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Most genetic variants identified in genome-wide association studies are noncoding

and are likely tagging nearby causal variants. It is a challenging task to pinpoint the

precise locations of disease-causal variants and understand their functions in disease.

A promising approach to improve fine mapping is to integrate the functional data

currently available on hundreds of human tissues and cell types. Although there are

several methods that use functional data to prioritize disease variants, they mainly use

linear models, or equivalent naive likelihood-based models for prediction. Here, we

investigate whether study of the combinatorial patterns of functional data across cell

types can improve prediction accuracy for disease variants. Using functional annotation

in 127 human cell types, we first introduce a Bayesian method to identify recurring

cell-type-specificity partitions on the scale of the genome. We show that our de novo

identification of epigenome partition patterns agrees well with known cell-type origins and

that the associated functional elements are strongly enriched in disease variants. Using

epigenetic cell-type specificity in addition to enrichment of functional elements, we further

demonstrate that the power to predict disease variants can be greatly improved over that

achievable with linear models. Our approach thus provides a newway to prioritize disease

functional variants for testing.
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INTRODUCTION

Genome-wide association studies (GWAS) have identified thousands of genetic variants associated
with hundreds of complex human diseases. Most disease variants are located in noncoding regions
(Welter et al., 2014), the functions of which are difficult to interpret. Several studies (Meyer et al.,
2008;Maurano et al., 2012) have shown that disease variants are enriched in gene regulatory regions
and that they may affect phenotypes at the regulatory level (Verlaan et al., 2009; Petronis, 2010;
Stitzel et al., 2010; Schödel et al., 2012; French et al., 2013; Sharma et al., 2014). In addition, disease
variants are likely to affect gene regulation and phenotypes in a cell-type-specific manner (Fu
et al., 2012; Hardison, 2012; Rhie et al., 2013). Using massively parallel sequencing technologies,
a plethora of data sets have been generated on a wide collection of functional marks in the human
genome in many cell lines and primary ex vivo tissues. A major challenge is how to integrate
these functional data in multiple cell types to pinpoint disease-causal variants and understand their
molecular and organismal effects in a cell-type-specific context (Edwards et al., 2013; Kircher et al.,
2014).
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While many methods have used functional annotations to
prioritize disease-causal variants (Pickrell, 2014; Farh et al., 2015;
Kichaev and Pasaniuc, 2015; Li and Kellis, 2016), they have not
considered the combinatorial effects of functional elements in
different cell types for prediction. The most commonly used
approach is based on linear models, where functional data on
different epigenomic marks in one or more cell types are used
as predictors in a regression model, and the GWAS p-values or
the known disease risk variants are used as responses. There is an
alternative approach using likelihood-based methods, but these
methods simply add the likelihoods calculated from each cell type
or each category of annotation to compute a total score for each
genetic variant, and then use the total score to prioritize disease
variants. This is equivalent to an additive model but ignores
correlations between different annotations.

There are two major challenges in detecting and utilizing
combinatorial epigenomic patterns across cell types for GWAS
prediction. First, functional elements inferred in each cell
type separately are subject to annotation errors (Roadmap
Epigenomics Consortium). When compared across cell types,
they will create a large number of spurious combinations
of epigenomic patterns with low frequencies, which can
substantially reduce the predictive power. Second, the number of
possible combinations of functional annotations across cell types
grows rapidly with the number of distinct functional elements
and the number of cell types involved. Naively including all
combinations in one model will over-fit the data and will not
produce reliable results, owing to strong correlation between the
combinations. For instance, with hundreds of cell types studied in
the ENCODE (Encode Project Consortium, 2012) and Roadmap
Epigenomics (Roadmap Epigenomics Consortium et al., 2015)
projects, and tens of epigenetic states inferred in each cell type
(Ernst and Kellis, 2012), the number of potential predictors to be
included in amodel can easily become intractable, even when just
considering pairwise interactions. Existing studies have therefore
only used either a subset of cell types most relevant to disease or
a linear model across cell types for predicting disease variants (Li
and Kellis, 2016).

In this work, we investigate whether combinatorial patterns
of epigenomic data across different cell types can improve the
power to predict disease variants. Using the 111 cell types
from the Roadmap Epigenomics project and 16 ENCODE tier
1 and 2 cell types, we first apply IDEAS (Zhang et al., 2016)
to re-annotate functional elements in the 127 epigenomes.
IDEAS is a two-dimensional genome segmentation method
that identifies de novo functional elements from multivariate
epigenetic marks along the genome and across multiple cell types
simultaneously. The IDEAS method is distinct from existing
genome segmentation methods in that it borrows information
both along the genome and across cell types, which leads to
a gain in power because different cell types share the same
underlying DNA sequences. As a result, IDEAS can produce
more accurate and consistent functional annotations than other
methods. Using the functional annotations as input, we next
develop a Bayesian algorithm for de novo identification of distinct
and recurring patterns of epigenome partition patterns in the
whole genome. Each pattern of epigenome partitions represents

