, and housekeeping functions (for gene details, see Table
S1). We assessed cell division by collecting cells in the G0/G1, S
and G2/M phases, and cell growth by selecting small and large
cells in respective cell cycle phase. In contrast to cell population
data, single-cell data are reported as transcripts per cell without
any further normalization (Ståhlberg et al., 2013), allowing total
transcript levels to be determined and compared between cell
states (Sanchez and Golding, 2013). To determine if, and to
what degree, the gene expression profile of individual cells were
associated with cell division and growth we applied the random
forests algorithm (Hastie et al., 2009; Gareth et al., 2013), which
is a supervised machine learning approach. By applying variable
selection, a recursive feature elimination (RFE) scheme (James
et al., 2013; Candia et al., 2015), we were able to identify the
genes with strongest cell proliferation association and to define
distinct subpopulations. Finally, we calculated a cell cycle index
based on the most predictive genes that allowed us to visualize
and biologically interpret cell cycle progression.

MATERIALS AND METHODS

Cell Culture
All cell lines were cultured at 37◦C and in 5% CO2. The myxoid
liposarcoma cell line MLS 402-91 was cultured in RPMI 1640
GlutaMAX medium supplemented with 10% fetal bovine serum,
100 U/mL penicillin, and 100 µg/mL streptomycin (all Life
Technologies). Cells were passaged with 0.25% trypsin and 0.5
mM EDTA (both Life Technologies). The breast cancer cell line
MCF7was cultured inDMEMmedium supplemented with 2mM
L-glutamine, 1% penicillin/streptomycin (all PAA Laboratories),
10% fetal bovine serum (Lonza), and 1% non-essential amino
acids (Sigma-Aldrich). MCF7 cells were passaged with 0.05%
trypsin-EDTA (PAA Laboratories). Mesenchymal stem cells
(MSC) derived from human embryonic stem cells (hES-MP
002.5, Takara Bio), were cultured in DMEM GlutaMAX,

supplemented with 10% fetal bovine serum, 100 U/mL penicillin,
100 µg/mL streptomycin, and 4 ng/mL fibroblast growth factor
2 (all Life Technologies) as described (Karlsson et al., 2009).
MSCs were passaged with TrypLE Select (Life Technologies).
Dissociation enzyme inactivation was performed using complete
medium, containing fetal bovine serum for all cell lines.
Cell cultures were confirmed as mycoplasma-free using the
Mycoplasma PCR Detection Kit (Applied Biological Materials).

Fluorescent Activated Cell Sorting
Vybrant DyeCycle violet stain (Life Technologies) and CellVue
Claret far red dye (Sigma-Aldrich) were used to stain genomic
DNA and membrane lipids, respectively. Suspension of 106 cells
in 1 mL Hanks’ balanced salt solution (Life Technologies) was
first stained with Vybrant DyeCycle violet stain (5 µM, final
concentration) at 37◦C for 30 min. Then, 1 mL CellVue Claret
far red dye diluted in diluent C (Sigma-Aldrich, 3.3 µM, final
concentration) was added followed by an incubation step at 37◦C
for 5 min. Staining was inactivated by complete medium and the
cells were finally resuspended in Hanks’ balanced salt solution.

G1/S cell cycle arrest was performed using a double thymidine
block (Sigma-Aldrich). Thymidine (2 mM, final concentration)
was added to 25–30% confluent cells for 18 h. Cells were then
released by addition of fresh medium without thymidine. Finally,
after 9 h cells were re-exposed to thymidine for additional 17 h.
Complete cell cycle arrest was confirmed by Vybrant DyeCycle
violet staining followed by fluorescence activated cell sorting
analysis.

Cell aggregates were removed by filtering with a 40 µm
cell strainer (BD Biosciences) and single cells were sorted with
a BD FACSAria II (BD Biosciences) into 96-well-plates (Life
Technologies), each well-containing 5µL 1mg/mL bovine serum
albumin (Thermo Scientific; Svec et al., 2013). Collected single
cells were frozen on dry ice and kept at −80◦C until subsequent
analysis. Gating strategies for cell size and cell cycle phase are
shown in Figure S1. The cell size/cell volume was estimated from
the average CellVue Claret far red signal, assuming a spherical cell
shape. All single-cells from respective biological condition were
collected from an individual culture, to minimize batch-to-batch
differences as described (Wills et al., 2013).

Single-Cell Gene Expression Profiling
Reverse transcription was performed with SuperScript III
(Life Technologies). Lysed single cells, 0.5mM dNTPs (Sigma-
Aldrich), 5.0 µMOligo(dT12−18), and 5.0 µM random hexamers
(both Life Technologies) were incubated in 6.5 µL at 65◦C for 5
min. Next, 50mM Tris–HCl, 75mM KCl, 3 mM MgCl2, 5mM
dithiothreitol, 10 U RNaseOut, and 50 U SuperScript III (all
Life Technologies) were added to a final volume of 10 µL. Final
reaction concentrations are shown. Reverse transcription was
performed at 25◦C for 5min, 50◦C for 60 min, 55◦C for 10min,
and terminated by heating to 70◦C for 15min. All samples were
diluted to 30 µL with water.

Targeted cDNA preamplification was performed with the iQ
Supermix (BioRad) in 50 µL reactions. Each reaction contained
10 or 15 µL diluted cDNA and 40 nM of each primer. Primer
sequences are shown in Table S1. Optimization and validation of
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good performing qPCR assays and preamplification are described
elsewhere (Ståhlberg and Bengtsson, 2010; Andersson et al.,
2015). The temperature profile was 95◦C for 3min followed by 20
cycles of amplification (95◦C for 20 s, 60◦C for 3min, and 72◦C
for 20 s). All preamplified samples were chilled on ice and diluted
1:20 in TE-buffer (pH 8.0; Life Technologies). Preamplification
was performed as two separate reactions for each single cell,
each containing half of the assays. The products of the two
reactions were pooled after preamplifciation. Reproducibility and
efficiency of the preamplification were evaluated by standard
curve analysis using cDNA from MLS 402-91 (Figure S2).
The overall preamplification efficiency was assessed using five
different cDNA concentrations (n = 4) generated from 0.04,
0.2, 1, 5, 25 ng total RNA, respectively. The average cycle of
quantification value of all genes expressed in four or more
dilutions were used to determine the overall preamplification
efficiency.

