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Enhancers drive the gene expression patterns required for virtually every process in

metazoans. We propose that enhancer length and transcription factor (TF) binding site

composition—the number and identity of TF binding sites—reflect the complexity of the

enhancer’s regulatory task. In development, we define regulatory task complexity as the

number of fates specified in a set of cells at once. We hypothesize that enhancers

with more complex regulatory tasks will be longer, with more, but less specific, TF

binding sites. Larger numbers of binding sites can be arranged in more ways, allowing

enhancers to drive many distinct expression patterns, and therefore cell fates, using a

finite number of TF inputs. We compare ∼100 enhancers patterning the more complex

anterior-posterior (AP) axis and the simpler dorsal-ventral (DV) axis in Drosophila and find

that the AP enhancers are longer with more, but less specific binding sites than the (DV)

enhancers. Using a set of ∼3,500 enhancers, we find enhancer length and TF binding

site number again increase with increasing regulatory task complexity. Therefore, to be

broadly applicable, computational tools to study enhancers must account for differences

in regulatory task.
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INTRODUCTION

Nearly every aspect of an organism, from its development to its immune response, is dependent
on precise spatiotemporal control of gene expression. This control is mediated by the binding of
transcription factor (TF) activators and repressors to stretches of regulatory DNA called enhancers.

Given their role in diverse biological processes, it is not surprising that enhancers vary widely
in architecture—length, number of TF binding sites, and the average binding specificity of the TFs
that bind them. Enhancers can be ∼10–1,000 bps long, with a couple to tens of TF binding sites
(Blackwood and Kadonaga, 1998; Yáñez-Cuna et al., 2013). Several theories have been put forth to
explain why enhancers are built so differently. For example, differences in evolutionary pressures
and TF cooperativity are invoked to explain why many developmental enhancers are robust to
rearrangements of TF binding sites within them while some immune-responsive enhancers are
intolerant to even point mutations (Thanos and Maniatis, 1995; Kim and Maniatis, 1997; Munshi
et al., 2001; Arnosti and Kulkarni, 2005).

Although enhancers vary in architecture, some constraints apply to all enhancers, e.g., an
enhancer’s need to be distinguishable from the rest of the genome. Because eukaryotic TFs
are highly degenerate, TF binding sites litter the genome, and an enhancer can only achieve
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distinguishability if it consists of a cluster of TF binding sites
within a short distance (Wasserman and Fickett, 1998; Berman
et al., 2002; Frith et al., 2002; Halfon et al., 2002; Markstein
et al., 2002; Rebeiz et al., 2002; Li et al., 2007; Wunderlich
and Mirny, 2009; Hardison and Taylor, 2012). Enhancer length,
number of TF binding sites, and average specificity of TFs
binding an enhancer can be combined in different ways to achieve
distinguishability. For example, an enhancer with higher average
TF specificity requires fewer TF binding sites than one with lower
average TF specificity to be distinguishable from the genomic
background.

We propose that the complexity of an enhancer’s “regulatory
task”—the process that it controls—is one force that shapes
enhancer architecture. In development, task complexity can be
defined as the number of cell fates being specified in a set of
roughly homogeneous cells at one time. When a cell can be
driven to one of many cell fates, the task complexity is high;
when a cell is making binary decisions between cell fates, the
task complexity is low (Figure 1A). Since cell fate is largely
specified by gene expression patterns, the more cell fates being
specified, the more distinct expression patterns are needed.
To accommodate this need using a limited set of TFs, these
enhancers need to contain a larger number of TF binding sites,
which allow for more rearrangements and, presumably, more
expression patterns. Thus, we propose that enhancers with more
binding sites can accommodate higher task complexity. Though
intuitive, this proposal has never been verified systematically.

To evaluate this hypothesis, we characterize two sets of
enhancers inDrosophila melanogaster and analyze the correlation
between regulatory task complexity and enhancer architecture. In
a set of ∼100 early embryonic enhancers, those that pattern the
more complex anterior-posterior (AP) axis are longer, have more
binding sites, and have lower average TF specificity compared
to those patterning the simpler dorsal-ventral (DV) axis. In a
set of ∼3,500 enhancers active throughout embryogenesis, we
find enhancers active early are longer and have more binding
sites than those active late, reflecting the general trend that task
complexity decreases with developmental time.We conclude that
the complexity of an enhancer’s regulatory task is one of many
forces shaping its architecture.

