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The dramatic re-organization of the cancer cell nucleus creates telltale morphological
features critical for pathological staging of tumors. In addition, the changes to the
mutational and epigenetic landscape in cancer cells alter the structure and stability
of the genome and directly contribute to malignancy. DNA methylation is one of the
best studied epigenetic changes in cancer, as nearly every type of cancer studied
shows a loss of DNA methylation spread across most of the genome. This global
hypomethylation is accompanied by hypermethylation at distinct loci, and much of the
work on DNA methylation in cancer has focused on how local changes contribute to
gene expression. However, the emerging picture is that the changes to DNA methylation
in cancer cells has little direct effect on gene expression but instead impacts the
organization of the genome in the nucleus. Several recent studies that take a broad view
of the cancer epigenome find that the most profound changes to the cancer methylome
are spread across large segments of the genome, and that the focal changes are
reflective of a whole reorganization of epigenome. Hallmarks of nuclear reorganization
in cancer are found in the long regions of chromatin marked by histone methylation
(LOCKs) and nuclear lamina interactions (LADs). In this review, we focus on a novel
perspective that DNA methylation changes in cancer impact the global structure of
heterochromatin, LADs and LOCKs, and how these global changes, in turn, contribute
to gene expression changes and genomic stability.
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INTRODUCTION

For over a century, pathologists have used cellular morphology to guide their diagnosis of cancer.
Chief among the morphological features that distinguish benign from malignant cells is the shape,
size, structure and composition of the nucleus (Zink et al., 2004). Moreover, nuclear morphologies
are often pleiotropic across a single tumor, reflecting the heterogeneous nature of cancer. Altered
nuclear morphology also reflects broad changes in genome positioning and epigenetic changes
which occur during transformation. We review recent data showing that widespread epigenetic
changes are among the most prominent and common features of the cancer nucleus.

Chromatin organization is dictated by interactions between DNA and nuclear structural
proteins, such as nuclear lamins, and by epigenetic modifications. These modifications and changes
to nuclear structure are key features distinguishing cancer cells from their normal counterparts.
Moreover, changes to genome structure and epigenetic changes also can be tumorigenic, by causing
genomic instability, a hallmark of cancer (Hanahan and Weinberg, 2011).
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Here, we discuss data showing that three epigenetic marks
that occupy large regions of the genome are changed in cancer.
First, cytosine methylation (5mC) of DNA is among the most well
studied epigenetic modifications, global loss of DNA methylation
is a common feature of cancer (Feinberg and Vogelstein, 1983a;
Gama-Sosa et al., 1983). Recent work has shown that the
pattern of DNA hypomethylation in cancer is characterized
by long regions termed Partially Methylated Domains (PMDs)
(Lister et al., 2009; Hon et al., 2012), accompanied by massive
disruption in nuclear organization. The Lamina Associated
Domains (LADs) (Guelen et al., 2008) and the long stretches
of the genome termed Large Organized Chromatin lysine (“K”)
modification (LOCKs) (Wen et al., 2009; McDonald et al., 2011)
differ markedly between cancer and normal cells (McDonald
et al., 2011; Timp et al., 2014). Exciting work has uncovered
significant overlap between PMDs, LADs and LOCKs (Timp and
Feinberg, 2013; Timp et al., 2014), suggesting that regional, not
local, changes are the defining features of the cancer epigenomic
landscape.

DNA METHYLATION: FEATURES,
FUNCTIONS AND CHANGES IN CANCER

DNA methylation was the first epigenetic change to be reported
in cancer (Feinberg and Vogelstein, 1983a; Gama-Sosa et al.,
1983; Ehrlich et al., 1985). Over 80% of CpGs are methylated
in human somatic cells, these are concentrated in repetitive
sequences in intergenic regions and introns, whereas the CpG
islands (CGI) found in the promoters of most genes (Lister et al.,
2009; Roadmap Epigenomics et al., 2015) are protected from
methylation (Deaton and Bird, 2011). This pattern is largely
constant across somatic cell types from the same organism, with
less than 20% of all CpGs showing any changes in methylation
across cell types (Lister et al., 2009; Ziller et al., 2013; Zhang et al.,
2016).