The BioMark real-time PCR system with 96 × 96 dynamic
arrays (Fluidigm) was used for gene expression profiling
according to the manufacturer’s instructions. The 5 µL sample
reaction mixture contained 1X SsoFast EvaGreen Supermix
(BioRad), 1X ROX (Life Technologies), 1X GE Sample Loading
Reagent (Fluidigm), and 2 µL diluted preamplified cDNA. The
5 µL primer reaction contained 1X Assay Loading Reagent
(Fluidigm) and 5µMof each primer. Preamplification and qPCR
were performed with the same primers (Table S1). The chip was
first primed with the NanoFlex IFC Controller (Fluidigm) and
then loaded with the sample and primer reaction mixtures. The
cycling program was 3 min at 95◦C for polymerase activation,
followed by 40 cycles of amplification (96◦C for 5 s and 60◦C for
20 s). After qPCR, all samples were analyzed by melting curve
analysis (60–95◦C with 0.33◦C per s increment). All assays were
confirmed to generate correct PCR product length by agarose
gel electrophoresis. Data pre-processing was performed with
GenEx (v.6, MultiD) as described (Ståhlberg et al., 2013). Briefly,
samples with aberrant melting curves were removed and cycle of
quantification values larger than 25 were replaced with 25. Data
were transformed to relative quantities assuming that a cycle of
quantification value of 25 equals one molecule. Missing data were
replaced with 0.5 molecules. All data were calculated per cell if
not stated otherwise. For all data analysis we assumed 100% PCR
efficiency. The impact of the chosen cut-off value and applied
PCR efficiency had negligible effect on downstream analysis.

Immunofluorescence
MLS 402-91 and MCF-7 cells were seeded on Millicell EZ SLIDE
4-well-glasses (Merck Millipore). After 24 h, cells were rinsed
with phosphate buffer saline (Life Technologies) and fixed in
3.7% formaldehyde for 5 min (Sigma-Aldrich), washed three
times with phosphate buffer saline and permeabilized in AB
buffer (phosphate buffer saline supplied with 1% bovine serum
albumin and 0.5% Triton X, Sigma-Aldrich). Cells were stained
with anti-MCM6 antibody (HPA004818 rabbit, diluted 1:50,
Sigma-Aldrich). Detection was performed with a Cy3 conjugated
secondary antibody (PA43004, diluted 1:1000, GEHealthcare Life
Sciences). Slides were mounted using Prolong Gold anti-fade
with 4′,6-diamidino-2-phenylindole (Life Technologies). Cellular

fluorescence was imaged using a Zeiss Axioplan 2 microscope
(Zeiss). Relative protein level per cell was estimated using
Volocity 3D Image Analysis Software (PerkinElmer).

Single-Cell Data Analysis and Statistics
Principal component analysis, hierarchical clustering, and
Kohonen self-organizing maps were performed in GenEx
software using autoscaled gene expression data as described
(Ståhlberg et al., 2011a). The Ward’s algorithm and Euclidean
distance measure were applied for hierarchical clustering.
Parameters for Kohonen self-organizing maps were: 3–4 × 1
map, 2 neighbors, 0.4 learning rate, and 150 iterations. The
resulting clusters were not sensitive to parameter choice.

A random forests algorithm was implemented to pairwise
classify different cell cycle phases and cell sizes. Two cell states
were compared at a time. Random forests are collections of
decision trees. At the top-most level of each decision tree, all
genes are scanned one by one, to determine the best gene, and
corresponding gene expression threshold to optimally partition
the original cells into two branches. The optimal partition is
algorithmically determined based on the minimization of a
quality function such as the cross-entropy or the Gini index
(Hastie et al., 2009; Gareth et al., 2013), which aim to increase
the class purity of each branch. Subsequently, each branch is
considered for further separation based on the expression values
of other genes. The process continues until the full decision tree
is grown in such amanner that each of its leaves, i.e., the endpoint
of each branch, contains cells of a single class. To generate robust
solutions and avoid data overfitting, additional parameters are
usually incorporated to the model in order to either limit the
length of the tree (or, alternatively, the size of the nodes that
can undergo further branching) or to prune the tree. In this
context, a popular technique is to generate a so-called random
forest that contains a large number of partially decorrelated
trees built out of bootstrapped samples from the original data
set. Compared to single decision trees, random forests are less
intuitive, since they lack a direct visualization of the structure and
relations among predictor genes, but random forests are more
powerful and robust. In this study, we implemented a random
forest analysis using the random Forest (v4.6-10) package in R.
This implementation uses the decrease of Gini index impurity
as a splitting criterion and selects the splitting predictor from a
subset of predictors, randomly chosen at each split. Each random
forest consisted of 1000 trees. For each random forest we scanned
the size of the predictor subset in the full range from one to
the total number of predictors and selected the smallest subset
that minimized the out-of-bag error. The so-called out-of-bag
error is calculated from predictions on out-of-bag instances,
i.e., those cells that have not been used in building a particular
tree. Moreover, in order to assess model variance, for each class
comparison we generated ensembles consisting of 100 different
random forests. Only genes with detectable expression in at least
50% of the cells in at least one cell class were included in our
analysis. We report averages and standard deviations calculated
over these random forest ensembles throughout.

Cell classification performance can be quantified by several
measures. In addition to the out-of-bag error, another measure is
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the balanced accuracy. The balanced accuracy is the classification
accuracy averaged over all classes, where the classification
accuracy for each class is the percentage of cells in the class that
are correctly classified by the random forest. Yet another measure
is Fisher’s p-value obtained by applying Fisher’s exact test on
the confusion matrix, which consists of the number of correctly
and incorrectly classified cells in each class. Moreover, we also
computed the so-called gene importance, a quantitative measure
of the impact of the gene on the node purity.

