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Helicobacter pylori (H. pylori) is a Gram negative bacterium that colonizes the stomach of
almost half human population. It has evolved to escape immune surveillance, establishes
lifelong inflammation, predisposing to genomic instability and DNA damage, notably
double strand breaks. The epithelial host cell responds by activation of DNA damage
repair (DDR) machinery that seems to be compromised by the infection. It is therefore
now accepted that genetic damage is a major mechanism operating in cases of H. pylori
induced carcinogenesis. Here, we review the data on the molecular pathways involved
in DNA damage and DDR activation during H. pylori infection.

Keywords: Helicobacter pylori (H. pylori), double strand breaks (DSBs), DNA damage repair (DDR), γH2AX,
eradication, genomic instability, tumorigenesis, chronic inflammation

INTRODUCTION

Rudolf Virchow was the first to propose a potential association between chronic inflammation
and cancer, based on his observations of inflammatory cells presence in human malignant tissues.
Eventually, inflammation was established as an important hallmark of cancer (Hanahan and
Weinberg, 2011). Approximately, 20–25% of cancer cases are attributed to chronic inflammation
(Ames et al., 1995; Mantovani et al., 2008).

Accumulating evidence suggest that chronic inflammation either non-infectious such as in
autoimmune disorders, or as a result of pathogen infection is connected to cancer development.
Characteristic examples of autoimmune disorders that may promote tumorigenesis are celiac
disease and Sjögren syndrome (Austad et al., 1967; Voulgarelis et al., 2012). Several infectious
agents have been associated with carcinogenesis including hepatitis B and C viruses, strongly
associated with hepatocellular carcinoma, human papilloma virus (HPV) with cervical cancer and

Abbreviations: BMDCs, bone marrow derived cells; CIN, chromosomal instability; DDR, DNA damage repair; DSBs,
double strand breaks; EBV, Epstein–Barr virus; H. pylori, Helicobacter pylori; IM, intestinal metaplasia; MDSCs, myeloid
derived suppressor cells; NBS, Nijmegen breakage syndrome; RONS, reactive oxygen and nitrogen species; SASP, senescence-
associated secretory phenotype; SSBs, single strand breaks; SPEM, spasmolytic polypeptide expressing metaplasia; Treg,
T-regulatory cells; γH2AX, phosphorylated H2AX.
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H. pylori with gastric cancer (Plummer et al., 2016). Infection-
related cancer is caused either by direct tumorigenic effect of the
pathogen, or indirectly through the accompanying inflammation
and the subsequent genomic instability (Cortes-Bratti et al., 2001;
Coussens and Werb, 2002; Scanu et al., 2015).

Inflammation as well as several endogenous or exogenous
agents, may result in DNA lesions which in turn promote
DNA repair pathways and interception of DNA replication, a
mechanism known as replication stress (Berti and Vindigni,
2016). In particular, inflammation induces a vicious cycle
among continuous injury and repair, resulting in aberrant cell
proliferation that favors replication stress. Inflammation-induced
replication stress enhances DNA damage, which subsequently
induces DNA damage response (DDR), genomic instability and
finally tumorigenesis (Coussens and Werb, 2002).

Herein, we review the interplay between pathogens and
especially H. pylori, inflammation, genomic instability, and
tumorigenesis.

DOUBLE STRAND BREAKS (DSBs) AND
DNA DAMAGE RESPONSE (DDR)
PATHWAY-OVERVIEW

Human cells and their genome are under constant attack by
DNA-damaging agents, resulting in 10s of 1000s of DNA lesions
daily (Lindahl and Barnes, 2000). DSBs are lethal and difficult
to repair (Khanna and Jackson, 2001; Rouse and Jackson, 2002;
Harper and Elledge, 2007; Jackson and Bartek, 2009).