RESULTS

To understand the properties required for an enhancer to be
distinguishable from the genomic background, we calculate the
probability of finding an enhancer with a particular length,
number of TF binding sites, and average TF binding specificity
(Wunderlich andMirny, 2009) (Supplementary Material within).
As a proxy for TF binding specificity, we use p, the probability of
finding a “hit” or match to the TF binding motif in the genomic
background (see Materials and Methods). Note that a larger p
corresponds to a lower binding specificity. The probability of
finding an enhancer of length w, with k TF binding sites is:

P
(

k
)

=

(

w
k

)

pk
(

1− p
)w− k

FIGURE 1 | Regulatory task complexity can shape enhancer length and

binding site composition. (A) We propose that more complex regulatory

tasks, e.g., cell patterning decisions, are associated with longer enhancers

with more binding sites. More binding sites can be arranged within an

enhancer in more ways, allowing for the specification of a wider variety of

expression patterns and, therefore, more complex tasks. (B) We plot the

minimum number of TF binding sites required for enhancers of varying lengths

to achieve distinguishability from the genomic background. We show the

results for three motif hit probabilities, corresponding to the median, first and

third quartiles of Drosophila TF binding specificities. As motif hit probability p

decreases from ∼2 in 1 kb (2 × 10−3) to ∼6 in 100 kb (6 × 10−5), an

enhancer of the same length requires fewer binding sites to be distinguishable

from the background. (C) To test the effect of genome accessibility, we plot

the minimum number of TF binding sites required for enhancers of varying

length in the context of different accessible genome sizes (N). Varying the

accessible regions of the genome has a minor impact on the trend of numbers

of TF binding sites increasing with enhancer length.

To achieve distinguishability, P(k) must be less than 1/N, where
N is the genome size accessible for TF binding. Thus, the number
of required binding sites increases with enhancer length and
motif hit probability (Figure 1B). Considering the median, first
and third quartiles of all Drosophila TF binding specificities, the
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corresponding number of TF binding sites required in a 1 kb
enhancer decreases from 16 to 7 to 5 as TF binding specificity
increases (or motif hit probability decreases).

To take into account the compaction of the genome, we
consider different values of N. We use DNase I hypersensitivity
profiles to estimate the accessible regions (Thomas et al., 2011).
Whether we use a conservative estimate of accessible regions
during development (4.1Mb), a more relaxed estimate (19.4Mb),
or the entire genome (175.5 Mb) (Thomas et al., 2011; Ellis et al.,
2014), the same trends are seen (Figure 1C). For a 1 kb enhancer
with binding sites for a TF with relatively low binding specificity,
p = 2 × 10−3, the number of required binding sites increases
from 13 to 15 as N increases from 4.1 to 175.5Mb, and thus the
number of required binding sites is only weakly dependent on
accessible genome size.

To test whether task complexity shapes the characteristics of
enhancer architecture, we need a set of enhancers that drive
regulatory tasks of different complexities and knowledge of the
transcription factors (TFs) that regulate them. The Drosophila
embryonic AP andDV patterning systems neatly fit these criteria.
The AP axis is more complex than the DV axis, with the AP
axis consisting of 14 parasegments (Nasiadka et al., 2002) and
the DV axis consisting of six germ layers and sublayers (Levine
and Davidson, 2005), and therefore the patterning of the AP
axis requires enhancers that drive more unique gene expression
patterns. Years of work from many groups have identified ∼40
principal TFs (Fowlkes et al., 2008; MacArthur et al., 2009) whose
binding to ∼100 characterized enhancers (Papatsenko et al.,
2009) drives AP and DV patterning.

To identify the TF binding sites within these enhancers, we
use a computational approach. Though ChIP can experimentally
identify TF-bound regions, existing data sets in the Drosophila
embryo are low resolution, with ∼100 base pair peaks (Li et al.,
2008; MacArthur et al., 2009; Roy et al., 2010), which are longer
than the∼10 bp TF binding sites (Zhu et al., 2011). Therefore, we
predict TF binding sites using experimentally measured binding
motifs (Stormo, 2015). To select a threshold above which a
sequence is deemed a “true” binding site, we develop a principled
approach, scoring the aligned sequences used to create the motifs
and setting a threshold such that 75% of these aligned sequences
are predicted as “true” (see Materials and Methods).

