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The “missing heritability” problem states that genetic variants in Genome-Wide

Association Studies (GWAS) cannot completely explain the heritability of complex traits.

Traditionally, the heritability of a phenotype is measured through familial studies using

twins, siblings and other close relatives, making assumptions on the genetic similarities

between them. When this heritability is compared to the one obtained through GWAS

for the same traits, a substantial gap between both measurements arise with genome

wide studies reporting significantly smaller values. Several mechanisms for this “missing

heritability” have been proposed, such as epigenetics, epistasis, and sequencing depth.

However, none of them are able to fully account for this gap in heritability. In this paper

we provide evidence that suggests that in order for the phenotypic heritability of human

traits to be broadly understood and accounted for, the compositional and functional

diversity of the human microbiome must be taken into account. This hypothesis is based

on several observations: (A) The composition of the human microbiome is associated

with many important traits, including obesity, cancer, and neurological disorders. (B)

Our microbiome encodes a second genome with nearly a 100 times more genes than

the human genome, and this second genome may act as a rich source of genetic

variation and phenotypic plasticity. (C) Human genotypes interact with the composition

and structure of our microbiome, but cannot by themselves explain microbial variation.

(D) Microbial genetic composition can be strongly influenced by the host’s behavior,

its environment or by vertical and horizontal transmissions from other hosts. Therefore,

genetic similarities assumed in familial studies may cause overestimations of heritability

values. We also propose a method that allows the compositional and functional diversity

of our microbiome to be incorporated to genome wide association studies.

Keywords: missing heritability, GWAS (genome-wide association studies), MWAS (metagenome-wide association

studies), microbiome, holobiont ecology
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INTRODUCTION: GWAS AND THE

MISSING HERITABILITY PROBLEM

The broad-sense heritability (H2) of a phenotype is defined as
the proportion of phenotypic variation that can be explained
by genetic variance. A decade ago, genetic variance was almost
impossible to measure accurately and was often assumed from
kinship. Parents and offspring were assumed to have a 50%
genetic identity between them, as with first siblings, whereas
identical twins are assumed to have full identity. These studies
are based mainly on pedigree data, so heritability estimates
always included the contribution of all causal variants and
several assumptions need to be made in order to calculate the
heritability of a trait (Visscher et al., 2008). Nowadays, with the
advent of Genome-Wide Association Studies (GWAS), estimates
of the heritability of a trait can be based on the collection
of Single Nucleotide Polymorphisms (SNPs) from populations
of unrelated individuals. In order to estimate the narrow-
sense heritability of a trait, these studies gather information
of thousands of genetic variants and calculate the degree of
relatedness between any two individuals through genetic identity.
The narrow sense heritability (h2) is defined as the proportion
of phenotypic variation that can be explained by genetic linear
effects, and since GWAS associates individual SNPs it provides
estimations of this type of heritability. As of today, we know
more than 50,000 SNPs associated with many important human
phenotypes. However, both individual and cumulative effects
of these SNPs fall short of explaining the heritability of the
phenotype they are associated with (Lee et al., 2011). For example,
pedigree studies have shown that 80% of variation in human
height comes from genetic effects. GWAS studies have found
approximately 50 genetic variants that are associated with human
height, but they are only able to explain 5% of height variation.
This discrepancy between both measurements occurs in many
human traits and is known as the missing heritability problem.
Efforts aimed at finding its origin are still ongoing (Manolio et al.,
2009; Eskin, 2015).

There are many possible explanations, and no consensus, as
to where this missing heritability is hiding. Epigenetics, gene
interactions, RNAs, heritability overestimations, small size effect
variants, GWAS experimental limitations andmany other factors
have been proposed as possible reasons behind this problem
(Slatkin, 2009; Marian, 2012; Zuk et al., 2012; Grandjean et al.,
2013). Nevertheless, we are still unable to explain the complete
heritability of human traits. In GWAS, an often reported issue
arises when several SNPs are correlated with a given phenotype at
a significant level, as these variants usually have small effect sizes.
This means that, although many variants may be significantly
associated with a single trait, having any one of them does
not considerably increase the odds of developing the trait. One
example is the LMTK2 variant in humans. Despite having a
significant association with prostate cancer, the presence of this
particular variant does not raise the odds of a person developing
prostate cancer (Zuk et al., 2012). To circumvent some of
these problems, updated versions of candidate gene studies have
been proposed where instead of screening whole genomes, they
choose to deep-sequence specific genes that have been previously
identified through GWAS. This approach has a much higher

resolution and has been useful for detecting new strong-effect
variants (Zuk et al., 2014; Tsai et al., 2015). Nevertheless, these
approaches still not provide a definite solution for the missing
heritability problem.