To address the question of which, and how many, genes
are needed to best separate two classes we applied a recursive
feature elimination (RFE) scheme, a standard approach for
feature selection (Tarca et al., 2007; Candia et al., 2013). In the
first RFE cycle, we generated a random forest ensemble using
all (N) genes and computed classification statistics, including
confusion matrices with associated Fisher’s p-value, balanced
accuracy, out-of-bag error, and gene importance. We determined
the least significant gene based on gene importance and removed
it. Then, in the second RFE cycle we used the remaining N–1
genes and repeated the random forest analysis to eliminate the
second least significant gene. The procedure was subsequently
iterated until one gene was left. By comparing the classification
performance across all RFE cycles we could then determine the
number of genes in the optimal gene signature. We verified
that, for this optimal gene signature, the out-of-bag error and
Fisher’s p-value were minimized, while the balanced accuracy was
maximized. The intended redundancy of separately considering
three classification performance metrics allowed us to ensure the
robustness of the optimally obtained gene signature.

The most predictive genes identified by RFE was used to
calculate a cell cycle index as the sum of all G1 to S and/or G2/M
upregulated genes subtracted by the sum of all G1 to S and/or
G2/M downregulated genes divided by the number of genes used.
The lg2 expression value of each gene was used.

RESULTS

Gene expression and cell heterogeneity of proliferating cells
were studied by fluorescence activated cell sorting combined
with single-cell gene expression profiling. Three different cell
lines were investigated: a genetically stable myxoid liposarcoma
cell line (MLS 402-91) (Aman et al., 1992); a breast cancer
adenocarcinoma derived cell line (MCF7; Soule et al., 1973) and
mesenchymal stem cells (MSC) differentiated from an embryonic
stem cell line (Karlsson et al., 2009). Cells were stained with lipid
and DNA binding dyes, visualizing cell size, and DNA content.
Utilizing this double-labeling approach we collected small and
large cells in the G0/G1, S, and G2/M phases (Figure S1). DNA
staining cannot distinguish between G0 and G1 phase cells, or
between G2 and M phase cells. We refer the G0/G1 phase as G1
phase only, since few G0 cells are expected in our continuously
passaged cell cultures. The average volume ratio between large
and small collected cells was 2.8 for MLS 402-91, 2.5 for MCF7,
and 4.5 for MSC (Figure S1). Expression of 93 genes were
analyzed in each cell using reverse transcription quantitative real-
time PCR. One gene (FUS) was assessed by two assays. Assay
information and gene function are shown in Table S1. All basic

data, including number of positive cells expressing each gene and
mean single-cell expression with standard deviation, are shown
in Table S2.We tested the reproducibility of our data by collecting
individual MLS 402-91 cells in the G1, S, and G2/M phases
without any cell size selection in an independent experiment.

Total Transcript Level Correlates with Cell
Cycle Phase at the Single-Cell Level
Transcript numbers were measured per single cell without any
further normalization between cells (Ståhlberg et al., 2011a,
2013). Hence, the total transcript level could be calculated as the
sum of all measured transcripts per cell. Figure 1A and Table 1

show that the total transcript level correlated with cell cycle
phase, but not with cell size. In MLS 402-91 the total transcript
level reached maximum in G2/M phase cells with about two-
fold higher levels compared to G1 phase cells. In MCF7 the total
transcript level reached maximum in S phase cells and remained
at the same level in G2/M phase cells. MSC only displayed a weak
correlation between total transcript level and cell cycle phase.

The total transcript level varied highly between individual
cells (Figure 1B). The distributions were skewed with few cells
containing high total transcript levels. The total transcript level
was 17, 120, and 820 times higher in the cell with highest
total transcript level compared to the cell with lowest total
transcript level in MLS 402-91, MCF7, and MSC, respectively (all
cells included). Correlation analysis between transcript levels of
individual genes at single-cell level showed positive correlations
between most genes: 74% in MLS 402-91 (total number of
comparisons = 4278), 85% (total number of comparisons =

3081) in MCF7 and 90% (total number of comparisons = 3486)
in MSC. Consequently, cells with high total transcript level also
displayed elevated transcript numbers of most individual genes.

Identification of Genes with Cell Cycle
Phase and Cell Size Dependent Expression
Principal component analysis (PCA) showed that individual
cells partly clustered based on their cell cycle phase in all
three cell lines (MLS 402-91 in Figure 2A, MCF7 in Figure 3A,
and MSC in Figure 4A), but only MSC displayed cell size
depended clustering. However, large overlaps between cells of
different cell cycle phases and cell sizes were observed for all
cell lines. Double thymidine treated MLS 402-91 cells showed
a completely divergent expression profile compared to non-
treated G1, S, or G2/M phase cells, demonstrating that artificial
cell synchronization result in severe and unintended side effects
(Figure 2A).

To determine if individual cells can be correctly classified into
cell cycle phase or cell size based on their gene expression profile
we applied the random forests algorithm, a machine-learning
approach based on decision trees. As a classifier, a decision
tree is a hierarchically organized structure that optimally can
separate cell cycle phases and cell sizes (see Section Materials
and Methods for details). Figures 2B, 3B, 4B show how well-cell
cycle phase and cell size could be distinguished using a multi-
gene signature at the single-cell level. InMLS 402-91, we obtained
best classification comparing G2/Mwith G1 phase cells, while the
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FIGURE 1 | Total transcript levels are mainly cell cycle phase dependent. (A) The total transcript level for small and large cells in the G1 (blue), S (gray), and

G2/M (red) phases are shown (MLS 402-91: nsmall−G1 = 15, nlarge−G1 = 16, nsmall−S = 15, nlarge−S = 15, nsmall−G2/M = 15, nlarge−G2/M = 15; MCF7: nsmall−G1

= 16, nlarge−G1 = 15, nsmall−S = 15, nlarge−S = 15, nsmall−G2/M = 15, nlarge−G2/M = 16, and MSC: nsmall−G1 = 16, nlarge−G1 = 13, nsmall−S = 16, nlarge−S =

12, nsmall−G2/M = 14, nlarge−G2/M = 15). In addition, G1/S phase arrested MLS 402-91 cells with any cell size were analyzed, using a double thymidine block (n =

61). As a separate experiment, MLS 402-91 cells were collected and analyzed based on cell cycle phase only (nG1 = 30, nS = 29 and nG2/M = 30). Box-Whisker

plots are shown; the box ranges between the 25 and 75% and the whiskers range between the 5 and 95% of all data. *indicate 95% significance using the