a distinct nonlinear relationship between functional elements
across cell types, where the functional elements in the cell
types within the same partition have the same distribution, and
thus captures cell-type specificity. Hereinafter, we refer to a
specific configuration of epigenome partition as a CSP (cell-type-
specificity pattern). Finally, we calculate enrichment scores of
functional elements within each CSP and use both the CSP and
epigenetic state enrichment scores as predictors for prioritizing
disease variants. Notably, we do not make assumptions on
the relationships between each cell type and the disease, since
such information is often unknown. We evaluate the proposed
method on 532 complex traits in the GWAS Catalog (Welter
et al., 2014). We show that in a large number of complex
traits, the disease variants are enriched in active functional
elements, with this enrichment frequently being cell-type-specific
and interpretable with respect to each trait. By comparing
our results with those of linear models, we further show that
incorporating nonlinear epigenetic CSPs can indeed improve the
accuracy for predicting disease variants compared with the use
of either a single best-matched cell type or all cell types in an
additive way.

MATERIALS AND METHODS

Joint Genome Segmentation of the 127
Epigenomes
We downloaded the p-value tracks of five histone marks
(H3k4me3, H3k4me1, H3k36me3, H3k27me3, and H3k9me3) in
111 epigenomes from the NIH Roadmap Epigenomics project
and 16 epigenomes from the ENCODE project. These five histone
marks were the only marks commonly generated in all of the
127 epigenomes and were used by the Roadmap Epigenomics
consortium to produce the first functional map in the 127
epigenomes. The p-value tracks of histone marks were calculated
against the input data within the same cell types, thereby
removing cell-type-specific bias and enabling comparison across
cell types. We used the average log p-values per 200 bp window
for each histone mark as input; this is the same window size
as was used by the Roadmap Epigenomics Consortium and is
appropriate for the wide spread of signals in histone marks.
The data matrix contained 13,844,320 rows and 635 columns,
consisting of 8.8 billion observations in total. All data were
mapped to hg19.

We ran IDEAS (Zhang et al., 2016) to segment the 127
epigenomes jointly, which assigned epigenetic states to 200
bp sliding windows in each cell type, capturing the distinct
combinatorial patterns of the five histone marks. We first ran
IDEAS on chromosome 1, which produced a 25-state model.
We then combined chromosome 1 with each of the other
chromosomes and re-ran IDEAS, keeping the segmentation
results of chromosome 1 unchanged. As a result, all other
chromosomes were segmented conditionally independently,
given chromosome 1. Our full model-based inference of
functional elements in all epigenomes produced homogeneous
and position-wise comparable state assignments across the 127
epigenomes, which was ideal for the proposed task of detecting
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position-wise CSPs. The whole-genome tracks of segmentations
for the 25-state model can be accessed in the UCSC genome
browser via a hub link to http://bx.psu.edu/~yuzhang/hub.txt.

Detecting Epigenetic Cell-Type Specificity
We have developed a Bayesian method to identify recurring CSPs
from the IDEAS segmentation. Let X·j = {X1, j, . . . ,XN,j} denote
the states assigned to N epigenomes at positions j = 1, . . . ,
L, where Xi,j = 1, . . . , S denotes the state assigned to the ith
epigenome at the jth position. We want to partition the N
epigenomes into K groups at each position, where some groups
may be empty, such that within each group the epigenomes have
a common and position-dependent distribution of epigenetic
states. We assume that the whole genome has C distinct CSPs,
denoted by � = {�1, . . .,�C}. Each CSP specifies how the
epigenomes are assigned to K groups. We further assume that
each CSP occurs with probability pc independently at each
position, and we denote by Mj = 1, . . . ,C the CSP at the jth
position. We express the probability function as

P (�,M | X) ∝ P (�,M,X) = Pr (X | �,M)Pr (�,M)

=
∏

j
pMjPr

(

X·j
∣

∣

∣
�Mj

)

∏C

c= 1
Pr(�c)

(1)

where pMj denotes the prior probability of CSPMj, Pr
(

X·j
∣

∣ �Mj

)

denotes the state distribution function given �Mj at position
j, and Pr(�c) denotes the prior distribution of epigenome
partitions in �c.

We assume a multinomial distribution for the states within
each group of epigenomes in each CSP, with position-specific
distribution parameters. Let nkjs denote the number of states s
observed in the kth group of epigenomes in �Mj at position j.

Using the Dirichlet(
⇀
a ) prior for multinomial distributions, we

obtain

Pr
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X·j
∣

∣
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(2)

where
⇀
a = (a1, . . . , aS) is set as the genome-wide proportion

of each epigenetic state in all epigenomes and multiplied
by 5, and | · | denotes the sum of all elements in a
vector.