In order to make this paper self-contained, in the sections
below we first briefly discuss some of the major limitations of
current genetic association studies and then review the current
understanding of the microbiome and its importance to our
physiology. Finally, based on these discussions, we propose as
our main hypothesis that the existing gap between the heritability
measured by GWAS on the one hand and familial studies on the
other hand, can be significantly narrowed by taking into account
the genetic and functional diversity of the microbiome, which is
still a neglected source of phenotypic variation (Blanco-Gómez
et al., 2016). We also provide a general perspective on how this
calculations can be performed.

GWAS LIMITATIONS AND GENE

INTERACTIONS

One simplifying assumption often made by GWAS is that
environmental factors such as behavior, diet and disease are
homogeneous among their subjects. This assumption is usually
not met. It has been shown that diet and exercise vary
widely among groups of people and substantially impact the
development of diseases such as obesity and diabetes (Pan et al.,
1997). Habits may play an important role in the calculation of
the heritability of these phenotypes, since people with similar
behavior may be genetically distinct and yet express a close
phenotypic resemblance.

GWAS also disregard epistasis (gene-gene interactions) and
epigenetic effects. The study of gene regulatory networks has
made clear that interactions across genes, proteins, RNA and
other regulatory molecules are crucial to the generation and
maintenance of specific gene expression patterns. These patterns,
in turn, determine phenotypes. GWAS usually report individual
SNPs associated with a specific trait, but SNPs can have combined
effects that are not necessarily linear. A set of genetic variants can
have synergistic or antagonistic effects when taken together (Wei
et al., 2014). For instance, the co-occurrence of two SNPs could
have a very strong positive effect which is not observed when only
one of them is present, but if a third antagonistic variant is also
present, the positive effect could be hindered, and the net result
could be a mild association of the three genetic variants. Since
interactions between sets of SNPs may also take place (McKinney
and Pajewski, 2012), the development of statistical, mathematical
and computational tools that can detect and take these schemes
into account is crucial for determining the importance of epistatic
effects. We should note, however, that from a simple probabilistic
point of view, epistasis is often more relevant to physiology than
to heritability, given the loss of gene correlations in offspring due
to their parents’ gene mixing (Young and Durbin, 2014).

Another source of phenotypic variation is epigenetic
modifications. Although they have been mostly discarded due
to the fact that almost all epigenetic marks are removed in
the embryo through reprogramming, the question of whether
epigenetic marks can be transmitted across human generations
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is still being debated (Slatkin, 2009). Methylation, acetylation,
and mRNAs are known to influence gene expression (Delcuve
et al., 2009), and this fact has critical consequences for the
development of certain diseases. But unless these marks are
preserved through several generations, their implication in
the missing heritability problem cannot be significant. Since
GWAS ignore these epigenetic marks, and we still do not know
whether or not the epigenome is transmitted and to what extent,
it is difficult to assess their role in the heritability of human
traits. Nevertheless, there is a much large source of potential
phenotypic variability that has not been taken into account when
estimating the heritability of a trait.

HUMANS AS ECOLOGICAL ADAPTIVE

SYSTEMS

It has become increasingly apparent that the influence of the
microbial communities living inside and over ourselves needs to
be taken into account if we are to understand many aspects of
our biology. There are about 3.9× 1013 microbial cells inhabiting
our bodies (Sender et al., 2016), and almost every part of it has a
different composition and abundance of microbes (Morgan et al.,
2013; Blekhman et al., 2015). These microbes interact with our
metabolism in numerous ways and understanding the precise
functionality and implications of these microbial organisms is a
complex endeavor.