Mann-Whitney U-test with Holm-Bonferroni correction for multiple testing. (B) Distribution of total transcript levels among individual cells in MLS 402-91, MCF7, and

MSC. The total transcript level per cell is calculated as the sum of all measured transcript for all 93 genes.

classifications between other cell cycle phases were less efficient
(Figure 2B). For example, 29.86 ± 0.35 out of 31 MLS 402-91
cells were correctly classified as G1 phase cells, while 1.14 ± 0.35
G1 phase cells were falsely predicted to be G2/M phase cells. The
ability to classify MCF7 cells was similar (Figure 3B). The gene
expression profile was less predictive to classify cell size than cell
cycle phase in both MLS 402-91 and MCF7 cells (Figures 2B,
3B). Similar gene expression profiles and classifications were
also observed for the independent MLS 402-91 data set (Figure
S3). The gene expression profile of individual MSC was less
predictive for cell cycle phases compared to the two other cell
lines, but the ability to classify cell size was more efficient in
MSC (Figure 4B). We also compared small and large cells within
respective cell cycle phase, but no distinct cell size dependency
was found in any of the three cell lines (data not shown). The
random forests approach also allowed us to rank the individual
genes based on their importance in the classification (Figure S4).
Figures 2C, 3C, 4C show the genes with strongest cell cycle phase
and cell size dependent expression. Even if the median expression
level of these predictive genes correlated well with their ability
to classify cell cycle phase or cell size, individual cells showed
highly variable, and overlapping gene expression (Figures 2C,
3C, 4C).

TABLE 1 | Spearman’s correlation coefficient between total transcript

level and cell proliferation parameters at single-cell level.

MLS 402-91 MCF7 MSC

Cell cycle phase combined with cell size 0.27* 0.34** 0.28**

Cell cycle phase 0.51** 0.47** 0.23*

Cell size 0.03 0.19

*p < 0.05, **p < 0.01.

Identification of Predictive Genes and Cell
Line Specific Subpopulations
Expression data for all genes were used in the random forests
classification algorithm to predict cell cycle phase and cell size. To
determine if a similar prediction model could be generated with
fewer genes, we applied a recursive feature elimination (RFE)
approach. In RFE, the least informative gene is eliminated from
the random forests analysis. This procedure is repeated until
only one gene remains. Figure S5 shows how well the random
forests algorithm performed with decreasing number of genes.
We found that expression data from the following gene sets
were almost as accurate as the complete gene panel in classifying
cell cycle phase in MLS 402-91: G1 vs. S: MKI67, RB1, E2F1,
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FIGURE 2 | Cell cycle phase and cell size dependent gene expression in MLS 402-91. (A) PCA of small and large MLS 402-91 cells in the G1, S, and G2/M

phases. Note that the double thymidine treated cells (T block) show a completely different expression profile than non-treated cells. Each dot, square, and triangle

represents a single cell. (B) Confusion matrices of cell classifications using the random forests algorithm. Fisher’s exact test was used to calculate significance (p <

0.0001) for all matrices. (C) Box-Whisker plots for the genes with highest importance to classify cell cycle phase and cell size using the random forests algorithm. The

box ranges between the 25 and 75%, the whiskers range between the 5 and 95% of all data and outliers are indicated as diamonds.

HIST1H2AE, and CCNB1; S vs. G2/M: CCNB1, CBX3, and ND1
and G2/M vs. G1: MKI67, GAPDH, CCNB1, and CCNB2. The
gene lists are ordered with the most predictive gene listed first.
Refined PCA using only these nine predictive genes revealed a
distinct subpopulation that was not clearly visible using all genes
(Figure 5A). The same subpopulation was also identified using
other algorithms, including hierarchical clustering and Kohonen
self-organizingmaps (Figure S6). This new subpopulationmainly
consisted of G1 cell cycle phase cells and was characterized
by upregulation of MCM6 and downregulation of 21 other
genes, mainly cell cycle related genes (Figures 5B,C). We refer
to this subpopulation as the G1′ subpopulation. The total
transcript level in the G1′ subpopulation was on average 32%
lower compared to the other G1 phase cells (p < 0.01, Mann-
Whitney U-test), suggesting a distinct G1 cell state with low
transcriptional activity. We also confirmed the presence of
the same G1 subpopulation with almost an identical gene
expression profile in the independent MLS 402-91 data set
(Figure S7).

InMCF7, the following sets of predictive genes were identified
by RFE: G1 vs. S phase: HIST1H2AE, CCNB1, CDK4, and

GMNN; S vs. G2/M phase: CCNB1, CCNB2, and HIST1H2AE
and G2/M vs. G1 phase: MKI67, CCNB1, RPS10, RPL7, and
EIF1. Refined PCA revealed a G1 subpopulation with similar
characteristics as the G1′ subpopulation found in MLS 402-
91 (Figures 5D–F). The existence of the MCF7 defined G1′

subpopulation was confirmed by hierarchical clustering and
Kohonen self-organizing maps (data not shown). The total
transcript level was 47% lower in the G1′ subpopulation
compared to the other G1 phase cells (p < 0.01, Mann-Whitney
U-test). One gene, MCM6, displayed opposite regulation in
the G1′ subpopulation in MCF7 compared to MLS 402-91.
The variable and divergent MCM6 expression prompted us
to analyze its protein expression. Immunofluorescence analysis
showed variable MCM6 protein expression in both MLS 402-
91 and MCF7 with somewhat higher variability in MCF7 cells
(Figure S8).

In MSC, RFE generated the following sets of predictive genes:
G1 vs. S phase: HIST1H2AE, MKI67, ATF4, and YWHAZ; S vs.
G2/M phase: HIST1H2AE, E2F4, TAF15, and RB1 and G2/M vs.
G1 phase: CCNA2, NOTCH1, CCNB1, and VIM. In contrast to
MLS 402-91 and MCF7, MSC displayed a distinct subpopulation
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FIGURE 3 | Cell cycle phase and cell size dependent gene expression in MCF7. (A) PCA of small and large MCF7 cells in the G1, S, and G2/M phases. Each

dot and square represents a single cell. (B) Confusion matrices of cell classifications using the random forests algorithm. Fisher’s exact test was used to calculate

significance (p < 0.0001) for all matrices. The confusion matrix of small compared to large cells was not significant. (C) Box-Whisker plots for the genes with highest

importance to classify cell cycle phase and cell size using the random forests algorithm. The box ranges between the 25 and 75%, the whiskers range between the 5

and 95% of all data and outliers are indicated as diamonds.

of small S and G2/M phase cells that was characterized
by upregulated cell proliferation genes (Figures 5G–I). The
existence of this MSC specific subpopulation was also confirmed
by other algorithms (data not shown).

