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The microbiome can be defined as the community of microorganisms that live in a
particular environment. Metagenomics is the practice of sequencing DNA from the
genomes of all organisms present in a particular sample, and has become a common
method for the study of microbiome population structure and function. Increasingly,
researchers are finding novel genes encoded within metagenomes, many of which
may be of interest to the biotechnology and pharmaceutical industries. However, such
“bioprospecting” requires a suite of sophisticated bioinformatics tools to make sense of
the data. This review summarizes the most commonly used bioinformatics tools for the
assembly and annotation of metagenomic sequence data with the aim of discovering
novel genes.
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BACKGROUND

The term microbiome refers to the entire community of micro-organisms that exist within any
particular ecosystem, and includes bacteria, archaea, viruses, phages, fungi, and protozoa; though
the majority of microbiome studies focus only on the bacteria and archaea. There are two main
methods for studying the microbiome using high-throughput sequencing: marker-gene studies
and whole-genome-shotgun (WGS) metagenomics. In marker-gene studies, generic primers are
designed to PCR amplify a particular gene (e.g., 16S rRNA for bacteria/archaea, 18S for fungi)
from all genomes present in a sample, and the resulting product is sequenced. The sequences are
clustered into operational-taxonomic-units (OTUs) and these are compared across samples. Whilst
fast and cheap, this method does not reveal anything else about the hundreds of thousands of genes
encoded in the parts of the (meta) genomes that remained unsequenced.

Metagenomics, also referred to as WGS- or shotgun- metagenomics, can offer an alternative
and complementary method. Handelsman et al. (1998) first coined the term as the functional
analysis of a collection of microbial DNA extracted from soil samples. Metagenomics refer to the
application of sequencing techniques to the entirety of the genomic material in the microbiome

Abbreviations: GMM, Gaussian mixture model; GPU, graphical processing unit; GUI, graphical user interphase; IMM,
Interpolated Markov model; LSA, latent strain analysis; MPI, message passing interface; NGS, next generation sequencing;
OLC, overlap layout consensus; ONT, Oxford nanopore technologies; OTU, operational taxonomic unit; PacBio, Pacific
Biosciences; RBS, ribosomal binding site; SMRT, single molecule real time; WGS, whole genome shotgun; ZMW, zero-mode
waveguide.
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of a sample. Crucially, by sequencing the genomes of all
organisms rather than a single marker gene, metagenomic
studies can provide information about the function of genes, the
structure and organization of genomes, identification of novel
genes and biocatalysts, community structure and evolutionary
relationships within the microbial community.

Advances in metagenomics have themselves been driven
by advances in second- and third- generation sequencing
technologies, which are now capable of producing hundreds
of gigabases of DNA sequenced data at a very low cost
(Watson, 2014). The high sequencing depth offered by such
advances, means that even the least abundant microorganisms
in an environment is possible to be represented. Modern
sequencing technologies, in combination with continuing
improvements in bioinformatics, have made metagenomic
analysis an approachable, affordable and fast technique for most
labs.

The microbiome can potentially provide a wide range of
novel enzymes and biocatalysts with major applications in
the marketplace, for example the biotechnology, biofuels and
pharmaceutical industry (Cowan et al., 2004). Hess et al.
(2011), through an extended metagenomic study, reported
over 2.5 million novel genes and identified more than
27,000 putative carbohydrate-active enzymes with cellulolytic
function. They also revealed the nearly complete genomes
of 15 microorganisms which had never cultured in the
lab. Samples were taken from the rumen of fistulated cows
and sequenced using Illumina sequencing. The data were
assembled using a de novo assembler and screened against
public databases to define novelty. Wallace et al. (2015) also
sequenced ruminal digesta samples using Illumina sequencing,
assembling the data de novo. Annotation of the resulting contigs
revealed over 1.5 million putative genes, with 58% having no
known protein domain. Of over 2700 genes associated with
methane emissions, only 0.6% had an exact match in the
non-redundant protein database of the NCBI (Roehe et al.,
2016).