The influence of the microbiome on human biology has
encouraged attention-grabbing statements in the literature, such
as calling our microbiome an “additional organ”, or referring to
the human body as a “super-organism” (Baquero and Nombela,
2012). However, these denominations can be misleading, as
organs are composed of cells with the same genome, and a
superorganism denotes an eusocial colony of individuals of the
same species (Bordenstein et al., 2015). The term holobiont
is more accurate and useful as it denotes a more dynamic
entity composed of the genomes of many different species.
Its composition can change in time and space as it adapts
to new environments. Furthermore, the nuclear genome of
eukaryotic cells is normally transmitted vertically trough a classic
Mendelian framework, but the microbes of the holobiont can be
passed on both vertically and horizontally. For example, specific
symbiotic microbes, such as Lactobacillus, can be acquired
through direct parental transfer, or by stable environmental
transmission (Powell et al., 2014). Simple interactions with other
humans, like kissing or touching, also lead to microbial transfers
that can alter the composition of the holobiont (Kort et al., 2014).
In the following section, we argue that ignoring the rich dynamics
of the microbiome and our interaction with it can hinder our
understanding of phenotypic diversity in humans.

THE INFLUENCE OF THE MICROBIOME IN

HUMAN TRAITS

The microbiome has a strong impact in human health (Cho and
Blaser, 2012; Clemente et al., 2012; Dave et al., 2012; Huttenhower
et al., 2012). It is known that the human body has about the same

number of bacterial cells as of human cells (Sender et al., 2016)
and in terms of genetic content, the microbiome has at least a
100 times more genes than our own cells (Qin et al., 2010). The
greatest diversity of microbial genetic content resides in our guts
which have a preponderance of bacterial cells (∼1012 bacterial
cells per gram of colonic tissue Collins, 2014) and around 800–
1,000 different bacterial species (Bäckhed et al., 2005). These
findings have changed the traditional view of “one disease–one
microbe” as many microbiome-related diseases are now thought
of as a consequence of microbial community imbalances, better
known as dysbiosis. This means that sickness arises not only
from the presence of certain species, but also from their absence,
relative abundance and/or interactions (Petersen and Round,
2014). For instance, microbial community disruptions are known
to play a fundamental role in the progression of disorders such as
irritable bowel disease (IBD), obesity and diabetes. Oppositely,
high diversity and temporal stability of the gut microbiome are
important characteristics of health. Detrimental states such as
Crohn’s disease and aging are commonly associated with a low
diversity profile (Dicksved et al., 2008). There are, of course,
examples of particular bacterial strains that are crucial to the
progression of a disease such as Helicobacter pylori and the
development of gastric cancer, but they are less common than
previously thought (Perry et al., 2006; Spor et al., 2011).

One of the current major challenges in microbiome research
is determining how essential the presence or absence of certain
microbial species is to the development of a disease. Abundance
of a species in the microbiome is not always an indicator of
its importance in the development or presence of a trait. A
seemingly innocuous initial imbalance in the microbiota can
be further amplified via the action of specific pathogens that
may have very low abundances. In periodontal inflammation,
for example, it has been shown that certain keystone pathogens
can magnify the virulence of the overall microbial community
by disabling the immune response (Lamont et al., 2015). In
addition to these innate pathogens, we know that certain bacterial
species can suddenly become pathogens. These microbes, known
as pathobionts, are relatively common in the normal microbiota,
but given certain conditions, such as a mild loss of homeostasis
in the host, they become amplifiers of imbalance. Through
processes that promote inflammation in the host, or through
the production of bacteriocins, these pathobionts can promote
the pathogenicity of other strains in the microbial community,
which naturally leads to further and stronger disruptions (Cho
and Blaser, 2012).