Cell Cycle Progression Can Be Visualized
By a Cell Cycle Index Based on Gene
Expression
Multi-gene profiles are usually hard to visualize and interpret.
Hence, we calculated and plotted a cell cycle index based on the
expression of all cell cycle regulated genes identified by RFE for
each cell line (Figure 6). The index correlated with the cell cycle
progression for all three cell lines, where G1 phase cells showed
low indexes, while G2/M phase cells displayed high indexes. The
cell cycle index varied most between individual G1 phase cells in
MLS 402-91 and MCF7, where a distinct index crossover point
could be identified for cells in the transition from G1 to S phase.
In contrast, MSC showed a different pattern with a more uniform
G1 to S phase transition. The cells in the G1′ subpopulations
identified in MLS 402-91 and MCF7 displayed the lowest cell
cycle indexes, while the cells in the subpopulation defined inMSC
showed the highest indexes.

DISCUSSION

The mechanisms governing cell growth and division of
mammalian cells have long been a subject of intense research.
Many of the decisive regulatory events occur by post translational
modifications of pre-existing proteins (Pagliuca et al., 2011),
but underlying this regulatory level is also synchronized
de novo production of cell cycle regulated components. A
large number of genes have been reported to be timely
transcribed as part of cell cycle progression (Sun et al., 2007;
Simmons Kovacs et al., 2008; Muller and Engeland, 2010).
Here, we have taken advantage of emerging technology to
study gene expression profiles in single cells of different cell
cycle phases and of different cell sizes. To date, most studies
aimed at cell cycle regulated gene transcription were based
on large cultures and artificial cell synchronization. We and
others (Cooper, 2002, 2003) have observed that standard
synchronization strategies affect cell states in unintended ways
as they cause cell stress and abnormal expression profiles
(Figures 1A, 2A). Our approach to collect unsynchronized
individual cells avoids these issues and our data clearly
demonstrate some of the benefits using single-cell analysis.
Both the observed cell-to-cell variability and the identified
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FIGURE 4 | Cell cycle phase and cell size dependent gene expression in MSC. (A) PCA of small and large MSC cells in the G1, S, and G2 phases. Each dot

and square represents a single cell. (B) Confusion matrices of cell classifications using the random forests algorithm. Fisher’s exact test was used to calculate

significance (p < 0.05) for all matrices. (C) Box-Whisker plots for the genes with highest importance to classify cell cycle phase and cell size using the random forests

algorithm. The box ranges between the 25 and 75%, the whiskers range between the 5 and 95% of all data and outliers are indicated as diamonds.

subpopulations would have been challenging to study at cell
population level.

Traditional expression analysis usually involves normalization
processes before samples can be compared. Normalization
assumes that selected house-keeping genes, i.e., reference genes,
or the total amount of transcripts is essentially identical across
samples. However, single-cell RT-qPCR data are reported as
transcripts per cell without the need of additional normalization
between cells, which enable us to calculate the total transcript
level of all analyzed genes (Ståhlberg et al., 2011a, 2013). This
strategy is possible, since single cells are analyzed directly without
any extraction steps. Our data show that the assumption of equal
total transcription levels between individual cells is not valid.
Instead, we observed that the total transcript level correlated with
the cell cycle phase (Table 1). This was further tested by analyzing
an additional published single-cell astrocyte data set generated
directly from dissociatedmice brains (Figure S9; Rusnakova et al.,
2013). Taken together, our data show a considerable cell-to-cell
variation in total transcript levels where most genes are positively
correlated. In addition, only a minority of cells displayed elevated
total transcript levels. Consequently, these few cells expressed
high number of transcripts of most genes. The absolute values
of the calculated total transcript levels are dependent on the
applied gene panel. However, the observation of subpopulations

expressing elevated levels of transcripts for most genes is not
gene panel dependent. Our results are in agreement with earlier
observations that transcription occurs in bursts (Raj et al., 2006;
Sanchez and Golding, 2013), generating skewed distributions of
transcripts among individual cells (Bengtsson et al., 2005).

In many organisms cell size is strongly correlated to cell
division and growth rate (Dungrawala et al., 2010; Marguerat and
Bahler, 2012), but the role of cell size in mammalian cells is less
clear (Echave et al., 2007; Tzur et al., 2009). Our cell size data
are in line with these reports. We observed increased numbers
of small cells in the G1 phase using fluorescence activated cell
sorting (Figure S1), but no clear correlation between cell size and
total transcript levels were observed in any cell line. In MSC,
we identified a subpopulation of small S and G2/M phase cells
with distinct gene expression profile. The divergent results of
MSC could be connected to the larger span in size variation of
these cells compared to the other two cell lines (Figure 1A and
Figure S1).