Similarly, we assume that each epigenome follows a
multinomial distribution to be assigned to the K groups in �c.
Let mkc denote the number of epigenomes assigned to the kth

group in �c. Using the Dirichlet(
⇀

1 ) prior, we express Pr(�c) as

Pr(�c) = Ŵ(K)

∏K
k=1 Ŵ(mkc+1)

Ŵ(
∣

∣

∣

⇀
mkc

∣

∣

∣
+K)

(3)

Given the CSP index variable
{

Mj
}

, we do not have to infer the
parameters pMj in (1). Instead, denoting by o1, . . . , oC the count

of each CSP in the genome, we again assume a Dirichlet(
⇀

1 ) prior
to pMj and marginalize it out to obtain the final form of our
model:

P (�,M | X) ∝
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(4)

Model Fitting
Starting from random initialization, we iteratively updated the
CSP index

{

Mj
}

and the epigenome group assignment, denoted
by

{

Ick
}

, in each CSP. Given
{

Mj
}

and
{

Ick
}

, all other variables

in our model were deterministic. We updated
{

Mj
}

at each
position and

{

Ick
}

for each epigenome in the cth CSP by
conditioning on the current values of all other variables. Since
{

Mj
}

and
{

Ick
}

were integer-valued, we enumerated all possible
values and calculated the corresponding likelihoods from the
model (4). We then updated the model by maximization. We
used simulated annealing in the first 50 iterations with an
initial temperature set at 5 to alleviate local mode problems.
We set the total number of CSPs C = 50 and the
number of groups K = 5 per CSP. Although these hyper-
parameters were fixed, some CSPs and their epigenome groups
did not have instances in the data, since our Bayesian model
penalized larger models when smaller models were sufficient
to explain the data. To reduce computational cost, we used
5% randomly selected genome to train the model (4), which
yielded 48 distinct CSPs. Except for the constitutive CSP,
where all epigenomes were assigned into one group, the
other 47 CSPs assigned 127 epigenomes into two or three
groups.

Patterns Enriched in GWAS Variants
The risk variants of a trait may fall into two disjoint categories:
(1) variants enriched or depleted at loci carrying certain cell-type
specificities and (2) variants independent of cell-type specificities.
To study enrichment of CSPs at the risk variants, we can classify
the variants into two groups. In group 1, the variants have an
unknown probability πc of co-occurring with CSPs �c (c = 1,
. . . , C). In group 2, the variants are nonspecific to the CSPs and
thus have probability pc of co-occurring with �c, where pc is
given by the model (4). We assume that each risk variant has
probability q of being in group 1 and probability 1 − q of being
in group 2. For each complex trait, let A = {A1, A2} denote
the group index of all risk variants. Let

{

Mj
}

denote the CSP
index for the jth variant. Let l1 = |A1| and l2 = |A2| denote the
numbers of risk variants in groups 1 and 2, and {z1c} and {z2c}
denote the numbers of risk variants co-occurring with �c in each

group. We assign a Dirichlet(1,β) prior to q and a Dirichlet(
⇀
a )

prior to {πc}, and we analytically integrate out q and {πc} to
obtain.
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 (5)

Inference of the model (5) is performed similarly to that of the
model (4), where the variables that need to be updated were A
and

{

Mj
}

. The hyper-parameter β in the model (5) must be >1
to favor the null model of no enrichment. Empirically, we have
found that β = 10 or the maximum number of disease variants
in a linkage disequilibrium (LD) cluster (the set of variants that
are in tight LDwith a lead variant reported in GWAS; see the next
section), whichever is greater, performs well in the sense that no
enrichments are found under the null.

For each trait, we trained the model (5) on its risk variants and
proxy variants. We obtained the list of variants assigned to group
1, which were enriched/depleted with respect to the CSPs and
were used to calculate CSP enrichments. The variants assigned
to group 2, on the other hand, were independent of the CSPs.

Sets of Disease Risk Variants
The disease-associated variants were obtained from the GWAS
Catalog. We removed the traits with fewer than five lead variants.
We used SNAP (Johnson et al., 2008) to identify proxy variants
for the lead variants. We used the default setting of SNAP (1000
Genomes Pilot 1 SNPs in the CEU panel within 500 kb of the
lead variant) and retained only the proxies with r2 > 0.95 with
the lead variant (Supplementary Data). We included the proxy
variants in our analysis for two reasons: (1) most lead variants
reported in GWAS are likely noncausal, since they were selected
based on maximum association signals that were confounded by
allele frequencies and LD effects, and (2) including proxy variants
increased the number of risk variants to be fitted in our predictive
model.