We analyze 60 AP and 39 DV enhancers, identifying binding
sites for 24 AP and 10 DV TFs. Consistent with our predictions,
AP enhancers (median length = 1.3 kb) are longer than DV
enhancers (median = 0.8 kb; Figure 2A; p = 4.5 × 10−4; Mann
Whitney rank-sum test). AP enhancers also have a larger number
of TF binding sites (median = 47) than DV enhancers (median
= 9; Figure 2B; p= 1.5× 10−13; Mann Whitney rank-sum test).
To ensure that the difference is not due to the larger number
of AP TFs, we also calculated the number of TF binding sites
per enhancer, normalized by the number of TF motifs used to
search the enhancer, and find the difference holds (AP median
= 2.0, DV median = 0.9; Figure 2C; p = 6.1 × 10−6; Mann
Whitney rank-sum test). AP enhancers also have a higher average
motif hit probability (AP median = 4.9 × 10−3, DV median =

3.0 × 10−3; Figure 2E; p = 7.5 × 10−9; Mann Whitney rank-
sum test), which is a result of differential binding rather than
the TFs considered, as the specificity of AP and DV TFs have a

similar distribution (Figure 2D, p= 0.247; Mann Whitney rank-
sum test). This difference is likely driven by the fact that the
key TFs that act as morphogens for these axes show markedly
different binding specificities, with the key AP axis TFs having
low binding specificities and the key DV axis TF having high
binding specificity (Figure S1). In summary, we find that the
enhancers that encode the lower complexity task of specifying
the DV axis are composed of fewer binding sites, as predicted
by our hypothesis. The DV enhancers require fewer binding sites
because they are both shorter and use more specific TFs than
the AP enhancers. Our hypothesis does not require that both
enhancer length and motif specificity both differ, though in this
case they do.

To determine whether these tradeoffs in enhancer architecture
apply to a larger, if less well-characterized dataset, we analyze the
Vienna Tile enhancers (Kvon et al., 2014), which drive expression
throughout Drosophila embryogenesis. To produce this dataset,
the Stark lab measured the expression patterns driven by 7,705
enhancer candidates and found 4,480 enhancers that were active
during development. Of these enhancers, we consider the 3,580
enhancer candidates that were successfully refined to the putative
minimal enhancers using functional genomics (Kvon et al., 2014).
To determine the relevant TFs, we match the stages of the active
enhancers with the concurrently expressed TFs (Tomancak et al.,
2002, 2007; Hammonds et al., 2013).

We assume that as development progresses, the task
complexity decreases, approaching binary decisions between
two cell fates. We found that enhancer length monotonically
decreases over development (Figure 3A; Table S1). While stages
4–6 and 7–8, and stages 9–10 and 11–12, have very similar
length distributions for active enhancers (p = 1, p = 0.1,
respectively; Mann Whitney rank-sum test), all other intervals
have significantly different distributions of enhancer length
(Figure 3D, p < 0.05; Mann-Whitney rank sum test with
Bonferroni correction applied). Number of TF binding sites
and average motif hit probability, in contrast, do not show a
clear trend (Figures 3B,E). However, there is a large increase
in the number of TFs expressed in the final two time intervals
(see Table S1), and when the number of binding sites is
normalized by the number of binding motifs used to search
the enhancer, the binding site trend mirrors the enhancer
length trend (Figures 3C,F). We also verified that these trends
were not unduly influenced by enhancers driving ubiquitous
expression patterns (Figure S2, Table S2). Thus, decreasing
complexity again is associated with decreasing enhancer length
and with decreasing TF binding site number, when normalized
appropriately. In this case, there is no clear trend with regards
to motif specificity, which, as we note above, is not necessarily at
odds with our hypothesis.

DISCUSSION

We hypothesize that an enhancer’s regulatory task complexity
shapes its architecture. In the case of Drosophila axis patterning,
the AP axis has higher task complexity than the DV axis, and
accordingly, enhancer length, number of TF binding sites, and
average motif hit probability increase with task complexity. In
the case of Drosophila embryogenesis, where we posit that task
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FIGURE 2 | The more complex AP axis is patterned by enhancers with more TF binding sites. We show the scatterplots and associated boxplots of (A) the

length of AP and DV enhancers, (B) the number of TF binding sites predicted in AP and DV enhancers, (C) the number of TF binding sites normalized by the number

of TFs involved, (D) the motif hit probability of TFs involved in AP and DV patterning, and (E) the average motif hit probability of AP and DV enhancers. These data are

consistent with our hypothesis that enhancers carrying out more complex regulatory tasks will have more binding sites, in this case because AP enhancers are both

longer and have lower average TF binding specificity. In all box plots, the boxes indicate the lower and upper quartiles, with the line within the box indicating the

median. Whiskers extend to 1.5*IQR (interquartile range) plus or minus the upper and lower quartile, respectively, and the stars indicate outliers that fall outside the

whiskers. P-values from Mann-Whitney rank tests are shown.