SHAPING OUR MICROBIOME

The interaction between microbiota and host is bidirectional,
as the host also affects the development and stability of its
microbiome. Firstly, changes in the host’s diet and nutrition
status can modify its microbial composition and behavior. Diets
composed entirely of animal products are known to increase
the abundance of bile-tolerant microorganisms like Bilophila and
Bacteroidetes, whereas plant-based diets increase the abundance
of Firmicutes that metabolize plant polysaccharides. These
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changes can be observed in the lapse of a week. In addition
to changes in diet, exposure to antibiotics in food or clinical
treatments can also have a fast and profound effect in the
functioning and composition of the microbiome. It is known
that the microbiome composition of an adult is relatively
stable, but antibiotics, especially broad-spectrum, can kill entire
communities of commensal microbes and also create a peak
in the abundance of antibiotic-resistance genes (Yassour et al.,
2016). A 5-day course of ciprofloxacin decreases overall bacterial
diversity and changes the abundance of 30% of the species in
the gut microbiome (Dethlefsen et al., 2008). Antibiotics equally
affect non-pathogenic (commensal) microbes, often associated
with the correct functioning of our metabolic processes and
the development of our immune system. Their elimination can
lead to an altered metabolism and to a malfunctioning immune
response which in turn may induce additional imbalances in
the microbiome. This can lead to pathogenic environments
such as gut inflammation and an increased susceptibility to
intestinal infections, as well as to further imbalances. Due to
the interdependence of species, the removal of some strains
(or specific functionalities) could also generate cascading effects
in which microbes that were unaffected by the antibiotics
themselves become extinct all the same, since they depend on the
presence of other species. This interconnectedness is one reason
behind the non-linear dynamics of the microbiome (Foster et al.,
2008; Cho and Blaser, 2012).

Apart from their clinical use, antibiotics have several
applications in cattle raising. Sub-lethal doses of antibiotics
are commonly administered to livestock not only to prevent
infections but also as growth enhancers. This observed weight
increase in animals is now known to be related to a change in
the metabolic capability and structure of the microbiome (Cho
et al., 2012). Furthermore, antibiotic-resistant strains are strongly
selected in these environments making multi-resistant pathogens
like Clostridium difficile highly pervasive. In fact, infections by
this pathogen are known to persist in human hosts even after
the removal of the drug (Chang et al., 2008; Manges et al.,
2010). Recent evidence shows that the backlash of antibiotic
usage can last for weeks or even months after the removal of the
antibiotic (Dethlefsen et al., 2008). According to meta-genomic
studies, previously-undetected resistant genes appear in human
fecal samples after a week of exposure to cefprozil (Raymond
et al., 2016). Genetic horizontal transfers also play an important
role in microbiome diversity as it can trigger a fast acquisition of
resistant genes in many previously susceptible strains. It is thus
not surprising that the overuse of antimicrobials in both clinical
and agricultural contexts has been associated with the increased
incidence of resistance strains worldwide (Raymond et al., 2016).

HORIZONTAL AND VERTICAL MICROBIAL

TRANSMISSIONS

In 2013 C. difficile infections (CDI) were cataloged as an
urgent threat in the report of antimicrobial resistance by the
Centers for Disease Control and Prevention of the United States.
CDI has a recurrence of about 15–30% and implies patient

deconditioning, malnourishment and re-hospitalizations, among
other inconveniences. Current treatments are based mainly
on antibiotics and have a success rate between 30 and 80%,
with recurrent infections being much harder to treat. However,
transplants of whole microbial communities have shown great
potential to control the growth of this pathogen (Khoruts et al.,
2009). Thesemicrobial transplants (MT) consist inmoving whole
communities of microbes, typically from adult fecal samples,
from one individual to another. By reintroducing possible
missing species, this technique aims to restore the balance of
the gut microbiome and diminish any dysbiosis that could
have been promoted by the pathogen in the first place. As has
been shown recently, after MT the microbiome composition of
infected patients closely resembles that of healthy individuals
(Weingarden et al., 2014) showing that MT can stably modify
the microbial composition of the patients. Procedures using fecal
MT have yielded success rates of nearly 100% in treating CDI
with almost no side effects (van Nood et al., 2013; Li et al., 2016).
This shows that a disease phenotype can be modified through the
introduction of new microbes.

Another example of a microbiome-related disease is obesity,
which affects more than a third of the worldwide population
aged >20 years. This disease is a classic example of a
complex trait to which genetics, diet, physical exercise and
several other components contribute. Medical procedures
that aim to treat these factors individually have shown a
low success rate. Microbial transplants, however, have been
proposed as a potential solution due to their high success
rate observed with treating infections. Although, several studies
have encountered differences in microbial phyla between obese
and lean individuals, their relative proportions have not been
consistently reported (Jayasinghe et al., 2016), making it difficult
to propose a specific phylum responsible for obesity. In this
sense, microbial changes associated with obesity probably have
to do with subject-dependent microbial population structures,
such as the relative abundances of certain species or functions,
rather than with the presence or absence of a particular phylum
(Walters et al., 2014). As of today, MT has not yet been approved
for tests in humans to treat obesity. However, it has been
reported that when a lean individual received the microbiota
from an overweight person in order to treat a CD infection,
the recipient experienced significant weight gain suggesting that
human weight can also be modified by MT (Alang and Kelly,
2015).