Calculating Z-Scores for Epigenetic State
Enrichment
At each variant, we have 127 epigenetic states in the 127
epigenomes. Let ns,g denote the number of states s in the gth
epigenome cluster as defined in Table 1, for g = 1, . . . , 10, and let
ns,−g denote the number of state s in the remaining nine clusters.
Further, let pg denote the proportion of epigenomes in group g.
The z-score for state s in group g at a position is calculated as

z =
nsg − (nsg + ns,−g)pg

√

(nsg + ns,−g)pg
(

1− pg
)

+ 1

Predicting GWAS Variants
In addition to the enrichment analysis, we used CSPs to predict
risk variants from GWAS, including both the lead and the proxy
variants. As a control, we randomly selected 11,786 dbSNPs
from the UCSC browser as the null variants, with minor allele
frequencies and dbSNP function predictions matched to those of
the risk variants. We used SNAP in the same setting as described
above to identify strong proxies for the null variants, and the
final set of null variants consisted of 69,087 SNPs (Supplementary
Data).

For each complex trait, we used a generalized linear model
(GLM) to predict the risk vs. null variants. We trained the GLMs
by using only 50% of the risk variants for each trait and 50% of the
null variants. We then calculated the prediction accuracy using
the remaining 50% of data. Prediction accuracy was calculated as
the area under the curve (AUC) of the precision-recall values for
the model. We repeated this procedure 10 times independently
and obtained an average AUC for each trait (traits with fewer than
five risk variants in either training or testing data were removed
from the analysis). We did not use the receiver operating curves
(ROCs) to measure power, because the number of risk variants
was too small relative to the number of null variants in most
traits. For the same reason, we did not use the conventional
10-fold cross-validation method.

The predictors in ourmodel were constructed as follows. First,
given the epigenetic states

{

X·j
}

at the jth variant, we calculated
the log likelihood from the formula (2) with �c for c = 1,
. . . , C. This yielded C (=48) scores. Second, we calculated the
log z-scores for state enrichment in the 10 epigenome clusters,
which were transformed to sign(z)∗ log(|z|+1). This yielded
25 × 10 = 250 enrichment scores. The enrichment scores were
highly correlated. Therefore, we performed principal component
analysis (PCA) on the 250 enrichment scores and retained
the first 48 principal components (PCs). As a result, at each
variant, we had 48 scores for cell-type specificity and 48 for state
enrichment, which were used as predictors in our model. The
PCA was performed using training data only, and the same PCs
were used in the testing data to convert enrichment scores.

We further used the epigenetic states in all cell types as
predictors in our GLM. Given 25 states per cell type, we had
25× 127 = 3,175 predictors, using all of which would inevitably
over-fit the data, and they were highly correlated. We again used
PCA to identify the first 96 PCs as the predictors to be used in
the GLMs. We chose 96 PCs so to match with the number of
predictors in our first model.

As a third model, we used the states in each cell type separately
as the categorical predictors to predict GWAS variants. We
identified the cell type yielding the best prediction as the single
best cell type for predicting GWAS variants.

Power Analysis
Using 2,473,120 SNPs from Morris et al. (2012), we randomly
selected 100 causal SNPs according to the precision-recall
curve for each complex trait, i.e., x% of causal variants were
selected from the top y% SNPs as ranked by our predictive
model, where x denotes 100∗ recall and y was given by (100∗

x/precision)/2,473,120. We first simulated the test statistics for
all variants from N(0, 1) under a null model of no association.
We then simulated the effect sizes λ for each causal variant from
a normal distribution N(0.1, 0.05), which were then multiplied
by −1 or +1 with 50% probability each to reflect protective or
deleterious effects. The test statistic corresponding to effect size λ
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TABLE 1 | Ten clusters of the 127 Roadmap Epigenomics epigenomes.

Group Epigenome mnemonic

1 BLD.CD14.MONO, BLD.CD14.PC, BLD.CD15.PC, BLD.CD19.PPC, BLD.CD3.PPC, BLD.CD34.CC, BLD.CD4.CD25.CD127M.TREGPC,

BLD.CD4.CD25I.CD127.TMEMPC, BLD.CD4.CD25M.CD45RA.NPC, BLD.CD4.CD25M.CD45RO.MPC, BLD.CD4.CD25M.IL17M.PL.TPC,

BLD.CD4.CD25M.IL17P.PL.TPC, BLD.CD4.CD25M.TPC, BLD.CD4.MPC, BLD.CD4.NPC, BLD.CD56.PC, BLD.CD8.MPC, BLD.CD8.NPC,

BLD.DND41.CNCR, BLD.MOB.CD34.PC.F, BLD.MOB.CD34.PC.M, BLD.PER.MONUC.PC, THYM.FET

2 ESC.4STAR, ESC.H1, ESC.HUES48, ESC.HUES6, ESC.HUES64, ESC.I3, ESDR.CD184.ENDO, ESDR.CD56.ECTO, ESDR.CD56.MESO, IPSC.15b, IPSC.18,