Pioneering work showing the essential role of DNA
methylation in silencing imprinted genes (Reik et al., 1987;
Sapienza et al., 1987; Swain et al., 1987; Li et al., 1993),
inactivating X chromosome (Mohandas et al., 1981) and
repressing repetitive DNA to prevent transposon activation
(Chandler and Walbot, 1986; Schwartz and Dennis, 1986)
coincided with the discovery of DNA hypomethylation in
cancer (Feinberg and Vogelstein, 1983a; Gama-Sosa et al., 1983).
These converged into a model proposing that DNA methylation
regulated expression of oncogenes and tumor suppressors.
Thousands of studies have pursued this theory; while some
convincingly show a direct and inverse relationship between
gene expression and DNA methylation of a regulatory region,
most do not. In fact, most methylated CpGs reside in intergenic
regions and most of the differentially methylated regions (DMRs)
between normal and cancer cells are in these regions (Baylin
and Jones, 2011). Moreover, the DMRs in cancer are largely not
focal, but are instead spread across broad regions of the genome
(Figure 1). In some cases, these DMRs represent a partial loss of
methylation across a large region (i.e., PMD). Thus, the highly
cited examples where methylation of a regulatory region controls

gene expression in cancer appear to be the exception rather than
the rule. We postulate that methylome reorganization in cancer
reflects a massive change in the distribution of heterochromatin
and nuclear organization, and that this reorganization can
indirectly control gene expression.

The Cancer Methylome and Nuclear
Organization
The methylome landscape in normal cells is that of broad peaks
across long stretches of intergenic repeat-rich regions and valleys
in CGIs and CpG poor regions (Figure 1). A birds-eye view of the
methylome reveals that the large hypermethylated peaks, become
hypomethylated in several cancer types (Varley et al., 2013; Ziller
et al., 2013; Landau et al., 2014). Peaks of methylation in normal
cells are characterized by stretches with over 80% methylation
of most CpGs. These are converted to PMDs (Figure 1; Hansen
et al., 2011), defined as a 5 kb to 10 Mb region with average 50%
CpG methylation (Lister et al., 2009). The emergence of PMDs
essentially flattens the methylation landscape in cancer cells,
blurring the boundaries between what in normal cells constitute
methylation valleys (CGIs) and peaks (CGI shores). The novel
concept here is that cancer DMRs (cDMRs) are largely comprised
of PMDs, and that the focal regions of differential methylation
need to be viewed in the context of the methylation level of the
entire region of the genome. An additional novel idea from these
studies is that the dramatic change in the cancer methylome is
reflective of a randomization of methylation patterns, whereby
each cytosine is methylated in some cells and not methylated in
others (Hon et al., 2012; Landau et al., 2014; Timp et al., 2014).

The importance of PMDs in cancer was highlighted by a
pioneering study focused on “CpG shores.” These are 2 kb away
from CGIs, cover genes expressed in a tissue-specific manner,
and are variably methylated during tissue differentiation (Irizarry
et al., 2009). While most of the methylome is static, shores are the
most variable across cell types (Figure 1). Interestingly, cDMRs
are also found largely in CpG shores (Hansen et al., 2011). Indeed,
the location of cDMRs reflects the cell of cancer origin, possibly
because these are the regions of the methylome that are most
amenable to change.

DNA Methylation and Cancer: Cause or
Consequence?
Genomic instability is carcinogenic. Since regions of DNA
hypomethylation in cancer cells correspond with hotspots of
chromosomal breaks (Eden et al., 2003; Rodriguez et al., 2006;
Irizarry et al., 2009) and regions of the cancer genome where
the methylation pattern appears random are more prone to
mutation (Landau et al., 2014) suggests a link between DNA
hypomethylation and genomic instability. Moreover, repressing
transposons is a central function of DNA methylation, and
transposon activation can contribute to genomic rearrangements
by retrotransposition (Helman et al., 2014; Tubio et al.,
2014). Contrasting data from the analysis of 51 premalignant
lesions which showed that large blocks of hypomethylation that
are found in advanced cancers are detected even in lesions
that are not considered prone to malignant transformation

Frontiers in Genetics | www.frontiersin.org 2 June 2017 | Volume 8 | Article 76

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-08-00076 June 2, 2017 Time: 17:8 # 3

Madakashira and Sadler DNA Methylation, Nuclear Organization, and Cancer

FIGURE 1 | DNA methylation is dynamically altered in cancer cells compared to the normal cells. DNA methylation in a region of chromosome 11 between
Lymphoblastoid cells (GM12878) and Leukemia cells (K562) shows regions of partially methylated domains (PMD) in the cancer cells, where the methylation levels
flatten at around 50% over the region compared to the DNA methylation of the same region in the control sample. There are also regions which do not show any
methylation differences (Static) and a DNA block with hypermethylation in the cancer cells. Ref Seq Genes in the region are represented as blue lines below the
histogram. This figure was generated using the data from the Epigenome browser of the Roadmap Epigenomics Project (http://epigenomegateway.wustl.
edu/browser/).