FIGURE 3 | Decreasing regulatory task complexity over embryogenesis is associated with decreasing enhancer length. We show boxplots of (A) the

length of minimal Vienna Tile enhancers, (B) the number of TF binding sites predicted in minimal Vienna Tile enhancers, (C) the number of TF binding sites predicted in

minimal Vienna Tile enhancers normalized by TFs concurrently expressed, and (E) the average motif hit probability of minimal Vienna Tile enhancers over

developmental stages 4–16. The heatmaps display the Bonferroni-adjusted p-values from the Mann-Whitney rank test between (D) pairwise distributions of Vienna

Tile enhancer length and between (F) pairwise distributions of the number of TF binding sites predicted in Vienna Tile enhancers per TFs concurrently expressed. In all

box plots, the boxes indicate the lower and upper quartiles, with the line within the box indicating the median. Whiskers extend to 1.5*IQR plus or minus the upper

and lower quartile, respectively, and the stars indicate outliers that fall outside the whiskers.

complexity decreases over time, enhancer length and binding site
number decrease accordingly.

Though the well-characterized Drosophila axis patterning
systems are ideal for studying how an enhancer’s regulatory
tasks shape its design (Markstein et al., 2002; Papatsenko
et al., 2002; Lifanov et al., 2003; Papatsenko and Levine,

2005; Halfon et al., 2008), the systems still have limitations.
For example, autoregulatory enhancers like ftz_up, ftz_zebra,
and gt_minus1 (Hiromi et al., 1985; Hiromi and Gehring,
1987; Hoermann et al., 2016) have lower task complexity
because they reinforce the expression patterns determined by
other enhancers, and therefore, may not be consistent with
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the observed trends. However, we find these autoregulatory
enhancers have parameters that generally fall within the bulk
of the distribution. In addition, the enhancer boundaries in this
dataset were determined one-at-a-time. However, in the Vienna
Tile enhancer set, in which boundaries are determined in a
uniformmanner, we still find that enhancer length decreases with
developmental time and regulatory task complexity.

In contrast to the axis patterning data set, choosing principal
TFs for the Vienna Tile enhancers is challenging because there
is no consistent annotation of the expression patterns of TFs
and enhancers. We match stage-specific expression of enhancers
and TFs without considering tissue-specific expression, which
impacts both the number of TF binding sites and the average
motif hit probability and undoubtedly obscures the clarity of
those trends.

We expect that there are many other forces shaping enhancer
architecture, like protein-protein interactions between TFs or
between TFs and cofactors, and therefore do not expect
that regulatory task complexity alone can explain enhancer
architecture. Additionally, a particular TF may be employed in
an enhancer because it is expressed in the right place at the right
time, and not because of its TF binding specificity, though an
analysis of the binding specificities of the TFs encoded in the
Drosophila genome shows that there is a wide distribution of
TF specificities that is relatively independent of developmental
stage (Figures S3–S6). However, we can make educated guesses
about the ways that enhancer architecture may vary depending
on regulatory task and use this information to improve our ability
to predict and design putative enhancers. As increasingly large
sets of enhancers are identified in a variety of biological settings,
we will undoubtedly uncover other forces impacting why an
enhancer is built in a particular way.

MATERIALS AND METHODS

Datasets Used in this Study
The 60 AP and 39 DV patterning enhancers were collected by
Papatsenko et al. (2009) and provided here as Supplementary
Data Sheet 1, and in this dataset, we considered the binding
of 33 early patterning TFs (Fowlkes et al., 2008; MacArthur
et al., 2009). The Vienna Tile enhancer project tested the
activity of 7,705 potential enhancers (Kvon et al., 2014). In this
analysis, we considered the 3,580 enhancer candidates that were
active during embryogenesis and whose boundaries had been
refined using DHS regions or CBP/P300-bound and H3K4me1-
marked regions. Here, we analyzed the binding of TFs that
were concurrently expressed with active enhancers based on
the Berkeley Drosophila Genome Project in situ annotations
(Tomancak et al., 2002, 2007; Hammonds et al., 2013). These
TF lists are available in Supplementary Data Sheets 2, 3. 51.7%
of the AP enhancers and 30.8% of the DV enhancers at least
partially overlapped with the Vienna Tile enhancers. The five
completely overlapping enhancers showed expression in the same
stage (i.e., stages 4–6), except for the DV enhancers pnr and
rho (Table S3). Outside of those two, the greatest amount of
overlap that did not result in expression at the same stage
was 60.5%.