IPSC.20B

3 BRN.FET.M, BRN.GRM.MTRX, ESC.H9, ESC.WA7, ESDR.H1.BMP4.MESO, ESDR.H1.NEUR.PROG, IPSC.DF.19.11, IPSC.DF.6.9

4 BLD.CD19.CPC, BLD.CD3.CPC, BLD.CD34.PC, BLD.GM12878, THYM

5 BLD.K562.CNCR, ESDR.H1.BMP4.TROP, ESDR.H1.MSC, GI.CLN.MUC, GI.CLN.SIG, GI.ESO, GI.RECT.SM.MUS, GI.S.INT, GI.STMC.GAST, GI.STMC.MUC,

HRT.ATR.R, HRT.FET, HRT.VENT.L, HRT.VNT.R, KID.FET, LNG, LNG.NHLF, MUS.PSOAS, OVRY, PANC, PANC.ISLT, PLCNT.AMN, SKIN.NHDFAD,

SKIN.PEN.FRSK.MEL.01, SPLN, VAS.AOR

6 ADRL.GLND.FET, BRN.NHA, BRST.HMEC, BRST.HMEC.35, BRST.MYO, CRVX.HELAS3.CNCR, LNG.A549.ETOH002.CNCR, MUS.HSMM, MUS.HSMMT,

SKIN.NHEK, SKIN.PEN.FRSK.KER.02, SKIN.PEN.FRSK.KER.03, SKIN.PEN.FRSK.MEL.03, VAS.HUVEC

7 BONE.OSTEO, FAT.ADIP.DR.MSC, FAT.MSC.DR.ADIP, LNG.IMR90, MUS.SAT, SKIN.PEN.FRSK.FIB.01, SKIN.PEN.FRSK.FIB.02, STRM.CHON.MRW.DR.MSC,

STRM.MRW.MSC

8 BRN.ANG.GYR, BRN.ANT.CAUD, BRN.CING.GYR, BRN.DL.PRFRNTL.CRTX, BRN.HIPP.MID, BRN.INF.TMP, BRN.SUB.NIG

9 BRN.CRTX.DR.NRSPHR, BRN.FET.F, BRN.GANGEM.DR.NRSPHR, ESDR.H9.NEUR, ESDR.H9.NEUR.PROG, GI.CLN.SM.MUS, GI.DUO.MUC,

GI.RECT.MUC.29, GI.RECT.MUC.31, GI.STMC.MUS, LIV.HEPG2.CNCR, MUS.SKLT.F, MUS.SKLT.M, PLCNT.FET

10 FAT.ADIP.NUC, GI.DUO.SM.MUS, GI.L.INT.FET, GI.S.INT.FET, GI.STMC.FET, LIV.ADLT, LNG.FET, MUS.LEG.FET, MUS.TRNK.FET

was calculated as t = [log(1+ λ)]/
√
n under the assumption that

each variant can only explain a tiny proportion of the total disease
variance, where n (=2,000) denotes sample size (1,000 cases and
1,000 controls). Due to LD among variants, we further added
indirect association to all variants within 500 kb to the causal
variant by rt+

√
1− r2z, where r denotes the correlation between

each variant and the causal variant, and z denotes the test statistic
of the target variant under null model. This procedure yielded
correlated test statistics among variants due to LD.

Let {πi} be the functional data-predicted probabilities for
each variant being causal, and let pcut denote a multiple testing
adjusted threshold for significance (e.g., pcut = 0.05). The
marginal p-value threshold for each variant is then given by
pi = pcutπi/|π |. In this way, variants with high probabilities of
being causal will receive liberal thresholds, and variants with low
probabilities of being causal will receive stringent thresholds. We
have previously shown (Zhang and Liu, 2011) that this approach
can appropriately control the overall false-positive rate in the
genome. Finally, power was calculated as the percentage of causal
variants located within 1 kb of at least one detected significant
variant.

RESULTS

Identification of Cell-Type-Specificity
Patterns
We used IDEAS (Zhang et al., 2016) to jointly infer a
25-state model in the 127 epigenomes from the Roadmap
Epigenomics and ENCODE projects. The 25 states captured
unique combinations of mean signals of histone marks,
which corresponded to the signatures of distinct functional
elements as previously verified by experiments. For instance,
states with moderate H3K4me3 and high H3K4me1 indicate
likely enhancer activities; states with high H3K4me3 and

moderate H3K4me1 indicate likely promoter activities; states
with high H4K36me3 indicate transcription activities; states with
H3K27me3 indicate repressive activities; states with H3K9me3
indicates heterochromatin; and states with low signals in all
histone marks indicate no activity. Using the 25-state model
predicted across the genome and 127 epigenomes, we can study
patterns of cell-type specificity with respect to their putative
regulatory functions and use the functions to interpret disease
variants.