The cell responds to DNA lesions by activating a complex
mechanism, named DDR, which detects and then initiates
signaling in order to repair DNA (Harrison and Haber,
2006; Harper and Elledge, 2007). There are several DDR
pathways, according to the type of DNA lesion. As far as
DSBs are concerned, non-homologous end-joining (NHEJ) and
homologous recombination (HR), are the major DNA repair
mechanisms (Lieber, 2008; San Filippo et al., 2008).

Double strand breaks are detected by the DNA damage
sensors namely MRN complex (Mre11-Rad50-Nbs1) which in
turn orderly recruits other agents of the DDR pathway (Lee and
Paull, 2005; Jackson and Bartek, 2009; Polo and Jackson, 2011;
Roos and Kaina, 2013).

In brief, DSBs promote activation of ATM and ATR, resulting
in H2AX histone phosphorylation at Ser 139 (γH2AX) an
initial step toward DNA repair (Shiloh, 2003; Bartek and
Lukas, 2007; Cimprich and Cortez, 2008; Cook et al., 2009;
Xiao et al., 2009). γH2AXformation activates the transducers
Chk1 and Chk2 leading to p53 activation (Kastan and Bartek,
2004; Bartek and Lukas, 2007; Riley et al., 2008). As soon
as p53 is activated, cell cycle arrest is triggered, in order for
the DNA lesion to be repaired. Alternatively, if the lesion
cannot be repaired apoptosis or premature senescence are
promoted. All the above p53-induced responses are tumor
suppressing.

A novel model of tumorigenesis was proposed by Bartkova
et al. (2005) and Gorgoulis et al. (2005), suggesting that DNA
replication stress enhance DSBs formation, leading to genomic

instability and selective pressure for p53 mutations, abrogating
the tumor suppressing actions of p53 (Halazonetis et al., 2008).

If the DDR pathway is ineffective either by overload or p53
mutations, faithful DNA repair is compromised resulting in
genomic instability (Negrini et al., 2010). Notably, the DDR
pathway, through its upstream kinase ATM, also keeps in check
another major tumor suppressor factor, namely p14ARF (Velimezi
et al., 2013; Wallace et al., 2014) that functions as a second anti-
tumor barrier to DDR activation (Evangelou et al., 2013). Thus
p53 inactivation can have detrimental effect(s) since both these
anti-tumor routes are compromised.

INFLAMMATION, GENOMIC
INSTABILITY, AND TUMORIGENESIS

Chronic inflammation results in inflammatory cell infiltration
and production of cytokines in tissues. Inflammatory cells of
innate immunity such as macrophages, MDSCs, neutrophils, and
dendritic cells are known to present tumor enhancing activity
(Gabrilovich and Nagaraj, 2009; Grivennikov et al., 2010; Terzic
et al., 2010).

Recently, Pereira-Lopes et al. (2015) reported that macrophage
functions, such as proliferation, ROS and cytokine production,
are mediated through DDR and in particular, by the NBS1
protein, part of the MRN sensor complex. They studied mice
carrying NBS1 hypomorphic protein and found impairment
of DDR, accumulation of DSBs, defects in macrophage
proliferation, increased production of cytokines and increased
rate of macrophage senescence. Taken together their findings
suggest the role of DDR in controlling immunopathology and
facilitating tissue repair during inflammation and infections
(Colonna, 2015).

Inflammatory tissues contain several growth factors, such
as epidermal growth factor (EGF), platelet derived growth
factor (PDGF), fibroblast growth factor (FGF), TGF-α, TGF-β,
insulin-like growth factors 1 and 2 that directly promote cell
proliferation, replication stress and eventually DSBs formation
(Cianfarani et al., 1998; Jakowlew, 2006; Aivaliotis et al., 2012).
In addition, cytokines such as IL-1β, IL-6, TNF-α and IFN-γ
induce the formation of RONS that trigger DNA mutations and
epigenetic alterations affecting the proteins responsible for cell
cycle control or survival (Colotta et al., 2009; Jurk et al., 2014;
Kiraly et al., 2015).