Venter et al. (2004) discovered over 1.2 million unknown
genes using metagenomic sequencing of the Sargasso Sea.
Genomic libraries were sequenced, assembled into scaffolds and
annotated using gene prediction software and sequence similarity
tools. These data were estimated to be derived from more than
1800 different species including many newly discovered bacterial
groups. Similarly, the global ocean sampling survey (Sunagawa
et al., 2015) described 40 million non-redundant sequences from
over 35000 species, only 0.44% of which overlapped with known
reference genomes, highlighting the huge “unexplored genomic
potential in our oceans.”

The above studies, and many others like them, used similar
bioinformatics analysis pipelines: (a) the assembly of sequenced
data (directly from environmental samples) in order to construct
contiguous sequences (contigs and scaffolds), (b) the prediction
of genes (and putative proteins) based on the assembled data,
and (c) prediction of domains, functions and pathways for the
putative proteins (Figure 1). Here, we review a collection of tools
for the analysis of metagenomic microbiome sequence data with
a focus on the prediction of novel genes and proteins.

SEQUENCING TECHNOLOGIES FOR
WHOLE GENOME SHOTGUN
METAGENOMICS

Many microbiomes are incredibly complex – for example,
Hess et al. (2011) estimated that a single cow rumen contains
approximately 1000 OTUs – and therefore any sequencing
technology applied to microbiome samples needs to be
sufficiently deep and comprehensive to capture representative
sequences from all species within a microbiome, many of which
exist at varying abundances.

Second and third generation sequencing technologies
[collectively called “next-generation sequencing,” (NGS)]
have enabled much deeper and more comprehensive studies
of microbiomes. Second-generation sequencing includes
technologies such as Illumina and Ion Torrent that produce
many millions of short reads (150–400 bp); whereas third-
generation sequencing includes PacBio and ONT which produce
much longer reads (6–20 kb) but far fewer reads per run
(typically hundreds of thousands).

Illumina technology uses the sequence-by-synthesis method.
Short DNA fragments are attached to a glass slide or micro-
well and amplified to form clusters. Fluorescently labeled
nucleotides are washed across the flowcell and are incorporated
complementary to the DNA sequence of the clustered fragment.
Fluorescence from the incorporated nucleotides is detected,
revealing the DNA sequence. Illumina is almost certainly the
leading sequencing technology in genomics labs. It offers the
highest throughput, producing relatively short reads with length
up to 300 bp, and with the lowest cost per-base. The Illumina
output is compatible with the most applications for further study
(van Dijk et al., 2014).

In Ion Torrent technology, DNA fragments are attached
to beads, and single beads are placed into micro-wells. Each
one of the four nucleotides flows through the wells and gets
incorporated into a complementary strand, and in doing so,
releases an H+ ion that can be measured as a voltage change. This
process is repeated in multiple cycles. The Ion Torrent technology
can finish a run in a significantly less time than other platforms
and produces reads up to 400 bp length. However, it is not as
widely used as Illumina technologies possibly due to the high rate
of homopolymer errors (van Dijk et al., 2014).

Pacific Biosciences is based on SMRT sequencing technology.
An engineered DNA polymerase is attached to a single strand
of DNA, and these are placed into micro-wells called ZMWs.
Each of these ZMWs contains a polymerization complex of
a sequencing primer, the template and a DNA polymerase
attached to the bottom. During polymerization, the incorporated
phospholinked nucleotides carry a fluorescent tag (different for
each nucleotide) on their terminal phosphate. The tag is excited
and emits light which is captured by a sensitive detector (through
a powerful optical system). At the end, the fluorescent label is
cleaved off and the polymerization complex is ready for extending
the strand (Buermans and Den Dunnen, 2014). The PacBio
sequencing platforms require a large amount of genomic DNA
as input; however, the platforms are capable of very long reads
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FIGURE 1 | A typical bioinformatics pipeline. The genomic material (taken directly from the environmental sample) is sequenced and processed using assembly,
gene prediction and gene annotation tools. Finally, the findings are shared between the scientific groups around the world.

(10–15 kb with some reads >50,000 bp; Goodwin et al., 2016).
PacBio sequencing has a high raw error rate (∼15%) but this can
be corrected to very high accuracy (Koren et al., 2012; Chin et al.,
2013).