We define a CSP as a partition of the 127 epigenomes such that
epigenetic states in epigenomes within the same partition follow
the same distribution, while states in epigenomes in different
partitions follow different distributions.We developed a Bayesian
algorithm to identify 48 major reoccurring CSPs in the genome
(Supplementary Data), where each CSP represented a unique cell
type-specificity pattern (Figure 1). One of the 48 CSPs had all
epigenomes assigned to one group, which corresponded to non–
cell-type-specific regions and occurred in 65.6% of the genome.
This CSP constituted mainly low-signal regions or conserved
transcription start sites. The remaining 47 CSPs had much lower
abundances in the genome, with each occurring in about 0.1–
3% of the genome. These 47 CSPs captured cell-type-specific
regulatory events and thus are most interesting.

The 47 CSPs revealed roughly 10 distinct groups of
epigenomes (Figure 1), which agreed well with the known cell-
type origins (Table 1). For instance, most of the lymphocytes
(Blood & T-cells and HSC & B-cells) were grouped together
(cluster 1) in all CSPs, suggesting that the functional elements
in these cell types are positively correlated across the genome.
The pluripotent stem cells (ESCs, iPSCs, and ES-deriv) were
commonly distributed in two groups (clusters 2 and 3), and
the functional elements between the two groups were frequently
different.We further obtained a group of ENCODE cell types and
epithelial cell types (cluster 6), a group of mesenchymal stem cells
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FIGURE 1 | Genome-wide patterns of cell type specificity. X-axis denotes the 127 epigenomes, with epigenome color keys shown on the top and the right hand side.

The cell type abbreviations are given by the Roadmap Epigenomics consortium. Y-axis shows the 48 CSPs. Each row in the matrix denote one epigenome partition

pattern, with different groups of epigenomes indicated by black, white and gray. The percentage of the genome carrying each pattern is shown on the right. We also

marked 10 clusters of epigenomes that were often together in most patterns.

and some of their differentiated cell types (cluster 7), a group of
brain tissues (cluster 8), and a group of fetal tissues (cluster 10).
Of the remaining epigenome groups, cluster 4 contained a small
set of primary lymphocytes. Clusters 5 and 9 containedmixed cell
types of different origins. Since we did not use the known cell-
type origins as input, their agreement with our results confirmed
that the inferred CSPs were reasonably accurate.

Cell-Type-Specific Enrichment in GWAS
Variants
We next investigated the enrichment of the 48 CSPs in the
disease variants. If the risk variants of a complex trait are
enriched in some CSPs, then the corresponding epigenome
partitions will inform us of potential functional relationships
between the cell types and the trait. For all complex traits in
the GWAS Catalog (Welter et al., 2014), we treated the lead
GWAS variants and their strong proxy variants (LD r2 > 0.95)
as the risk variants. We calculated two-sided permutation p-
values (10,000 permutations) for the enrichment/depletion of
those risk variants in each of the 48 CSPs. As shown in Figure 2,
the enrichment/depletion of disease variants can be roughly
categorized as (1) strongly enriched in all CSPs, (2) moderately
enriched in a subset of CSPs, (3) enriched in specific CSPs, or
(4) enriched in one or two CSPs and depleted elsewhere. For

instance, physical traits (height, BMI, HDL, etc.) tended to be
enriched inmost CSPs, indicating that theymay not be associated
with specific cell types. Autoimmune diseases (multiple sclerosis,
rheumatoid arthritis, type 1 diabetes, etc.), on the other hand,
tended to be enriched in CSPs that uniquely clustered blood and
immune cell types. A few mental and nerve-related disorders
(Parkinson’s disease, cognitive performance, bipolar disorder,
intelligence, etc.) showed enrichment in a specific set of CSPs
that highlighted brain-tissue specificity. In addition, Alzheimer’s
disease showed enrichment in monocytes.

We further evaluated whether specific functional elements are
enriched in disease variants. Since most reported GWAS variants
are likely tagging the true but unobserved causal mutations, we
first used a Bayesian model to sub-select disease variants within
each group of variants in strong LD, and we identified those
variants showing significant enrichment in CSPs. About three-
quarters of the traits in the GWAS Catalog had at least one risk
variant enriched in CSPs (Supplementary Data). The proportion
of enriched variants in each trait ranged from 0 to 76.3%, with
a mean of 14.8%. For traits with CSP-enriched risk variants,
their risks are likely affected by mutations in a cell-type-specific
manner. On the other hand, for traits without CSP-enriched
risk variants, their risk variants may not affect cell-type-specific
regulation. The number of risk variants available from the GWAS
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FIGURE 2 | Enrichment of the 48 cell type specificity patterns in disease variants. The heatmap at top left corner shows the –log10 p-value of enrichment/depletion

for the risk variants of all complex trait (y-axis) in each CSP (x-axis). Significant depletion is shown in blue and white (−log10 p-value is multiplied by −1 for depletion),

and significant enrichment is shown in red and yellow. The heatmap at lower right corner shows the −log10 p-value of enrichment/depletion for the risk variants of 52

traits that have at least 50 lead variants. The upper right panel shows the 48 CSPs.