A large number of genes displayed correlations between
their expression levels and cell cycle phase, while the number
of correlations between expression level and cell size was
fewer (Table 1 and Table S2). However, even for the genes
with highest correlations we observed large overlap in gene
expression levels among individual cells of different cell cycle
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FIGURE 5 | Identification and characterization of distinct subpopulations. (A) A MLS 402-91 subpopulation (encircled) was defined using PCA and RFE

identified genes (MKI67, RB1, HIST1H2AE, CCNB1, CBX3, ND1, GAPDH, CCNB2, and E2F1). Individual small (squares) and large (dots) MLS 402-91 cells in G1

(blue), S (gray), and G2/M (red) phase are shown. (B) The volcano plot shows regulation and significance of all analyzed genes, comparing the defined G1

subpopulation and the remaining G1 phase cells. Dunn-Bonferroni correction for multiple testing (p < 0.00054) was applied using 95% significance. Red (p > 0.05),

yellow (0.05 > p > 0.00054), and green (p < 0.00054) dots indicate at least two-fold regulated genes. (C) All significantly MLS 402-91 regulated genes identified in

the volcano plot are listed. (D) A MCF7 subpopulation (encircled) was defined using PCA and RFE identified genes (HIST1H2AE, CCNB1, CDK4, GMNN, CCNB2,
MKI67, RPS10, RPL7, and EIF1). Individual small (squares) and large (dot) MCF7 cells in G1 (blue), S (gray), and G2/M (red) phase are shown. (E) The volcano plot

shows regulation and significance for all analyzed genes in MCF7, comparing the defined G1 subpopulation and the remaining G1 phase cells. Dunn-Bonferroni

correction for multiple testing (p < 0.00062) was applied using 95% significance. Red (p > 0.05), yellow (0.05 > p > 0.00062) and green (p < 0.00062) dots indicate

at least two-fold regulated genes. (F) All significantly MCF7 regulated genes identified in the volcano plot are listed. (G) A MSC subpopulation (encircled) was defined

using PCA and RFE identified genes (HIST1H2AE, MKI67, ATF4, YWHAZ, E2F4, TAF15, RB1, CCNA2, NOTCH1, CCNB1, and VIM). Individual small (squares) and

large (dot) MCF7 cells in G1 (blue), S (gray), and G2/M (red) phase are shown. (H) The volcano plot shows regulation and significance for all analyzed genes in MSC,

comparing the defined subpopulation and the remaining cells. Dunn-Bonferroni correction for multiple testing (p < 0.0006) was applied using 95% significance. Red (p
> 0.05), yellow (0.05 > p > 0.0006), and green (p < 0.0006) dots indicate at least two-fold regulated genes. (I) All significantly MSC regulated genes identified in the

volcano plot are listed.

phases and cell sizes (Figures 2C, 3C, 4C and Table S2). To
further analyze the relations between gene expression and
cell cycle phase respective cell size we applied the supervised
random forests learning algorithm. This strategy generated a
multi-gene signature that optimally separated pre-defined cell
populations. Further, to identify the most predictive genes
we applied RFE. Most of the predictive genes were similar
in MLS 402-91 and MCF7, while MSC displayed a different
gene list. Some genes, including CCNB1 and MKI67, were
predictive in all three cell lines. The RFE results showed that
none of the measured genes alone or in combination could

predict all cells into correct cell cycle phase or cell size in any
cell line.

By excluding non-informative genes in the PCA we identified
distinct G1′ subpopulations in both MLS 402-91 and MCF7. The
G1′ subpopulations were characterized by low total transcript
levels and downregulation of several proliferation associated
genes. We speculate that these G1 phase cells are cells that have
recently divided (Martinsson et al., 2005). One gene, MCM6,
was upregulated in MLS 402-91, while downregulated in MCF7.
MCM6 belongs to the MCM gene family, where the MCM
complex is loaded on chromatin exclusively during the G1 phase
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FIGURE 6 | Cell cycle index. The cell cycle index of each cell is shown in

relation to its cell cycle phase. Subpopulation cells identified in Figure 5 are

also indicated. (A) The MLS 402-91 index was calculated as: (MKI67 + RB1 +

HIST1H2AE + CCNB1 + CBX3 + ND1 + GAPDH + CCNB2 – E2F1)/9. The
lg2 expression value of each gene was used. The cell cycle index crossover

point where the index enters a plateau is indicated. The linear fits are shown to

guide the eye. (B) The MCF7 index was calculated as: (HIST1H2AE + CCNB1
+ CDK4 + GMNN + CCNB2 + MKI67 + RPS10 + RPL7 +EIF1)/9. The lg2

expression value of each gene was used. The cell cycle index crossover point

where the index enters a plateau is indicated. The linear fits are shown to guide

the eye. (C) The MSC index was calculated as: (HIST1H2AE + MKI67 + ATF4
+ YWHAX + E2F4 + TAF15 + RB1 + CCNA2 + NOTCH1 + CCNB2 +

VIM)/11. The lg2 expression value of each gene was used.

with help of other proteins, including CDT1 and CDC6 (Shetty
et al., 2005). Interestingly, the second most upregulated gene in
the MLS 402-91 G1′ subpopulation was CDT1, further indicating
that the MCM complex may be differently regulated in MLS 402-
91 compared to MCF7. The heterogeneously MCM6 expression
also translated into variable protein expression levels. Transcript
data suggest that the cells with high MCM6 protein level in MLS
402-91 correspond to the G1′ subpopulation, while the opposite
seems true for MCF7. Further, analyses are needed to define the
cell line specific regulation ofMCM genes.

A single parameter is easier to visualize and interpret than
a multi-gene signature. Hence, we developed a cell cycle index
to illustrate cell cycle progression. The index shows that cells
are in continuous transition throughout the cell cycle until
mitosis. In MLS 402-91 and MCF7 we observed a distinct cell
cycle index crossover point for cells that were in the G1 to
S phase transition (Figures 6A–B). We speculate that this cell
cycle index breakpoint is related to the G1 restriction check
point (Lubischer, 2007). The identified G1′ subpopulations in
MLS 402-91 and MCF7 were characterized by low indexes,
illustrating that these cells are not likely to enter the S phase in
the near future. However, further analysis of more cell lines in
different conditions, degree of differentiation and various genetic
backgrounds is needed to determine general cell proliferation
constraints. In addition, whole transcriptome analysis would
most likely reveal more predictive genes allowing for a more
detailed understanding of cell transitions between cell cycle
phases.

AUTHOR CONTRIBUTIONS

AS conceived and designed the study. AS, SD, NA, CV, TT
performed the experiments. AS, JC, WL performed data analysis.
All authors were involved in data interpretation and manuscript
drafting. All authors approved the final manuscript.

FUNDING

Barncancerfonden, BioCARE, Cancerfonden, Johan Jansson
Stiftelsen för tumörforskning och cancerskadade, Sahlgrenska
Akademin-ALF, Stiftelsen Assar Gabrielssons Fond, Stiftelserna
Wilhelm och Martina Lundgrens Vetenskapsfond, VINNOVA,
Åke Wiberg Stiftelse.