Oxford Nanopore technologies also offer single-molecule
sequencing. In nanopore sequencing, a single strand of DNA
passes through a protein nanopore and changes in electric
current are measured. The DNA polymer complex (used in this

technology) consists of a double stranded DNA and an enzyme
which unwinds the double strand and passes the single stranded
DNA through the nanopore. As the DNA bases pass through the
pore, there is a detectable disruption in the electric current and
the order of the bases on the DNA stand is identified. In 2014,
ONT released the MinION sequencing systems which, unlike the
other technologies bulk sequencing installations, is a palm-sized
device producing long reads in real time. At launch, the MinION
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read length was approximately 6–8 kb (Jain et al., 2015; Loman
and Watson, 2015); however, Urban et al. (2015) published a
lab protocol which could improve the MinION reads length
producing many reads even longer than 100 kb. Like PacBio,
ONT technologies also have high systematic error rates (Ip et al.,
2015).

METAGENOMIC ASSEMBLY

DNA sequencers sequence fragments of genomes, and assembly
refers to the process of reconstructing in silico the original
genome sequence from the smaller sequenced fragments.
Assembly of a single genome is a relatively complex procedure
as repetitive elements, within genomes, make the assignment of
reads to chromosomes non-trivial [reviewed in Nagarajan and
Pop (2013)]. So-called “de novo” assemblers use a reference-
free strategy for constructing contiguous sequences (contigs).
De novo assembly software tools use one of two main paradigms:
OLC or the de Bruijn graph approach. Both algorithms are
based on graphs consisted of nodes connected with edges. In the
OLC approach, all reads are compared pair-wise to find regions
with significant overlaps. The overlapping reads are combined
into a graph and the result can be used to reconstruct longer
contiguous consensus sequences. OLC assemblers tend to be very
accurate; however, comparing each read with every other read
is computationally expensive, and doesn’t work well for short
reads. Many more recent de novo assemblers use the de Bruijn
graph approach (Pevzner et al., 2001) which constructs a graph by
reading the consecutive kmers (sequences of k bases long) within
each read. Again, the resulting graph can be used to construct
longer, contiguous genome sequences. The advantage of the
de Bruijn graph is that it can be constructed without pairwise
comparison and is, therefore, computationally less expensive
than OLC approaches; however, due to the use of kmers, de Bruijn
graphs are very sensitive to sequence errors, and the (often)
relatively short kmers used can result in false joins between
sequences.

There are some standard statistical measures for evaluating
the performance of assembly tools. These often refer to the
number of scaffolds, their length, cover rate (the proportion
of the genome covered by assembled scaffolds) and gene
prediction/completeness (using gene predictors in later stage).
One of the most useful assembly measures is the N50 size, defined
as the scaffold length value such that 50% of the assembled
sequences are equal or longer (Mäkinen et al., 2012). Contig
and scaffold lengths are particularly important metrics for bio-
prospecting as these need to be longer than gene-length to
enable full length recovery of the gene sequence. MetaQUAST
(Mikheenko et al., 2016) is a tool specifically designed for the
quality assessment of metagenomics assemblies. Amongst other
things, MetaQUAST uses alignment of the original reads to the
assembled data to enable detection of putative structural variants
and mis-assemblies.

Metagenomic assembly refers to the simultaneous assembly of
all genomes within a metagenomic sample, and is clearly more
complex than single genome assembly. Due to the data sizes

involved, most current metagenomic assemblers use a de Bruijn
graph data structure for assembly. MetaVelvet (Namiki et al.,
2012) is a metagenomic de novo assembler, extending the single-
genome assembler Velvet (Zerbino and Birney, 2008). There are
two main steps in MetaVelvet. First, for given set of metagenomic
reads, a large de Bruijn graph is constructed; and second, this
mixed de Bruijn graph is decomposed into subgraphs so that each
subgraph represents one “species” or genome/chromosome. The
coverage difference between nodes (coverage is defined as the
number of reads that contribute to a node) and the connectivity
of the nodes are used to distinguish the different subgraphs.
MetaVelvet authors reported longer N50 sizes, higher cover
rates of genomes (compared to other metagenome and single
genome assemblers) and high numbers of predicted proteins
(by MetaGene gene finding software, Noguchi et al., 2006).
However, the chimera rates (number of wrongly associated points
in assembly networks) of MetaVelvet are slightly higher than
other assemblers. MetaVelvet performs better than single genome
assemblers when using short reads. An extension of MetaVelvet
in assembling metagenomics data is MetaVelvet-SL (Sato and
Sakakibara, 2015) which focuses on identifying and classifying
chimeric nodes in the assembly network. The authors report that
the MetaVelvet suite of tools outperform some commonly used
assemblers such as IDBA-UD (Peng et al., 2012) and Ray Meta
(Boisvert et al., 2012).