A characteristic example of the interaction between
inflammation, cytokines and DDR is the SASP. SASP refers
to the production of various substances by the senescent cell,
including inflammatory cytokines (e.g., IL-6, IL-8), proteases
and growth factors (Bavik et al., 2006; Coppe et al., 2008;
Malaquin et al., 2013) that act as inflammatory stimulators and
affect neighboring non-senescent cells, in a paracrine fashion.
Depending on the microenvironment, SASP may act either as
anti-tumorigenic factor favoring senescence, or as oncogenic
stimulant (Gorgoulis and Halazonetis, 2010). Specifically,
SASP factors enhance senescence in normal and low grade
preneoplastic cells but promote tumor development in high
grade preneoplastic or cancerous cells. SASP is considered a
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delayed response, taking days to operate and is driven by DDR
which is constantly active in senescent cells. It is a means of
long-term modulation of the microenvironment by senescent
cells, and despite the lack of mechanistic details thus far, it adds
to the notion that, inflammation, DDR, senescence and cytokines
contribute to cancer development (Coppe et al., 2008; Rodier
et al., 2009).

PATHOGENS AND DDR

Many virulence factors induce host DNA damage and DDR
activation. Viruses such as EBV, Herpes-Simplex virus 1,2 (HSV
1,2), cytomegalovirus (CMV), hepatitis C virus (HCV), HPV,
are all associated with cancerous pathologies, triggering DDR
activation (Georgakilas et al., 2010; Pateras et al., 2015).

Bacteria such as Escherichia coli, Campylobacter jejuni,
Streptococcus bovis, and H. pylori are known to induce DNA
damage in host cells (Nougayrede et al., 2006; Liyanage et al.,
2010). Especially, S. bovis is strongly associated with colorectal
cancer. It is still unknown whether bacteria or their toxins induce
tumorigenesis directly by cell transformation (Cortes-Bratti et al.,
2001; Scanu et al., 2015) or indirectly due to the accompanying
chronic inflammation (Coussens and Werb, 2002) or whether
both mechanisms operate.

H. pylori AND ITS IMPLICATION IN DDR
AND CARCINOGENESIS

In 2005, the Nobel Prize in Physiology or Medicine was awarded
to Barry Marshall and Robin Warren, for their discovery of
the bacterium H. pylori and its role in gastritis and peptic
ulcer disease (Marshall and Warren, 1984). The bacterium is
the major cause of peptic ulcer, gastric cancer, and lymphoma
of Mucosa Associated Lymphoid Tissue (MALT) (Marshall and
Warren, 1984; Parsonnet et al., 1997; Parsonnet and Isaacson,
2004). H. pylori colonizes the gastric mucosa of almost half the
world population and although provokes a robust inflammatory
response of the gastric mucosa, evades eradication leading to
lifelong infection.

Despite the fact that H. pylori is associated with persistent
gastric mucosa inflammation, the great majority of the infected
population (∼80%) remains asymptomatic. Three important
factors are associated with the development of symptomatic
H. pylori disease: (1) H. pylori’s virulence factors (2) host
susceptibility and response and (3) environmental cofactors,
including smoking and diet (Atherton, 2006).

H. pylori’s Virulence Factors
Helicobacter pylori’s CagA, encoded by the cagA gene within
the CagPAI of H. pylori genome, is the most important of its
virulent factors. CagA(+) strains induce enhanced inflammation
of the gastric mucosa and have stronger association with gastric
cancer. CagA protein is injected by the bacterium through a type
IV secretion system (TFSS) and hijacks the host cell molecular
machinery by interfering with multiple host signaling pathways

including NFκB and MAPKs (Keates et al., 2001), affecting
apoptosis, cell growth and motility (Odenbreit et al., 2000; Lin
et al., 2010; Murata-Kamiya, 2011). CagA(+) strains also induce
higher levels of expression of the proinflammatory cytokines
TNFα, IL-1β, and IL-8 that trigger oxidative stress and oxidative
DNA damage in the infected mucosa, thus promoting genomic
instability and tumorigenesis (Blaser et al., 1995; Peek et al., 1995;
Eftang et al., 2012). Other H. pylori virulence factors, such as
VacA and NapA, also augment the inflammatory response and
oxidative stress (Kim et al., 2007).