MT in humans is now highly regulated by law and requires
special permits to be implemented, so the vast majority of
research with MT is done in mice. Specifically, germ-free (GF)
mice are commonly used as recipients for microbial transplants.
GF mice are a subset of a broad category of animals termed
gnotobiotic, which include all animals that have a specific and
known microbiota in them, including animals that lack any
kind of microorganism. GF mice have proved to be excellent
models for studying microbial transplants, because the microbial
community of the host is controlled, and so are many other
variables such as genetics, diet, and environment. It has been
observed that the obese phenotype can be transmitted through
microbial transplants in GF mice (Turnbaugh et al., 2006). GF
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mice that received microbial communities from obese mice
exhibited a significant increase in body fat compared to GF
mice that received MT from lean donors. Despite that microbial
communities in mice differ from those in humans, similarities in
gut microbiome between them have been found. One example is
the proportion of Bacteroidetes/Firmicutes in obese as opposed
to lean subjects, making it seem that these animals are good
proxies for human gut studies. In fact, cross-species MT have
been successful between humans and mice. After transplanting
fecal microbial communities from an obese human to GF
mice, human microbes were established and transmitted across
generations of mice along with the obese phenotype, suggesting
that important phenotypes can be transmitted across multiple
generations through the microbiome (Turnbaugh et al., 2009b).

Apart from these examples of horizontal MT, there are natural
and vertical ways to pass microbial communities from parents
to offspring. The mode of delivery at birth, for example, has an
important effect in the development of the child’s microbiome
(Dominguez-Bello et al., 2010). When meconium samples were
analyzed for microbes, it was observed that babies born by
cesarean section had a microbial composition similar to the one
present in their mother’s skin. In contrast, the microbiota of
vaginally-born infants was more similar to that of the mother’s
vagina. Furthermore, the microbiome from cesarean-section
newborns was associated with a greater risk of CDI, and a lower
Bacteroides colonization which is linked to obesity. This same
group of children displayed a 46% increase in obesity and a
20% higher risk of developing type 1 diabetes when compared
to vaginally-born children (Cardwell et al., 2008). It has been
hypothesized that initial bacteria play an important role in
determining the establishment of other strains (Fanaro et al.,
2007) and promote the proper establishment of the rest of the
gut microbiome.

Breastfeeding is another vehicle of vertical microbial
transmission in humans. Important microbial differences
between formula-fed and breast-fed infants have been observed.
Breast-fed neonates regularly show a higher abundance of the
genus Bifidobacteria, which has been associated with health
whereas formula-fed neonates have a lower microbial diversity
which is commonly associated with disease (Koenig et al., 2011;
Hermsen et al., 2012). In addition to the direct influence of the
mouth-skin contact in breast-fed infants, the dietary components
of human milk can influence the development of the child’s
microbiota. Important bioactive metabolites that are found in
human milk can contribute to the development of the immune
system as well as to the absorption and digestion of nutrients
(Le Huërou-Luron et al., 2010; Horta and Victora, 2013). Milk
oligosaccharides are the third largest component in human milk
and are indigestible by humans. These compounds function
as nutrients for intestinal microbes such as Bifidobacterium.
Breast-fed infants that harbor higher abundances of these genera
have been associated with the fortification of the gut mucosal
barrier and exhibit a better immune response, improving their
protection against pathogens (Liévin et al., 2000). Although
delivery and feeding methods probably play the most important
role, recent experiments suggest that the gut microbiota
colonization may start while the baby is in the uterus (Jayasinghe

et al., 2016). Although more tests are needed to establish which
of these vertical microbial transmissions are more significant, it
is important to note that vertical transmissions of microbiota
occur, and have repercussions in the health of the offspring.