In IDBA-UD (Peng et al., 2012), contigs are constructed
through progressive cycles of assembly using gradually increasing
k-mer values. Starting with the minimum k-mer value, the first
de Bruijn graph is constructed for a set of input reads. The output
contigs, constructed with a fixed k-mer value, ki, are used as input
for the construction of the de Bruijn graph with k-mer value ki+1.
Therefore, the output of a previous iteration is used as input for
the following one. Each cycle incorporates an error correction
step, and a progressive depth threshold is used to separate low
from high depth contigs. The final scaffolds are constructed based
on the outputted contigs in combination with paired-end reads
information. Metagenomic assembly with IDBA-UD, in real and
simulated data, showed also N50 values, high contig length
and large number of predicted genes (by MetaGeneAnnotator,
Noguchi et al., 2008). The major innovation of IDBA-UD is
the iteration of k-values in cycles of increasing k-mer size,
followed by a local assembly process. The increasing k-mer size
in cycles contributes to less branches in the assembly network
and longer contigs while the local assembly reduces the gaps
and resolves repeats in the de Bruijn graph. However, iterating
over many k-mer values requires more computational resources
(time and memory). Megahit (Li et al., 2015) uses a very similar
approach to IDBA-UD, but takes advantage of succinct de Bruijn
graphs (Bowe et al., 2012) and GPUs, which lowers the memory
requirements and increases speed, respectively.

Ray Meta is a scalable software tool that uses distributed
computing and the MPI to handle large datasets. The assemblies
are constructed based on de Bruijn graphs. The average coverage
depth is calculated through parallel assembling processes by local
coverage distributions of the k-mers (Boisvert et al., 2012). The
assembled data are validated by aligning them against reference
genomes [MUMmer software (Kurtz et al., 2004)]. Ray Meta
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can distribute the assembling process of large metagenomic
data into multiple cores minimizing run time and memory
requirements (Boisvert et al., 2012). By using high-performance
computing (HPC), Ray Meta is able to handle large amounts
of data; assembling them in less time and performing better
than MetaVelvet (Namiki et al., 2012) in assembling simulated
bacterial data (from human samples).

Based on de Bruijn graphs assembly, Pell et al. (2012) described
a probabilistic method for storing de Bruijn assembling graphs
using less memory. Bloom filters are probabilistic data structures
which test the membership of an element in a dataset, allowing
false positives but no false negatives (Bloom, 1970). This method
uses bloom filters for storing large de Bruijn assembly graphs.
A range of false positive rates is available for controlling memory
requirements. Additionally, the authors used a memory efficient
partitioning method which allows division of the de Bruijn
graph into disconnected sub-graphs that can be assembled
separately. Each of the sub-graphs represents a separate clade
within the metagenomic sample. Allowing a higher false positive
rate decreases the graph storage requirements and for higher
false positive rates the partitioning strategy can handle more
elaborate local assemblies. A fixed memory data structure allows
prediction of the expected false positive rate as more data are
added. Different available k-mer sizes can be used; however, the
memory usage is independent to the k-mer size chosen. Finally,
memory efficient partitioning can create separate sub-sets based
on common features of the data.

MetAMOS (Treangen et al., 2013) is an example of a modular
framework which combines existing tools into a metagenomic
analysis pipeline. The pipeline is divided into three steps: In the
first step, (meta) genome assembly is performed with a choice
based on the sequencing technology used. Secondly, scaffolds
are created using paired-end and mate-pair data using Bambus
2 (Koren et al., 2011). Finally there is a post-assembling stage
where the scaffolds are annotated and taxonomically identified.
Choosing the appropriate assembler for a specific application can
be difficult, and (as mentioned above) assembly tools vary in
performance. A major advantage of MetAMOS is the ability to
test multiple assembly tools and give the opportunity to choose
the most appropriate for a given dataset. Interestingly, using a
combination of assemblers within MetAMOS appears to improve
performance (contig length, contiguity, and error rates). One of
the key features for maintaining the contiguity of the scaffolds
is the identification of genetic variation patterns. MetAMOS is
able to maintain a contiguous genomic backbone whilst also
highlighting variable regions. An HTML report is produced
summarizing the results of the analysis at the end.