Host Response to H. pylori Infection
Helicobacter pylori-induced host inflammatory response rather
enhances than attenuates its pathogenicity. Both innate and
adaptive host responses are activated during the infection
(Hardbower et al., 2014). Neutrophils and macrophages trigger
ROS and NO production, create oxidative stress and tissue
damage. The bacterium survives oxidative stress by the
production of the enzymes Nap A, catalase and superoxide
catalase; thus, leading to persistent immunocyte infiltration in
the gastric mucosa and further enhancement of oxidative burst
(Wilson et al., 1996; Ramarao et al., 2000).

Adaptive immune response in H. pylori infection is mainly
mediated by Th1 and Th17 T cells that secrete INFγ and
IL-17 and are thought to further induce inflammatory cells
influx and perpetuate mucosal damage (D’Elios et al., 1997;
Szabo et al., 1999). VacA, Cag A, gamma-glutamyltranspeptidase,
and arginase produced by H. pylori alter T-cells responses by
interfering with T cell proliferation, activation and apoptosis
(Gebert et al., 2003; Gerhard et al., 2005; Wang et al., 2010;
Larussa et al., 2015). Interestingly, the bacterium, through
dendritic cells, can induce T-regulatory(Treg)/TGF-β activation
that blunts Th1/Th17 responses, early in the course of the
infection. It has been suggested that the attenuation of Treg
responses during progression of the infection shifts the balance
leading to more inflammation and more oxidative DNA damage
(Harris et al., 2008; Kao et al., 2010; Wang et al., 2010).

Furthermore, host polymorphisms affecting cytokines and
especially IL-1β, TNF-α, and IL-10 are considered as important
factors of host susceptibility to peptic ulceration and gastric
adenocarcinoma, linking local inflammatory responses with
tumorigenesis (El-Omar et al., 2000; Machado et al., 2001; Furuta
et al., 2002; Hwang et al., 2002; Rad et al., 2004). Individuals
infected with more virulent strains of H. pylori and carriers of
multiple cytokine polymorphisms are considered to be more
susceptible to gastric cancer development.

H. pylori Promotes Gastric
Carcinogenesis
Since 1990s when epidemiologic studies provided evidence for
the association between H. pylori and gastric cancer and the
bacterium was classified as human carcinogen (Forman et al.,
1991; Nomura et al., 1991; Parsonnet et al., 1991), our knowledge
on the mechanisms of H. pylori induced carcinogenesis has been
greatly improved and still evolving, due to the rigorous research
in this field.
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Several reports also suggest a putative role of EBV in gastric
carcinogenesis, more evident in gastric stump and non antral
tumors (Murphy et al., 2009). Recent data from the Cancer
Genome Atlas (TCGA) project led to the classification of
gastric cancer into four subtypes: EBV related, microsatellite
unstable, genomically stable, and CIN tumors; each type
is characterized by specific molecular defects and elevated
expression of DDR pathways (Cancer Genome Atlas Research
Network, 2014). Although the significance of EBV relationship to
gastric carcinogenesis is largely unexplored, studies clearly show
that eradication of H. pylori reduces the risk of gastric cancer
development, especially in patients without precancerous lesions
(Wong et al., 2004; Ford et al., 2014).