These experimental observations strongly suggest that there
are several ways in which we can inherit microbes from our
parents. However, the question of how this inheritance modifies
the heritability of our phenotypes remains unanswered. When
estimating the heritability of a phenotype, it is crucial to be
able to separate genetic from environmental factors. As discussed
above, the microbiome is involved in the development of several
phenotypes, and its composition and genetic plasticity can
change with environmental cues. This fact further complicates
the separation of genetics and environment in any phenotype that
has a microbial component. Nonetheless, heritability calculations
that only consider human genetic variables may lead to
incomplete results, as there is a close relationship between our
genetics and our microbial communities.

THE GENETIC CONTEXT OF OUR

MICROBIAL COMMUNITIES

The human body does not only provide a relatively stable and rich
environment for its microbes, but also affects their composition
and behavior. Gut microbial species and their abundances are
being constantly controlled by the release of antimicrobial
peptides in the intestinal epithelium. It is known that for
the majority of human body parts, host genetics have been
associated with the establishment and stability of the microbiome
(Blekhman et al., 2015). For instance, some individual genes
are known to greatly influence the diversity and structure of
the gut microbiome, in addition to being associated with the
progression of disease. The LEP gene, also known as OB or
leptin-encoding gene represents a good example. This particular
hormone acts as a cytokine and is known to control appetite,
energy expenditure and other metabolic processes that alter our
microbial composition. LEP secretion is directly linked to the
amount of fat in the host, which is also associated with the
proliferation of specific microbes. Mice with disrupted versions
of the leptin gene (ob/ob) develop gut dysbiosis. In these animals
the Bacteroidetes phylum has lower abundances when compared
to normal mice (OB/OB) (Ley et al., 2005), and this change
leads to an increased capacity for harvesting energy from diet,
therefore increasing adiposity in the host (Turnbaugh et al.,
2006). For additional examples of gene alterations that directly
affect the composition of the microbiome see Spor et al. (2011).

Among all possible human genetic variation, the one
occurring in genes related to the immune response has one of the
highest potentials to influence microbial composition. Mutations
occurring in genes directly involved in our immune system,
such as those affecting immunoglobulins, HLA, or defensins,
can change how we interact with our microbes—pathogens
or otherwise. GWAS have provided techniques to examine
the correlation between host genetics and microbiome traits.
However, instead of analyzing specific genes and their effects on
the microbiome, these studies have looked into human genetic
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diversity and its relation with the heterogeneity of microbial
species, their relative taxa abundance and their functionality. By
studying the genetic and microbial compositions of nearly 100
subjects, Blekhman et al. discovered that a positive correlation
exists between similarity in genome sequences and similarity in
the microbiome (Blekhman et al., 2015). In fact, in two thirds of
the body sites tested, substantial associations arise between host
genetics and microbiome composition, specifically in immune-
related pathways. Interestingly, the associated human genomic
regions showed high levels of differentiation, suggesting the host’s
genome adapts to specific environments and microbes.

Since our genetics influence our microbiome and vice
versa, the fact that human-associated microbes and their
respective abundances are highly personalized becomes more
understandable. Nowadays, studying the less dominant taxa of
a sample allows researchers not only to discriminate obese from
lean individuals, but also to detect the part of the body where
the sample came from, and even to discover the identity of the
host within a group of individuals (Ursell et al., 2012). Around
106 biological particles per hour are emitted from the human
body to its surroundings. Therefore, apart from the common
fecal sample analysis, most people can also be identified from
their personal airborne release of microbes (Meadow et al., 2015).
This result is, at first glance, at odds with the high variability
of the microbiome throughout the development of a single
individual, since the composition of the microbiome depends on
diet and other environmental factors. However, it is precisely the
characterization of abundances of rare microbial species—which
may differ even if individuals live in a shared environment—
that makes the personalization of the microbiome possible. This
high personalization suggests a deep relationship between human
genetics and microbial composition, supporting the idea that
phenotypic resemblance within individuals may come not only
from human genes, but also from microbial ones. Analogously,
recent experiments have demonstrated that ethnicity and family
bonds also correlate with the whole microbial composition.
By analyzing fecal samples from Malawian and Venezuelan
Amerindian families and comparing them to samples taken from
the United States, Yatsunenko et al. discovered that microbial
diversity was much more similar between geographically close
individuals (Yatsunenko et al., 2012) than between individuals
living in distant regions. Furthermore, early studies of the
horizontal and familial transmission of bacterial strains in
humans showed that specific strains of H. pylori were shared
only between people that had frequent physical contact. In
particular, H. pylori isolates were shared across nuclear family
members in the United States, but not in South Africa. The
authors suggest that this is probably due to the fact that physical
contact in South Africa is more common between people without
any kinship, in stark contrast to social norms in the United
States (Schwarz et al., 2008). Taking into account the high
rates of microbial interchange between our personalized clouds
of microbes, physical interaction with strangers could be an
important factor for the configuration of our microbiome. These
results show that microbiome composition can be influenced not
just by our genetics, but by our behavior and our surroundings
as well, making it harder to separate environmental from genetic