PHYLOGENETIC BINNING

Binning is the process of clustering genomic sequences into
groups so that each subset represents a separate biological taxon.
Binning and assembly are two related procedures – binning
can be performed pre-assembly, or integrated into the assembly
process; in either scenario, binning attempts to prevent co-
assembly of mixed genomes. In theory, each bin represents a

single genome and is assembled separately, removing some of the
problem of incorrect assemblies connecting contigs from diverse
taxa.

LikelyBin is an un-supervised statistical approach for binning
metagenomic fragments. The method uses a Markov Chain
Monte Carlo approach and is built on the assumption that the
oligonucleotide frequency distribution is homogeneous within
a bacterial genome. This is an over-simplification and regions
that break the assumption (such as horizontal gene transfer
islands) need more complicated statistical models. LikelyBin uses
an “index of separability” between genomes based on the k-mer
distributions. The method is reported to perform well in low
complexity metagenomic communities (Kislyuk et al., 2009).

PHYSCIMM (Kelley and Salzberg, 2010) combines Phymm
(Brady and Salzberg, 2009) and SCIMM (Kelley and Salzberg,
2010). Phymm uses IMMs trained on known genomes to classify
the data; whereas SCIMM is a totally un-supervised tool, also
based on IMMs. The first stage of PHYSCIMM is to partition
the classified sequences by Phymm and then use SCIMM on the
unclassified data. The authors reported that the contribution of
the supervised step is important in binning complex samples
(containing many microbial species) since the un-supervised
clustering stage is improved when the supervised stage precedes.
PHYSCIMM can thoroughly describe the microbial composition
of a sample when the species are represented in public databases.
Choosing the classification level is required for clustering while
there are guidelines to help the user set the software parameters.

In MetaWatt (Strous et al., 2012), four steps are carried
out. The first step is metagenomic assembly and Strous
et al. (2012) use MetaVelvet. Secondly, the assembled contigs
are clustered/binned according to observed tetranucleotide
frequencies. Thirdly, the bins created in step two are inspected for
taxonomic signatures (using BLAST) and for sequence coverage.
Good bins were those that had a consistent taxonomic profile
and similar within-bin coverage. Finally, these bins are used to
build IMMs and each contig is assigned to the bin with the
highest score. MetaWatt is an open source algorithm that can
be implemented in any platform which supports BLAST and
Glimmer. It is potentially scalable (due to less running time) and
able to handle large amounts of sequence data. MetaWatt may
be attractive to researchers who are not bioinfomaticians as it is
available through a graphical-user-interface (GUI). This allows
the user to view and choose the bins for IMM modeling. The
graphics can be exported in SVG format and the bins as FASTA
for further analysis and annotation.

CONCOCT (Alneberg et al., 2014) is a binning program which
uses GMMs, sequence composition and the coverage across
multiple samples for clustering metagenomic data. A Bayesian
approach (automatic relevance determination, Corduneanu and
Bishop, 2001) is used for determining the number of clusters.
After assembling the sequenced reads, the longer contigs are
fragmented and the reads are mapped back onto contigs
to determine coverage across all samples. The coverage and
sequence composition vectors are joined to form a combined
profile for each contig, and a GMM can be used to describe
the entire dataset. CONCOCT was tested using mock and
real metagenomic data. The precision of CONCOT on the
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mock data was very high while the majority of clusters were
highly consistent (mostly consisting of contigs from the same
species). CONCOCT was reported by the authors to perform
well in clustering complicated microbial communities. However,
some strain specific variations were difficult to resolve. This
limitation is probably due to the low coverage of some contigs
in the sample making the formation of distinct clusters difficult.
A very interesting application of CONCOCT was reported in
Alneberg et al. (2014) for the reconstruction of pathogenic
genomes from real fecal data taken from the Shiga toxin-
producing E. coli outbreak in 2011. The software seems to identify
and cluster pathogenic microbial genomic material together.
Additionally, it managed to distinguish protective microbial
genomes and present them as distant to the pathogenic ones.
Thus, CONCOCT has been suggested for extracting biologically
important information and could possibly contribute to recovery
after infection.