Transcription Factor Binding Site
Prediction
Transcription factor (TF) binding sites were computationally
predicted using Patser (Hertz and Stormo, 1999) with the
position weight matrices (PWMs) from FlyFactor Survey (Zhu
et al., 2011). Pseudocounts were added to each element in
the PWM in proportion to the intergenic frequency of the
corresponding base to a total of 0.01. For those TFs with more
than one PWM, the PWM derived from the largest set of aligned
sequences was used, except in the case of giant and daughterless.

As no TF binding sites were identified in the set of AP
enhancers when using the giant PWM selected using the previous
criteria, a switch was made to another available giant PWM in
FlyFactor Survey with which binding sites could be predicted.
In the case of daughterless, which often binds as a heterodimer
and has been identified as one of the key TFs in DV patterning,
the PWM that was created using only daughterless and not any
heterodimeric partners was used.

For the early patterning dataset, 33 of the 37 TFs (Fowlkes
et al., 2008; MacArthur et al., 2009) determined to be principal
regulatory factors for AP and DV patterning had available PWMs
and were used. PWMs were not available for croc, Stat92E, tsh,
or Dad. For the Vienna Tile dataset, a total of 292 TFs that had
available PWMs and were expressed during embryogenesis were
used.

To determine ln (p-value) cutoffs in a systematic manner, the
aligned sequences from which the PWMs are derived are scored
by Patser, and a 75th percentile ln (p-value) was chosen as a cutoff
such that 75% of the aligned sequences are considered “true”
binding sites. Cutoffs at multiple percentiles were considered, but
the overall trends for relative numbers of putative TF binding
sites identified remained constant regardless of the chosen cutoff
(Figure S7).

Some PWMs were generated from DNase I footprints curated
in the FlyReg database (Halfon et al., 2008); aligned versions of
these footprints were not directly provided by FlyFactor Survey.
The raw sequences were retrieved from FlyReg v2.0 and were
aligned when possible. Note that Patser can only score sequences
that are the same length or longer than the PWM, so some
sequences used to create the PWM have been omitted when
determining the percentile cutoffs.

Evaluating Transcription Factor Specificity
Information content is a measure of TF specificity. To measure
information in a motif, we calculated the Kullback-Leibler
distance (Schneider et al., 1986; Stormo and Fields, 1998)
between the motif and the composition of the intergenic regions
of the genome

I =

L
∑

i = 1

∑

b∈{A,C,G,T}

pi
(

b
)

log2
pi

(

b
)

q
(

b
)

where L is the length of the motif, pi(b) is the frequency of base b
at position i in the motif, and q(b) is the frequency of base b in the
intergenic regions of the genome. Note that p= 2−I is roughly the
probability of a motif hit in the genome for a TF of information
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content I (Berg and von Hippel, 1987). For a set of TF binding
sites in an enhancer, an average motif hit probability

pav =

∑

j nj2
−Ij

ntotal

is calculated, where nj = number of binding sites for TF j, Ij =
information content of TF j, and ntotal = the total number of TF
binding sites in a particular enhancer. If a cluster is composed of
sites of m different TFs with identical motif hit probability p, the
probability of finding a cluster of k binding sites within w bps is

P
(

k
)

=

(

w
k

)

(

mp
)k(

1−mp
)w− k

Therefore, to characterize the average specificity of TFs employed
in a specific enhancer, we choose to compute the averagemotif hit
probability p, as opposed to the average information content I.

Quantitation and Statistical Analysis
Mann-Whitney rank tests were performed to compare all
distributions, and the p-values were reported. The Mann-
Whitney test was chosen because it does not require the
assumption that the distributions to be compared are normally
distributed. When multiple comparisons were made, the
Bonferroni correction was applied.

Data and Software Availability
Python code for enhancer architecture analysis is available at
GitHub: https://github.com/WunderlichLab/Info_Content.

The axis patterning enhancers originally collected by
Papatsenko et al. are available as supplemental data file
Supplementary Data 1 (Papatsenko et al., 2009).
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