According to the Correa model, H pylori infection induced
gastritis progresses to gastric cancer through the premalignant
stages of gastric atrophy, IM, and dysplasia (Correa, 1992). More
recent evidence suggests that H. pylori related IM may result
from SPEM, a metaplastic epithelium developing during the
infection as a result of parietal cells loss and trans-differentiation
of chief cells. Persistent inflammation may advance SPEM
into a more proliferative metaplasia and to adenocarcinoma
development (Weis and Goldenring, 2009). Nevertheless, the
majority of H. pylori carriers are asymptomatic and although
almost 20% acquire preneoplastic changes, approximately only
2% will develop gastric cancer and lymphoma (Peek and Blaser,
2002).

Gastric carcinogenesis in H. pylori infection is affected by
several host and bacterial virulence factors. Dysregulation of
cellular homeostasis in gastric mucosa is the main result of host
response to the pathogen, favoring chronic inflammation, DNA
lesions, and finally tissue damage (Preston-Martin et al., 1990;
Algood et al., 2007). BMDCs that migrate to gastric mucosa
in the context of H. pylori infection may aid to the neoplastic
process, although evidence is mainly from animal model studies
(Houghton et al., 2004; Bessede et al., 2014).

A dysregulation of apoptosis, including its induction or
inhibition may play a key-role in H. pylori tumorigenesis.
Induction of apoptosis results to gastric atrophy,
hypochlorhydria and possibly to BMDCs recruitment, promoting
tumor growth. Inhibition of apoptosis attenuates defense
mechanisms of host against DNA damage, accumulates genetic
errors and promotes cell malignant transformation (Sougioultzis
et al., 2003; Ricci et al., 2011).

It should be mentioned that both experimental and human
evidence suggest that H. pylori also induces mitochondrial DNA
(mtDNA) mutagenesis which seems to enhance oxidative stress
and contribute to gastric cancer development (Machado et al.,
2009).

H. pylori Triggers DDR
Bartkova et al. (2005) as well as Gorgoulis et al. (2005)
have demonstrated that phosphorylated 53BP1, ATM,
H2AX, Chk2 and p53, are indicative of DDR activation in
premalignant lesions, following DSBs formation. Xie et al.
(2014) studied γH2AX expression in human gastric tissue
samples, irrespective of H. pylori infection. The levels of
γH2AX gradually increased from chronic gastritis, IM, to

dysplasia and were higher in the presence of H. pylori. In
gastric cancer γH2AX was also expressed, but in lower levels
than in the aforementioned premalignant lesions (Xie et al.,
2014).

Toller et al. (2011), examined the activation of DDR pathway,
in transformed cells (AGS) infected with H. pylori. They
concluded that H. pylori infection induces the formation of
DSBs through a direct host–pathogen contact and triggers DDR
pathway, as assessed by the phosphorylation of H2AX. DSBs
due to H. pylori are continuously repaired, although prolonged
infection may compromise DDR and result to unrepaired breaks
(Toller et al., 2011).

Hanada et al. (2014), reported that ATM is activated in
formalin fixed H. pylori infected human mucosa tissue samples,
as well as in H. pylori infected AGS cultured cells. DDR activation
was also confirmed by γH2AX expression in H. pylori infected
AGS cells that co-expressed ATM. They also observed that both
CagA+ and CagA- strains induce DNA damage, albeit CagA+
strains are related with a greater DNA damage and more potent
DDR activity (Hanada et al., 2014).

Koeppel et al. (2015) recently reported that H. pylori induces
a specific pattern of DNA damage in infected cells, different
from other mutagenic agents, mostly affecting chromosomal
ends, resulting in telomeres loss and CIN, genetic alterations
that are implicated in gastric carcinogenesis. They also observed
that H. pylori compromises DDR by inhibiting several factors
involved, such as ATR, MRE11, and NBS1. In another series of
experiments Hartung et al. (2015)showed that DSBs in H. pylori
infected cells are introduced by XPF/XPG endonucleases in
a type IV secretion system (T4SS)-dependent manner that
requires NF-κB/RelA activation. Interestingly, DSBs induced
by the bacterium promote NF-κB target gene transactivation
and host cell survival (Hartung et al., 2015; Koeppel et al.,
2015).