(Timp et al., 2014). Further study is required to determine
whether DNA hypomethylation can cause cancer in all cell
types.

Data from model organisms supports the hypothesis that loss
of DNA methylation is oncogenic. In mice, a strong hypomorphic
allele of the DNA methyltransferase, Dnmt1, causes DNA
hypomethylation and genomic instability leading to aggressive
T-cell lymphoma (Gaudet et al., 2003) and heterozygosity for
this allele synergized with Nf1 and Tp53 to accelerate sarcoma
formation (Eden et al., 2003). Similarly, a hypomorphic allele
of Dnmt3b in combination with defects in a DNA repair gene
caused lymphoma (Trinh et al., 2002). Our work in zebrafish
(Mudbhary et al., 2014) demonstrated that overexpression of
the epigenetic modifier, UHRF1, caused liver cancer in the
absence of any other sensitizing mutations. In this model,
UHRF1 overexpression caused global DNA hypomethylation
and chromatin reorganization which first caused senescence
as a tumor suppressive mechanism and when senescence was
bypassed, tumors formed. We speculate that senescence induced
by UHRF1 overexpression may be related to reorganization of
the nuclear lamina, which causes senescence in other systems
(Criscione et al., 2016).

NUCLEAR ORGANIZATION AND
CHROMATIN DOMAINS: LADS AND
LOCKS

Nuclear lamins have essential roles in maintaining nuclear
structure, organizing chromosome territories (Cremer et al.,
2006), interacting with nuclear actin (Burke and Stewart, 2013)
and regulating gene expression (Reddy et al., 2008). A major role
for lamins is to interact with distinct regions of the genome (i.e.,
LADs) covering 35–40% of the mammalian genome in blocks
ranging from 0.1 to 10 MB (Guelen et al., 2008; Meuleman
et al., 2013; Amendola and van Steensel, 2015). LOCKs were first
defined by long stretches of histone H3 lysine 9 dimethylation
(H3K9me2) which largely overlap with LADs (Guelen et al., 2008;
Hawkins et al., 2010; Peric-Hupkes et al., 2010; Hon et al., 2012;
Luperchio et al., 2014; Figure 2). Thus, LOCKs represent blocks
of the genome which are packaged into repressive chromatin
structures. Interestingly, PMDs in cancer largely correspond

to regions of LOCKs and LADs (Pujadas and Feinberg, 2012;
Luperchio et al., 2014; Figure 2).

LADs and TADs
Most transcription occurs in the center of the nucleus; regions of
the genome relegated to the nuclear periphery and encompassed
in LADs are generally repressed (Dekker, 2008). Experimental
repositioning of genes by targeting them to the nuclear envelope
transmembrane proteins leads to repression of key genes involved
in myogenesis, demonstrating the importance of gene positioning
for tissue specific gene regulation (Robson et al., 2016). Similarly,
depletion of B- type lamins in Drosophila de-repressed genes at
the nuclear periphery (Shevelyov et al., 2009).

Lamina interactions are AT rich, containing epigenetic marks
H3K9me2, reduced H3K36me3, with the LAD borders enriched
for CTCF, H3K4me3 and H3K27me3 (Guelen et al., 2008;
Zullo et al., 2012; Meuleman et al., 2013; Harr et al., 2015).
Similar to the finding that most regions of DNA methylation are
static across cell types, many LADs also tend to be constitutive
across cell types (cLADs), although some are cell type specific.
(Guelen et al., 2008; Meuleman et al., 2013). cLADs range
from 100 kb to 10 Mb and have low gene density (Meuleman
et al., 2013), whereas variable LADs (vLADs) tend to contain
developmentally regulated genes, and their position in the
nucleus is altered by developmental cues (Zullo et al., 2012;
Harr et al., 2015). Interestingly, many vLADs are enriched for
GAGA motif containing sequences, called Lamina Associated
Sequences (LASs), which are important for positioning regions
of the genome at the nuclear periphery, as shown by experiments
that artificially integrated LASs randomly throughout the genome
(Zullo et al., 2012; Harr et al., 2015). LASs can be recognized
by specific proteins that function to shape LAD architecture
or recruit proteins such as the Polycomb Repressor Complex 2
(PRC2), which mediates the repressive H3K27me3 mark (Zullo
et al., 2012; Harr et al., 2015). As expression of PRC proteins
are deregulated in several cancer types (Luperchio et al., 2014),
it is an intriguing possibility that LAD mediated targeting of
PRC2 to tumor suppressors could cause their repression in
cancer.