Latent strain analysis is a pre-assembly algorithm which aims
to bin short sequenced reads into microbial categories. This
method is based on the assumption that reads which belong to
the same organism are expected to have the same coverage across
samples. LSA uses k-mer frequencies and clustering to cluster
sequences, and can be applied to very large datasets in fixed
memory. The LSA output can be used for de novo assembly or
taxonomic mapping and it is capable of handling datasets as large
as hundreds of Gb (Cleary et al., 2015).

METAGENOME GENE PREDICTION

Annotating the assembled data and identifying genomic features
such as genes and regulatory elements is the next step in a
metagenomic analysis pipeline. Usually, the short reads produced
by NGS are difficult to be assembled and even after assembly,
contigs and scaffolds can often be short and fragmented.
MetaGeneAnnotator (Noguchi et al., 2008) is a metagenomic
gene-finding algorithm which predicts genes on short sequences
from un-characterized metagenomic communities based on
the assumption that CG content correlates with di-codon
frequencies. The software can automatically detect prophage
genes through implemented statistical models as well as
chromosomal backbone prokaryotic genes. It can also predict
translation starting points by using RBS models. An interesting
feature of MetaGeneAnnotator is the RBS map output which,
apart from the gene location, gives information for translation
initiation mechanisms useful for the analysis of evolutionary
relationships (Noguchi et al., 2008).

Orphelia is available as both a web-server and command-line
tool, and uses a two-step machine learning approach. In the first
step, linear discriminant analysis based on monocodon usage,
dicodon usage and translation initiation sites is used to extract
features from genomic sequence. In the second step, an artificial
neural network is constructed, combining the features from step 1
with information on open reading frame length and GC-content
to compute the probability that an ORF (Open-reading-frame)
encodes a protein. Orphelia was shown to demonstrate higher
specificity but lower sensitivity in gene prediction compared

to MetaGeneAnnotator and MetaGene (Noguchi et al., 2006, a
precursor to MetaGeneAnnotator) on simulated data.

Glimmer-MG (Kelley et al., 2012) is an extension of the
popular bacterial gene-prediction software Glimmer (Delcher
et al., 2007). Glimmer-MG starts by clustering data which likely
belong to the same organism, using Phymm (Brady and Salzberg,
2009); uncategorized data are then clustered using Scimm (Kelley
and Salzberg, 2010). Gene models, based on HMMs, are trained
within each cluster, incorporating probabilistic models for gene
length and start/stop codons, and used to predict genes. The
authors report that the combination of gene prediction with
phylogenetic classification results in more accurate predictions.
In simulated data, Glimmer-MG identifies insertions/deletions
more accurately than FragGeneScan; and can also predict
substitution errors affecting stop codons. In both real and
simulated data, Glimmer-MG predicted genes in error-prone
sequences more accurately than other methods.

FragGeneScan (Rho et al., 2010) is designed to predict genes
(often fragmented) directly from short reads themselves, without
the need of assembly; however, the software can also run
on assembled sequenced. FragGeneScan uses hidden Markov
models (HMMs) trained with sequencing error and codon usage
models. Sequencing errors may produce frameshifts which, in
many cases, result in fragmented genes that are difficult to
identify. The major feature of FragGeneScan is the inclusion
of sequencing error models into six-periodic inhomogenous
Morkov models. FragGeneScan presents higher performance in
predicting genes than MetaGene and contains a set of parameters
for analyzing reads produced by the main NGS technologies.
Finally, the authors report that FragGeneScan is less affected
by the read length since it achieves consistently high gene
prediction performance in a range of read lengths compared to
MetaGene.

Finally, Prokka (Seemann, 2014) is a pipeline for annotating
bacterial genomes and has an option for highly fragmented
metagenomic assemblies. Prokka uses published open-source
software tools to predict protein coding and tRNA/rRNA genes.
Putative genes and products are annotated by comparison to
public databases. Testing Prokka against RAST (Aziz et al., 2008)
and xBase2 (Chaudhuri et al., 2008) in annotating E. coli data,
Prokka showed overall the best performance. Prokka is freely
available, is fast, can be installed on a typical desktop computer
and integrated into metagenomic pipelines.