Catalog did not bias our calculation, since the proportion of
enriched risk variants in each trait was not associated with the
number of risk variants for the trait (Pearson correlation 0.013).

We calculated z-scores for each trait using CSP-enriched risk
variants to quantitatively measure the enrichment of epigenetic
states at the risk variants with respect to the 10 epigenome
clusters defined in Table 1. The z-scores were calculated at each
risk variant and then averaged for each trait. We subtracted

background z-scores using genome-wide null variants, and the
final z-score matrix revealed interesting enrichment of epigenetic
states. In particular, the epigenetic states labeling enhancers,
transcriptions, and repressions were substantially enriched. As
shown in Figure 3, for instance, autoimmune and blood-related
traits exhibited enhancer (yellow) and transcription (green)
enrichment exclusively in the blood cell types (cluster 1).
Physical traits, including male baldness, breast size, psoriasis,
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FIGURE 3 | Enrichment of epigenetic states in disease variants with respect to the 10 epigenome clusters defined in Table 1. The left most heatmap shows the mean

signal of histone marks in the 25 epigenetic states. State color keys and their putative functions are shown on the left. The right two panels show the enrichment of

epigenetic states at the risk variants of each complex trait, with colors reflecting the most enriched states (given by the state color keys) and the strength of

enrichments (brighter color means stronger enrichment).

dental caries, and common traits, had enriched enhancer,
transcription, or repression (blue) activities in pluripotent stem
cells (cluster 2). Another set of physical traits, including central
corneal thickness, longevity, primary tooth development, and
intelligence, showed enrichment of enhancer and transcription
activity in mesenchymal stem cells (cluster 7). Interestingly, in
brain tissues (cluster 8), we observed enriched enhancer activities
for Alzheimer’s disease, response to antipsychotic treatment,
schizophrenia, and weight loss. There was barely any enrichment
of promoter activities (red) in any epigenome clusters, which
was consistent with our observation that promoter activities are
highly conserved across cell types.

Prediction of GWAS Variants Using
Cell-Type-Specificity Patterns
Finally, we evaluated how well the epigenetic states and their
CSPs can predict GWAS variants. We used the risk variants
(without sub-selection) of each complex trait and a set of
randomly selected null variants with matched minor allele
frequencies and functional annotations as the response variable
(binary). We used the log likelihood of the CSPs and the
epigenetic state enrichment in the 10 epigenome groups in
Table 1 as the predictor variables. For comparison, we also ran
two other models to predict GWAS variants. One used the

epigenetic states in all epigenomes as predictors, and the other
used the epigenetic states in the best-matched single cell type,
where the best-matched cell type was identified as the cell type
yielding the best prediction. We used the AUC of the precision-
recall plot to measure the prediction accuracy of each model for
each complex trait.

As shown in Figure 4, using CSP and state enrichment scores
produced substantially better predictions than using the best-
matched single cell types, particularly for traits whose risk
variants were overall predictable (as reflected by the mean AUC
between methods). As expected, the power gain was partially due
to the fact that we used more data than single cell types. However,
for many traits, our method also outperformed the linear model
using all cell types as input. Our result thus confirmed that
the combinatorial relationships between functional elements
captured by the CSPs could also increase prediction accuracy.

To demonstrate the potential gain in power from using
our predictions, we performed a power analysis for detecting
association in GWAS on each complex trait, while using our
functional data-predicted probability of being causal variants as
a prior. As shown in Figure 5, our test using the functional
priors uniformly boosted the power for detecting causal variants.
Without using the priors, the mean power for detecting a causal
variant in each trait was 17.2% for our simulation setting. After
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FIGURE 4 | Power for predicting disease variants. (A) AUC difference of precision-recall curves between our model and single best cell type model (y-axis) plotted

with respect to the mean AUC between the two models (x-axis); the mean AUC reflects how well the variants of a complex trait can be predicted overall. (B) is similar

to (A), but compares between our model and the model using a linear combination of all cell types.

FIGURE 5 | Power comparison between the conditional test method using functional priors (gray) and the fixed threshold method without priors (black) for detecting

causal variants in GWAS. Horizontal line marks the mean power without using priors. Only the top 70 traits whose mean AUCs >0.05 in our model were shown.

using the priors, the powers were increased to as much as 51%.
As expected, the power gain was positively correlated with the
prediction accuracy of our models (p-value 0.00156). It was also
trait-dependent, since the traits had different precision recall
curves even if their mean AUC-values were similar.