The borders of LADs are enriched in binding sites for the
chromatin organizer CCCTC- binding factor (CTCF) which,
along with SMC- family complex- Cohesin binds to the CTCF
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FIGURE 2 | Chromatin rearrangement in the cancer nuclei. In normal differentiated cells, heterochromatin is organized in the nuclear periphery by binding to the
nuclear lamina proteins (in blue) and is organized into LADs (red) which overlap significantly with LOCKs (H3K9me2/3 and H3K27me3-green and gray circles). The
active domains are tagged by the euchromatin histone marks (pink circles). Cancer cells display nuclear chromatin rearrangement with decreased lamin expression
in the lamina, increased euchromatinization, and significant loss of LADs and LOCKs. In cancer, large blocks of DNA termed PMDs (black boxes) coincide to a large
extent with LADs and LOCKs. These events can ultimately lead to random DNA recombination events as well as the less stable open chromatin are hotspots for
DNA breaks (black dashed lines) (Kind et al., 2013; Luperchio et al., 2014; Feinberg et al., 2016).

recognition motif across the genome and acts as an insulator,
thus regulating genomic stability, tissue- specific expression and
overall epigenetic homeostasis (Ong and Corces, 2014). CTCF
binding sites are found in the borders of both LADs and
Topologically Associating Domains (TADs) (Luperchio et al.,
2014). While LADs comprise heterochromatic regions, TADs
can either be A-type (open, gene-rich chromatin) or B- type
(closed, gene - poor) (Achinger-Kawecka and Clark, 2017). While
TADs are fairly stable between different cell types, changes within
TADs occur during development and differentiation (Luperchio
et al., 2014). The relationship between LADs and TADs and the
relevance to cancer is an area of active investigation.

LOCKs
Large Organized Chromatin Lysine Modifications were first
described as large heterochromatic domains enriched for
H3K9me2 and associated with repressive heterochromatin (Wen
et al., 2009). LOCKs comprise > 45% of the genome of liver
cells, and 30% of differentiated ES cells, whereas less than
5% of genome is defined as a LOCK in undifferentiated ES
cells (Wen et al., 2009). More recent studies also describe
blocks of other repressive histones (H3K9me3 and H3K27me3),
which occur at negligible levels in ES cells but expand
during differentiation, supporting the general model of LOCKs/
blocks as highly dynamic heterochromatic domains during
differentiation (Hawkins et al., 2010; Peric-Hupkes et al., 2010).
Studies investigating the relationship between LOCKs and gene
expression have shown that in liver cells, genes localized within
LOCKs are generally silenced, while the same genes were found
outside LOCKs in the brain and were expressed. Also, many
genes that were not expressed were encompassed by LOCKs in
both tissues, showing that LOCKs are strongly correlated with
tissue-specific gene silencing (Wen et al., 2009; McDonald et al.,
2011).

Interestingly, there is a high degree of overlap between LADs
and LOCKs (Wen et al., 2009; McDonald et al., 2011). However,
the functional relationship between these chromatin domains is
unknown. Elegant studies show LAD sequences become localized
to the nuclear rim even when integrated into a non-LAD locus,
and this positioning within the nucleus is H3K9me2/3 and
H3K27me3 dependent (Zullo et al., 2012; Harr et al., 2015).
Another study found that when the methyltransferase that
deposits H3K9me2/3 (G9a) was suppressed in cancer cells, LADs
“loosen,” since they exhibit less heterochromatin at the nuclear
rim (Zullo et al., 2012; Harr et al., 2015) suggesting that changing
one of these domains may affect the other.

LOCKS, LADS AND DNA METHYLATION
TRANSFORM THE CANCER NUCLEUS

Studies on defining the structural and functional relationships
between epigenetic marks and nuclear organization are relatively
recent, and thus there are few reports of how these work together
in cancer. The frequent overlap of H3K9me3 and 5mC (Rose
and Klose, 2014) suggests that LADs have heterochromatin
promoting epigenetic marks, such that both the nuclear position
and the epigenetic decorations dictate expression, however,
further studies are required to determine how universal this is.
Some exciting new findings linking DNA methylation, histone
methylation and the nuclear lamina suggest that LADs, LOCKs
and PMDs overlap in cancer cells reflecting broad reorganization
of the genome in the nucleus (Timp and Feinberg, 2013; Rose and
Klose, 2014).