Most of the metagenomic gene annotation tools focus only
on bacterial and archaeal genomes; presumably, as this is an
easier problem to solve. However, most environmental samples
will also contain Eukaryotes, which require different tools and
methods due to the presence of introns and the more complex
nature of Eukaryotic genomes. GeneMark is an abinitio gene
prediction software suite that has modes for both metagenomes
(MetaGeneMark, Zhu et al., 2010) and Eukaryotes (GeneMark-
ES, Ter-hovhannisyan et al., 2008), though we are unaware
of studies that have combined these two. GenScan (Burge
and Karlin, 1997) is another popular method used for single
eukaryotic genomes, and contains models for exons, introns and
intergenic sequences. Whilst gene prediction in single eukaryotic
genomes is a very active area of research, we are not aware of any
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studies demonstrating these on metagenomes, and this may be a
fruitful area for future research priorities.

PROTEIN DOMAIN DATABASES

There are a large number of published protein sequence/
feature/structure databases, each with a different focus and
strengths and weaknesses. Many overlap and contain shared
information. InterPro (Mitchell et al., 2015) is a collaboration
between 12 such databases, and is a single portal for access
to information about proteins. Interpro integrates information
about domains and active sites, proteins families, and protein
activity and function. Each module has its own strengths
and Intepro aims to combine all these resources for better
characterization of query sequences. Protein families, domains
and sites are combined in one database, names are checked
for consistency and links to original publications are included.
Accessible via the web, users may query the database by sequence
or name, and InterPro searches for possible matches. If the
query sequence is available in multiple databases, the results are
presented in a new window. If there are no matches, then the
sequence is passed into InterProScan (Hunter et al., 2012).

InterProScan is a protein function prediction software
pipeline that simultaneously searches the 12 member databases
of InterPro when given an input query sequence (Hunter
et al., 2012). InterProScan is parallelized and can handle
millions of sequences. InterProScan uses models of proteins and
domains from the InterPro database, and the Phobius analysis
algorithm (Krogh et al., 2004) is available as an additional
feature. Outputs in several formats are possible (text and
images). InterProScan is a very powerful way of predicting
protein function/domains/families/active sites, and therefore is
an essential tool for bio-prospecting.

PATHWAY DATABASES

The term “pathway” is loosely defined and generally refers
to a series of actions between biomolecules that results in a
particular product. Reactome (Fabregat et al., 2016) is a free,
open-source and curated database of biological pathways. The
reactions are organized hierarchically, with single reactions in
the lowest level, while interconnected pathways are organized in
higher levels (Haw and Stein, 2012). Data stored in Reactome has
been extracted from the experimental literature, with information
curated by researchers, curators, editors and reviewers. In
Reactome also references other databases such as UniProt,
Ensembl, KEGG and many others (Consortium, 2012; Flicek
et al., 2012; Kanehisa et al., 2012; Brown et al., 2015).

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
database connecting genomic, biochemical and phenotypical
information from multiple individual databases (Kanehisa et al.,
2008). It contains information about metabolic pathways and the
genomes, genes, proteins and enzymes that contribute to those
pathways; as well as details about genetic and environmental
processes, diseases and drugs pathways. There are many links

to external databases such as NCBI Entrez Gene, OMIM and
UniProt1,2. Unfortunately, in 2011, FTP access to KEGG was
ceased, and KEGG is now only accessible through the website and
via a series of API (application program interfaces). This limits
the ability of tool builders to integrate KEGG into their pipelines.

WikiPathways is an open source project different to the
other pathway databases (Kelder et al., 2012). It is part of
the MediaWiki software and relies on creation, curation and
editing of various biochemical pathways by any user with a
WikiPathways account (Pico et al., 2008). WikiPathways contains
many different signaling pathways involved in different biological
processes across many species. WikiPathways is a new paradigm
for storing and organizing large amounts of biological data,
relying on community commitment to maintain and curate the
data, contributing to the overall success.

Finally, MetaCyc (Caspi et al., 2016) is a large, comprehensive
database of pathways and enzymes from across all domains of life,
with data coming predominantly from experiments published
in the literature. MetaCyc claims to be the largest collection of
curated metabolic pathways. In reality, no pathway database is
complete, and in some environmental samples fewer than 10%
of predicted genes or proteins will map to a known pathway or
reaction (Wallace et al., 2015). It is therefore common to use
multiple databases and interpret the results collectively.