ACKNOWLEDGMENTS

We acknowledge the Centre for Cellular Imaging at the
Sahlgrenska Academy, University of Gothenburg for imaging
support and Dr. Daniel Andersson at the Sahlgrenska Cancer
Center, University of Gothenburg, Gothenburg, Sweden for
comments on the manuscript draft.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fgene.
2017.00001/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 10 January 2017 | Volume 8 | Article 1

http://journal.frontiersin.org/article/10.3389/fgene.2017.00001/full#supplementary-material
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Dolatabadi et al. Cell Proliferation Dependent Gene Expression

REFERENCES

Aman, P., Ron, D., Mandahl, N., Fioretos, T., Heim, S., Arheden, K., et al.
(1992). Rearrangement of the transcription factor gene CHOP in myxoid
liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 5, 278–285.
doi: 10.1002/gcc.2870050403

Andersson, D., Akrap, N., Svec, D., Godfrey, T. E., Kubista, M., Landberg,
G., et al. (2015). Properties of targeted preamplification in DNA
and cDNA quantification. Expert Rev. Mol. Diagn. 15, 1085–1100.
doi: 10.1586/14737159.2015.1057124

Baserga, R. (1981). The cell cycle. N.Engl. J. Med. 304, 453–459.
doi: 10.1056/NEJM198102193040803

Bengtsson, M., Ståhlberg, A., Rorsman, P., and Kubista, M. (2005). Gene
expression profiling in single cells from the pancreatic islets of Langerhans
reveals lognormal distribution of mRNA levels. Genome Res. 15, 1388–1392.
doi: 10.1101/gr.3820805

Bertoli, C., Skotheim, J. M., and de Bruin, R. A. (2013). Control of cell cycle
transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14, 518–528.
doi: 10.1038/nrm3629

Candia, J., Banavar, J. R., and Losert, W. (2015). “Uncovering phenotypes with
supercells: applications to single-cell sequencing,” in Single Cell Sequencing and
Systems Immunology, ed X. Wang (Dordrecht: Springer), 11–30.

Candia, J., Maunu, R., Driscoll, M., Biancotto, A., Dagur, P., McCoy,
J. P., et al. (2013). From cellular characteristics to disease diagnosis:
uncovering phenotypes with supercells. PLoS Comput. Biol. 9:e1003215.
doi: 10.1371/journal.pcbi.1003215

Cooper, S. (2002). Minimally disturbed, multicycle, and reproducible
synchrony using a eukaryotic “baby machine.” Bioessays 24, 499–501.
doi: 10.1002/bies.10108

Cooper, S. (2003). Rethinking synchronization of mammalian cells for cell cycle
analysis. Cell. Mol. Life Sci. 60, 1099–1106. doi: 10.1007/s00018-003-2253-2

Dungrawala, H., Manukyan, A., and Schneider, B. L. (2010). Gene regulation:
global transcription rates scale with size. Curr. Biol. 20, R979–R981.
doi: 10.1016/j.cub.2010.09.064

Echave, P., Conlon, I. J., and Lloyd, A. C. (2007). Cell size regulation inmammalian
cells. Cell Cycle 6, 218–224. doi: 10.4161/cc.6.2.3744

Gareth, J., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction
to Statistical Learning: with Applications in R. New York, NY; Heidelberg;
Dordrecht; London: Springer.

Grant, G. D., Brooks, L. III, Zhang, X., Mahoney, J. M.,Martyanov, V.,Wood, T. A.,
et al. (2013). Identification of cell cycle-regulated genes periodically expressed
in U2OS cells and their regulation by FOXM1 and E2F transcription factors.
Mol. Biol. Cell 24, 3634–3650. doi: 10.1091/mbc.E13-05-0264

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edn. New York, NY:
Springer.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to
Statistical Learning. New York, NY; Heidelberg; Dordrecht; London: Springer.

Kalisky, T., Blainey, P., and Quake, S. R. (2011). Genomic analysis at the single-
cell level. Annu. Rev. Genet. 45, 431–445. doi: 10.1146/annurev-genet-102209-
163607

Karlsson, C., Emanuelsson, K., Wessberg, F., Kajic, K., Axell, M. Z., Eriksson,
P. S., et al. (2009). Human embryonic stem cell-derived mesenchymal
progenitors–potential in regenerative medicine. Stem Cell Res. 3, 39–50.
doi: 10.1016/j.scr.2009.05.002

Levine, J. H., Lin, Y., and Elowitz, M. B. (2013). Functional roles of pulsing in
genetic circuits. Science 342, 1193–1200. doi: 10.1126/science.1239999

Lubischer, J. L. (2007). The cell cycle, principles of control. David O. Morgan.
Integr. Comp. Biol. 47, 794–795. doi: 10.1093/icb/icm066

Marguerat, S., and Bahler, J. (2012). Coordinating genome expression with cell size.
Trends Genet. 28, 560–565. doi: 10.1016/j.tig.2012.07.003

Martinsson, H. S., Zickert, P., Starborg, M., Larsson, O., and Zetterberg, A. (2005).
Changes in cell shape and anchorage in relation to the restriction point. J. Cell.
Physiol. 203, 27–34. doi: 10.1002/jcp.20204

Muller, G. A., and Engeland, K. (2010). The central role of CDE/CHR promoter
elements in the regulation of cell cycle-dependent gene transcription. FEBS
J. 277, 877–893. doi: 10.1111/j.1742-4658.2009.07508.x

Pagliuca, F. W., Collins, M. O., Lichawska, A., Zegerman, P., Choudhary, J.
S., and Pines, J. (2011). Quantitative proteomics reveals the basis for the
biochemical specificity of the cell-cycle machinery. Mol. Cell 43, 406–417.
doi: 10.1016/j.molcel.2011.05.031

Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., and Tyagi, S. (2006).
Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4:e309.
doi: 10.1371/journal.pbio.0040309

Rusnakova, V., Honsa, P., Dzamba, D., Ståhlberg, A., Kubista, M., and Anderova,
M. (2013). Heterogeneity of astrocytes: from development to injury - single cell
gene expression. PLoS ONE 8:e69734. doi: 10.1371/journal.pone.0069734