components. Since ethnicity and consanguinity are proxies for
genetic similarity, microbiome-related phenotypes may appear
to have a strong human-genetic component in familial studies if
microbiome similarity is not taken into account, as ethnicity is
related to habits and behaviors. The calculation of the heritability
of a phenotype that is influenced by the microbiome can be
strongly biased if the microbiome diversity is not taken into
account, since microbial composition can be influenced by those
common habits and behaviors. Thus, two individuals with a close
genetic similarity due to ethnicity but different eating habits may
display low phenotypic resemblance but high genetic similarity,
which biases the calculation of the heritability of the phenotype
in question.

In a nutshell, the microbiomes of related individuals are
more similar than those of non-related individuals (Ursell
et al., 2012). Microbial transfers can occur between individuals
that have physical closeness or live in a similar environment,
such as relatives in a family. Thus, if the development of a
phenotype is related to the microbiome, looking only at single
human genetic polymorphisms will not reveal the resemblance
in genetic content and functionality between microbes belonging
to different individuals. Consequently, a gap between phenotypic
variance and observed genotypic variance will emerge with high
estimates for the heritability measured in familiar clusters and
low estimates in GWAS.

GWAS AND MWAS

Twin studies are an excellent source of information regarding the
extent of the influence that our genome has over ourmicrobiome.
Possible human genetic influences on the microbiome might
be far more easily understood in complex traits, like weight
gain, when individuals are genetically identical. Weight gain is
known to have a significant genetic component, but also has a
strong microbial influence. Genetic variation and factors such
as exercise and diet have been shown to influence weight gain.
By studying this phenotype as a response to diet in twins,
the similarity in phenotypes between twins (in the same pair)
was about three times higher than among twin pairs (different
pairs), suggesting that the stronger the genetic similarity between
individuals, the lower the variation in phenotype (Bouchard
et al., 1990). Nevertheless, this study only looks at human
genetic identity, assuming it from kinship, but does not look
at microbiome resemblance. Phenotypic similarity in identical
twins may come from the fact that both have a more similar
microbiome between them than among other twins (possibly due
to similar environmental factors), and the observed resemblance
in weight gain is not only due to genetic variation in human cells,
but in microbial functionalities. Dietary bias, for instance, has
a high correlation in twins. Food choices are significantly more
alike between monozygotic twins (MZ; “identical twins”) than
between dizygotic twins (DZ: “fraternal twins”), and a similar
result was observed with responses to exercise (Savard and
Bouchard, 1990). Despite the fact that the relationship between
these factors and the microbiome is yet to be fully determined,
it is well established that diet and exercise are directly related to
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weight gain, and also have an effect on ourmicrobial composition
(Spor et al., 2011; Kang et al., 2014).

Heritability studies often use MZ and DZ twins in order to
have more control over both genetic and environmental factors.
In such studies, heritability is usually measured by comparing
the correlation level of a particular phenotypic trait between
MZ and DZ pairs. Concretely, Falconer’s formula states that the
heritability of a trait can be measured by

h2 = 2 (RMZ − RDZ) ,

where h2 indicates the heritability of the phenotype and R is
the correlation between each pair of twins. Consequently, if
RMZ > RDZ , the trait will have some degree of heritability, since
the phenotype variation correlates with genetic identity. Early
studies of the heritability of the microbiome found that there is
greater similarity between the microbiota of MZ twins than that
of DZ twins (which means that RMZ > RDZ for the microbiota,
Zoetendal et al., 2001; Stewart et al., 2005) and this finding has
been confirmed recently (Goodrich et al., 2014, 2016). Therefore,
if the composition of the microbiota is considered as another
phenotype, the fact that RMZ > RDZ for the microbiota indicates
that there is a certain degree of heritability. Several microbial
groups were observed to be heritable across generations, and
human-microbial gene associations were also found, lending
further credibility to the idea that our gene content influences our
microbiome, and our microbiome influences our phenotypes.
Hence, although many environmental factors play important
roles in structuring the microbiome, genetic components seem
to play a role too. It is worth noting that these studies look at
the heritability of particular taxa or phyla of microbes, which as
we discuss below, may not be as important as looking at their
functions.