In many types of cancer, widespread rearrangement or loss
of LOCKs and LADs has been reported (Wen et al., 2009;
Berman et al., 2011; Hansen et al., 2011; McDonald et al., 2011).
Additionally, the large blocks of hypomethylated DNA found in
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cancer cells correspond to LADs and LOCKs (Berman et al., 2011;
Hansen et al., 2011, 2014; Timp and Feinberg, 2013; Timp et al.,
2014). A study comparing colorectal adenocarcinomas to normal
tissues from the same patients supports this model: 30% of the
genome had profound DNA hypomethylation in large blocks
corresponding to LADs and LOCKs (Hansen et al., 2011). This
changed the sharply delimited methylation boundaries at CpG
islands and shores, creating novel hypomethylation domains in
CG-dense regions (Berman et al., 2011). In particular, the PMDs
that characterize the repatterning of the cancer methylome are
integrated with the changes in nuclear organization (Feinberg
et al., 2016). One study found euchromatin islands within
LAD/LOCK regions enriched for DNase hypersensitive sites and
differentially methylated (Wen et al., 2012) suggesting that the
very nature of LOCKs and LADs as primarily repressive domains
is redefined in cancer. Since these domains are defined by the
method used to isolate them: LADs by association with the
nuclear lamina (Guelen et al., 2008), and LOCKs by a long
stretch of H3K9Me2 (Wen et al., 2009), and these marks often
overlap (Luperchio et al., 2014), it is possible that these are not
entirely two different domains of chromatin, but instead reflect
approaches that identify the same genomic architectural feature.
This suggests that the differences in LADs and LOCKs between
cancer and normal cells reflect an extensive reorganization of
nuclear and genome structure.

How do changes to chromatin structure impact the cancer cell
phenotype? One possibility is a direct impact on gene expression.
Recently, it was discovered that PMDs in cancer contain nearly
one third of the Transcription Start Sites (TSS) and correspond
to LADs and LOCKs (Berman et al., 2011). Interestingly, nearly
all the regions of CGIs hypermethylation are encased within
large regions of hypomethylation, so that average levels of
methylation are the same across the region (Figure 1). This
essentially eliminates the rationale to focus on small regions of
hypermethylation as candidate gene regulatory domains. Indeed,
one exciting study has shown that genes with promoters which
have the most random (or disordered) methylation pattern are
generally not expressed or show wide divergence in expression
across samples (Landau et al., 2014). Instead, these large PMDs or
regions of disordered methylation that overlap with LOCKs and
LADs likely change the 3D organization of chromatin, moving
genes within them to the nuclear periphery and silencing them
These wide scale changes can result in entire regions of the
genome moving from repressive domains to accessible domains,
potentially changing their transcriptional status by the fact of
their position, but not directly because the methylation at specific
CpGs in the genes are altered.

The finding that methylation changes appear even before
cancer development and that the methylome is progressively

changed as cancer progresses (Feinberg and Vogelstein, 1983a,b;
Hansen et al., 2011) supports this as a potential cause of cancer.
Additionally, largely euchromatinized DNA is more prone to
breaks (Falk et al., 2008). Moreover, it is proposed that the
reduction to 50% methylation in PMDs suggests that methylation
becomes disordered, with a stochastic methylation of every CpG
in every cancer cell which is indicative of cancer heterogeneity.

SUMMARY AND FUTURE DIRECTION

While the changes in nuclear structure in cancer have been
appreciated for decades, studies integrating nuclear organization
and cancer epigenetics are relatively new and it remains
unknown how the epigenetic landscape influences the three
dimensional organization of the cancer nucleus. Although DNA
hypomethylation and massive changes to histone marks and
gene positioning characterizes most cancer cells, how these
changes occur is not known. New perspectives on the genome
organization in cancer requires adjustment of the model where
epigenetic changes at discrete loci are interrogated to find their
direct role as a regulator of cancer gene expression. Changes in
chromatin structure may contribute to the genomic instability
that is a hallmark of most cancers, yet the mechanism of
this important change is not yet clear. Finally, how other
aspects of the epigenome, including the distribution of histone
variants and other epigenetic features, interact with the LADs,
LOCKs and PMDs remains an important focus for future
study.
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