Sanchez, A., and Golding, I. (2013). Genetic determinants and cellular constraints
in noisy gene expression. Science 342, 1188–1193. doi: 10.1126/science.1
242975

Shapiro, E., Biezuner, T., and Linnarsson, S. (2013). Single-cell sequencing-based
technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14,
618–630. doi: 10.1038/nrg3542

Shetty, A., Loddo, M., Fanshawe, T., Prevost, A. T., Sainsbury, R., Williams, G. H.,
et al. (2005). DNA replication licensing and cell cycle kinetics of normal and
neoplastic breast. Br. J. Cancer 93, 1295–1300. doi: 10.1038/sj.bjc.6602829

Simmons Kovacs, L. A., Orlando, D. A., and Haase, S. B. (2008). Transcription
networks and cyclin/CDKs: the yin and yang of cell cycle oscillators. Cell Cycle
7, 2626–2629. doi: 10.4161/cc.7.17.6515

Soule, H. D., Vazguez, J., Long, A., Albert, S., and Brennan, M. (1973). A human
cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer
Inst. 51, 1409–1416.

Ståhlberg, A., Andersson, D., Aurelius, J., Faiz, M., Pekna, M., Kubista, M., et al.
(2011a). Defining cell populations with single-cell gene expression profiling:
correlations and identification of astrocyte subpopulations. Nucleic Acids Res.
39, e24. doi: 10.1093/nar/gkq1182

Ståhlberg, A., and Bengtsson, M. (2010). Single-cell gene expression profiling
using reverse transcription quantitative real-time PCR. Methods 50, 282–288.
doi: 10.1016/j.ymeth.2010.01.002

Ståhlberg, A., Kubista, M., and Aman, P. (2011b). Single-cell gene-expression
profiling and its potential diagnostic applications. Expert Rev. Mol. Diagn. 11,
735–740. doi: 10.1586/erm.11.60

Ståhlberg, A., Rusnakova, V., Forootan, A., Anderova, M., and Kubista, M.
(2013). RT-qPCR work-flow for single-cell data analysis. Methods 59, 80–88.
doi: 10.1016/j.ymeth.2012.09.007

Sun, A., Bagella, L., Tutton, S., Romano, G., and Giordano, A. (2007). From G0 to
S phase: a view of the roles played by the retinoblastoma (Rb) family members
in the Rb-E2F pathway. J. Cell. Biochem. 102, 1400–1404. doi: 10.1002/jcb.
21609

Svec, D., Andersson, D., Pekny, M., Sjoback, R., Kubista, M., and Ståhlberg, A.
(2013). Direct cell lysis for single-cell gene expression profiling. Front. Oncol.
3:274. doi: 10.3389/fonc.2013.00274

Tarca, A. L., Carey, V. J., Chen, X. W., Romero, R., and Draghici, S. (2007).
Machine learning and its applications to biology. PLoS Comput. Biol. 3:e116.
doi: 10.1371/journal.pcbi.0030116

Tzur, A., Kafri, R., LeBleu, V. S., Lahav, G., and Kirschner, M. W. (2009). Cell
growth and size homeostasis in proliferating animal cells. Science 325, 167–171.
doi: 10.1126/science.1174294

Wills, Q. F., Livak, K. J., Tipping, A. J., Enver, T., Goldson, A. J., Sexton,
D. W., et al. (2013). Single-cell gene expression analysis reveals genetic
associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752.
doi: 10.1038/nbt.2642

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Dolatabadi, Candia, Akrap, Vannas, Tesan Tomic, Losert,
Landberg, Åman and Ståhlberg. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 11 January 2017 | Volume 8 | Article 1

https://doi.org/10.1002/gcc.2870050403
https://doi.org/10.1586/14737159.2015.1057124
https://doi.org/10.1056/NEJM198102193040803
https://doi.org/10.1101/gr.3820805
https://doi.org/10.1038/nrm3629
https://doi.org/10.1371/journal.pcbi.1003215
https://doi.org/10.1002/bies.10108
https://doi.org/10.1007/s00018-003-2253-2
https://doi.org/10.1016/j.cub.2010.09.064
https://doi.org/10.4161/cc.6.2.3744
https://doi.org/10.1091/mbc.E13-05-0264
https://doi.org/10.1146/annurev-genet-102209-163607
https://doi.org/10.1016/j.scr.2009.05.002
https://doi.org/10.1126/science.1239999
https://doi.org/10.1093/icb/icm066
https://doi.org/10.1016/j.tig.2012.07.003
https://doi.org/10.1002/jcp.20204
https://doi.org/10.1111/j.1742-4658.2009.07508.x
https://doi.org/10.1016/j.molcel.2011.05.031
https://doi.org/10.1371/journal.pbio.0040309
https://doi.org/10.1371/journal.pone.0069734
https://doi.org/10.1126/science.1242975
https://doi.org/10.1038/nrg3542
https://doi.org/10.1038/sj.bjc.6602829
https://doi.org/10.4161/cc.7.17.6515
https://doi.org/10.1093/nar/gkq1182
https://doi.org/10.1016/j.ymeth.2010.01.002
https://doi.org/10.1586/erm.11.60
https://doi.org/10.1016/j.ymeth.2012.09.007
https://doi.org/10.1002/jcb.21609
https://doi.org/10.3389/fonc.2013.00274
https://doi.org/10.1371/journal.pcbi.0030116
https://doi.org/10.1126/science.1174294
https://doi.org/10.1038/nbt.2642
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive

	Cell Cycle and Cell Size Dependent Gene Expression Reveals Distinct Subpopulations at Single-Cell Level
	Introduction
	Materials and Methods
	Cell Culture
	Fluorescent Activated Cell Sorting
	Single-Cell Gene Expression Profiling
	Immunofluorescence
	Single-Cell Data Analysis and Statistics

	Results
	Total Transcript Level Correlates with Cell Cycle Phase at the Single-Cell Level
	Identification of Genes with Cell Cycle Phase and Cell Size Dependent Expression
	Identification of Predictive Genes and Cell Line Specific Subpopulations
	Cell Cycle Progression Can Be Visualized By a Cell Cycle Index Based on Gene Expression

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