Although limited, both in vitro and in vivo evidence
suggest, that H. pylori infection promotes DSBs formation
either directly through host–pathogen contact or indirectly
due to the accompanying chronic inflammation, eventually
resulting to DDR activation (Table 1). Persistent infection and
associated inflammation may compromise the DDR pathway
leading to mutations of p53, unrepaired DNA damage and even
tumorigenesis. Indeed, p53 mutation is a frequent (32%) and
early event in sporadic gastric cancer (Ochiai et al., 1996; Petitjean
et al., 2007) (Figure 1).

FUTURE PERSPECTIVES

There is little doubt nowadays that H. pylori is a risk factor
for gastric cancer development. Gastric mucosa inflammation,
oxidative burst and the resultant altered epithelial cell turnover
are implicated. Accumulating evidence, as briefly outlined above,
suggest that the bacterium causes DNA damage to the host cells
and triggers DDR. Interestingly, H. pylori seems to compromise
the integrity of DDR by affecting various proteins of the pathway
and, in parallel, maintains its niche by promoting cell survival
through DSBs induced NFκB gene-transactivation (Hartung
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TABLE 1 | Reviewed bibliography on DDR activation and H. pylori.

Reported findings Reference

In vitro H. pylori infected cells activate 53BP1, ATM, γH2AX/DNA damage through BabA, nor CagA, VacA or oxidative stress Toller et al., 2011

H. pylori infected cells present a specific pattern DNA damage mediated through CagPAI and oxidative stress Koeppel et al., 2015

H. pylori infection activates γH2AX/CagA+ strains present greater activity Hanada et al., 2014

H. pylori infection promotes DSBs formation through a type IV secretion system (T4SS)-dependent manner that requires
NF-κB/RelA activation

Hartung et al., 2015

In vivo H. pylori infection activates DDR through γH2AX. γH2AX expression ↑ through gastritis, intestinal metaplasia, atrophy and
remains high in gastric cancer

Xie et al., 2014

Ex vivo H. pylori infection activates ATM Hanada et al., 2014

FIGURE 1 | Helicobacter pylori infection results to DSBs possibly through a direct pathogen-host interaction. Inflammation through oxidative/nitrosative
stress seems to play a significant role. DSBs formation triggers DDR activation through ATM and ATR activation and subsequent phosphorylation of H2AX at Ser 139
(γH2AX). γH2AX formation activates the transducers Chk1 and Chk2 leading to p53 activation and promoting cell cycle arrest for DNA lesion repair or alternatively
induction of apoptosis or premature senescence. DNA replication stress results to genomic instability and selective pressure for p53 mutations abrogating the tumor
suppressing actions of p53 (Bartek and Lukas, 2007). H pylori infection induced gastritis progresses to gastric cancer through the premalignant stages of gastric
atrophy, IM, and dysplasia according to the Correa model (representative histology slides, eosin-hematoxylin photos x200). H. pylori eradication at the early stages of
gastritis and atrophy may result to attenuation of DNA damage and DDR activation. IM is considered as “a point of no return” and p53 mutations are common in the
metaplastic epithelium (Ochiai et al., 1996; Xie et al., 2014).

et al., 2015; Koeppel et al., 2015). Hence, H. pylori triggers
the DDR and immune response crosstalk promoting a vicious
cycle of DNA damage and persistent inflammation that fuels
tumorigenesis.

DNA damage repair activity seems to decrease after
eradication of H. pylori but probably persists in areas of IM
which is considered “a point of no return,” meaning that it is not
reversible after H. pylori clearance and frequently contains p53
mutations. Studying the DDR pathway in H. pylori related IM
with mutated vs. wild p53 will likely provide useful molecular
data on the development of the metaplastic-precancerous

epithelium and lead to targeted therapeutic interventions for
gastric cancer prevention.
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