TARGETED GENE DISCOVERY

Where researchers are only interested in a small number of
proteins, it is not always necessary to annotate the entire
metagenome. Xander (Wang et al., 2015) is a metagenomic gene-
targeted assembler which uses HMMs to guide graph traversal.
Xander uses two data structures – a de Bruijn graph and a profile
HMM – which are used to create a novel combined weighted
assembly graph. From any given vertex, Xander can traverse the
graph in both directions, finding the best path that corresponds to
the provided HMM. This gene-targeted assembly is less compute
intensive due to the smaller amount of graph to be explored.

DATA SHARING AND ONLINE PORTALS

Metagenomic assembly, gene prediction and annotation creates
large files, often in formats that scientists struggle to open, query
and search on standard desktop or laptop computers. Meta4
(Richardson et al., 2013) is a simple web application that allows
users to query, search and browse the millions of gene and protein
predictions that often result from metagenomic assembly and
annotation. An underlying database can be built from common
formats such as FASTA and GFF. Meta4 can be installed on any
server running Linux, Apache and MySQL and provides a very
simple and user-friendly interface. Meta4 includes web-services
to access tools such as BLAST and InterProScan. One of the
advantages of Meta4 is that it can be set up on a private or
institutional server prior to data release and publication.

1NCBI Entrez Gene. www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
2NCBI OMIM. http://www.ncbi.nlm.nih.gov/omim
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However, if researchers are happy to make their data public,
a number of online all-in-one metagenome annotation portals
exist.

MG-RAST (Glass et al., 2010) is a web-based platform
providing access to a variety of tools for metagenomic analysis.
After removing repetitive sequences and low-quality regions,
MG-RAST maps sequence data to three non-redundant databases
and creates a phylogenetic profile of the metagenomic sample.
Parameters such as similarity and percentage identity, e-value
and alignment length can be adjusted. Metabolic and functional
profiles are also predicted using novel non-redundant protein
databases and public data such as KEGG. Many sequencing
technologies are supported and the results are available for
sharing and downloading.

EBI MetaGenomics (Hunter et al., 2014) is a system dedicated
to metagenomic analysis based at the EBI. The pipeline
starts with quality control of the dataset, where the data are
trimmed and duplicates are removed. ORFs are predicted using
FragGeneScan and then fed in to InterProScan to assign putative
function, protein domains, and pathways. Finally, the sequences
are taxonomically classified into phylogenetic taxa giving an
indication of possible microbial members in the community.

IMG/M (Markowitz et al., 2014) is a comparative
metagenomic analysis system built on the IMG platform for
microbial genome annotation (Markowitz et al., 2014). IMG/M
accepts sequenced data from many sequencing platforms and
process them using multiple methods. IMG/M contains datasets
from various metagenomic samples as well as all genomes from
IMG. Thus, metagenomic samples can be compared based on
the abundance of proteins, domains, enzymes, pathways or
functional class, and can be integrated with public data. A binning
step aims to categorize metagenomic data into phylogenies while
characteristics such as phenotype, habitat, living conditions and
diseases can also be attributed to the data (Markowitz et al., 2008).

The EDGE platform (Li et al., 2017) also contains a number
of relevant software tools including QC, assembly, annotation,
taxonomic classification and phylogenetic analysis. These are
available through an online portal and modules can be built
into custom pipelines. A summary of the tools, databases and
technologies described above, alongside relevant features, is
provided as Supplementary Table S1.

CONCLUSION

The microbiome is the community of microorganisms that lives
in a particular ecosystem and metagenomics is the process of
simultaneously sequencing the genomes of all organisms in a
particular biological sample. Advances in sequencing technology
have allowed us to assay microbiomes at unprecedented depth
using metagenomics. Research into diverse microbiomes has
revealed a huge amount of novelty, including genes that
encode proteins which may be of significant industrial value.
Here, we presented a review of bioinformatics tools that
enables researchers to analyze large metagenomic datasets and
extract putative novel genes/proteins/enzymes. These may be fed
into experimental pipelines for the characterization of protein
function and activity, and may provide novel enzymes of
significant value.
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