Finally, we used 179 credible risk variants for inflammatory
bowel disease (IBD) at the SKAP2 gene from Huang et al. (2015)

to demonstrate how our functional predictions can prioritize
some of the low-probability IBD associations. As shown in
Figure 6, a single variant within a transcribed region of SKAP2
had the largest probability of association indicated by genetic data
alone, while the remaining risk variants had flat but nontrivial
probabilities of IBD association as well. This latter observation
was due to strong LD within the region. After incorporating our
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FIGURE 6 | Example of change in IBD association probability before (top) and after (bottom) incorporating functional predictions at SKAP2 gene. Black vertical lines

show the probability of IBD association at 179 credible variants obtained by Huang et al. (2015) via fine mapping using genetic data alone. The probabilities are

overlaid with IDEAS functional annotation map to highlight how probabilities changed with functions. Overall, green in the functional annotation map indicates

transcription, blue indicates repression, red indicates promoter activity, yellow/orange indicates enhancer activity, and gray indicates no regulatory events. The dashed

box shows the group (rows) of blood T cells, and the remaining rows in the functional map are blood B & HSC cells.

functional predictions, two different variants stood out as being
more likely to have an impact on IBD risk, since they were located
within T-cell-specific enhancers. In contrast, the originally most
significant variant and all other variants had much reduced
probabilities of IBD association, including the variants located
within the promoter region of SKAP2. This example thus
highlights how our approach can borrow information from
epigenetic CSPs to pinpoint potential functional variants that are
otherwise undistinguishable when using genetic data alone.

DISCUSSION

We have introduced a computational approach to identify
recurring patterns of cell-type specificity in the genome of 127
human cell types. By focusing on the co-occurrence patterns
of epigenetic states, we have been able to use a small number
of CSPs to explain most epigenomic variation in the genome.
The corresponding epigenome partitions within CSPs agree
well with known cell-type origins and are strongly enriched in
the risk variants of many complex traits. The enrichment of
active and repressive elements suggests both known and novel

relationships between cell types and complex traits, and thus
offers new insights for interpreting the regulatory effect of DNA
mutations on disease risk in a cell-type-specific context. We
have further demonstrated that using cell-type specificity could
improve prediction of disease variants compared with using a
linear model of functional elements alone.

The study presented here is complementary to existing work
on utilizing functional data in fine mapping. Specifically, our
approach is a computationally tractable method for detecting
combinatorial patterns of functions across cell types, which can
be included as additional predictors in existing methods to
improve their power to prioritize disease variants. It should also
be possible to use the functional data to perform conditional
testing of disease association (Zhang and Liu, 2011), where a
variant with weaker genetic association could be prioritized over
other variants (with stronger genetic association) by using a more
liberal threshold, if its functional information was more relevant
to the disease.

There are a few limitations of the current study. First, we
have exclusively focused on predicting disease variants from
regulatory marks, which may lead us to miss disease mutations
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that directly affect protein coding. Our analysis included the
H3K36me3 mark in the annotation, and thus the coding variants
may be partially predictable by transcription states. It is, however,
desirable to include additional and complementary genome
annotation to improve prediction. Second, we used log p-values
provided by the Roadmap Epigenomics project as input to our
segmentation algorithm, by which data bias in different cell
types should have been adjusted. The fact that we observed
some epigenomic similarity between cell types from different
origins, however, warrants more careful investigation. Third, a
previous study suggested that 95% of the lead variants reported
in the GWAS Catalog might not be causal (Farh et al., 2015).
This limits our ability to detect epigenomic enrichment in the
disease variants. We have alleviated this issue by including proxy
variants as well as the lead variants, and we have developed
a Bayesian method to sub-select candidate causal variants by
explicitly assuming that not all reported variants are causal.
However, because only a limited number of disease variants
are available in the GWAS Catalog, we have only used logistic
linear regression to predict the most likely causal variants.
It would be desirable to improve the power further using
nonlinear models and machine learning methods if a greater
number of variants become available, for example by using
whole-genome summary statistics fromGWAS or combining the
disease variants of closely related traits together via mixed effect
models.

URLs
The list of variants and the software tools used to
generate the results in this paper are available in
Supplementary Data. The IDEAS tool is available through
the author’s website at http://stat.psu.edu/~yuzhang/
IDEAS/. Summary information on the 127 cell types is
available from the Roadmap Epigenomics Consortium at
https://docs.google.com/spreadsheet/ccc?key=0Am6FxqAtrFDw
dHU1UC13ZUxKYy1XVEJPUzV6MEtQOXc&usp=sharing
#gid=15.
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