Controversially, there is another twin study that did not detect
any heritable components of the microbiome (Turnbaugh et al.,
2009a). In this study, the diversity of the fecal microbiome
analyzed for each individual twin was measured through 16S
rRNA sequences. The degree of similarity between MZ and DZ
pairs was measured through the widely used UniFrac distance
and their results showed no significant difference between RMZ

and RDZ , suggesting a lack of heritability of the microbiome.
No phylotype was found to be present at an abundance of
more than 0.5% in all samples, reinforcing their conclusion.
As a matter of fact, when healthy populations were screened
for shared microbial taxa, no particular taxa were observed to
be universally present among individuals (Huttenhower et al.,
2012). These results may suggest that the heritability of the
microbiome is weak or circumstantial. However, it is important
to remember that UniFrac distance does not account for the
functionality of the microbiome, which can be different even
between phylogenetically close individuals. UniFrac distance is
a β-diversity measure (diversity between ecosystems), where
the microbiome of two individuals will be more similar if the
members of their microbial communities are phylogenetically
close. In this sense, the functionality of the microbiome is
assumed to be a consequence of phylogenetic resemblance.
We now know that phylogenetic closeness does not necessarily

imply similar functionality. In fact, a metagenomic approach
that analyzed the gene content of the microbial communities
in twins, uncovered many genes that were shared between
them. However, they did not calculate the heritability of the
microbiome using these data. Nonetheless, these results allowed
for the identification of a “core microbiome” at the gene level
instead of at the species level. It is therefore reasonable to
think that it is the functionality of our microbes that is being
strongly selected for. The functionality of the microbiome is
not necessarily linked to specific taxa, as is often assumed in
microbiome-disease associations. As previously discussed, the
taxonomical diversity of the microbiome across individuals is
very high, while the metabolic pathways remain relatively stable
(Huttenhower et al., 2012). Even within the same genus, different
strains can have very distinct metabolic pathways (Huttenhower
et al., 2012). For instance, when the carriage of Streptococcus
was measured in more than 200 individuals, the abundance of
each Streptococcus species varied widely across them. Strain-level
genomic variation and gene losses were very high, suggesting
a link between the abundance of individual strains and the
presence of different metabolic pathways. These events were
related to host-specific genomic variants, which indirectly imply
that the functional diversity of Streptococcus species within an
individual will depend in part on the genetics of the host,
and not so much on having specific strains of this bacteria.
This suggests that the heritability of any microbial-associated
trait is most likely to occur in terms of functional pathways as
opposed to specific strains. Although circumstantial, the evidence
presented so far strongly suggests that it is important to integrate
the genotypic and functional diversity of our microbes into
phenotypic association studies, and therefore into heritability
estimates. In the section below, we point out somemethodologies
that incorporate the functional diversity of the microbiome into
phenotype prediction.

HERITABILITY REVISITED THROUGH

MWAS

Nowadays, the most advanced way to correlate human
phenotypes with microbial genetic diversity is through
Metagenome-Wide Association Studies (MWAS). These
studies are largely based on the previously discussed GWAS,
but instead of reporting individual SNPs associated with specific
traits, MWAS measure the genetic diversity and composition
of a complete microbiome sample and try to correlate it with
a particular phenotype. One of the main advantages over
ribosomal 16S studies is that MWAS provide enough resolution
to look for enriched or impoverished metabolic pathways that
could be involved in the presence of the phenotype at issue.
MWAS can give a quantification of the abundance of the genes
involved in each metabolic pathway, making it possible to
identify bottlenecks in such pathways, or even missing links that
can delay or prevent certain reactions from occurring.

MWAS, although expensive, is an undoubtedly powerful
approach to analyze the way in which the microbiome can
influence human phenotypes and to discover the mechanisms by
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which microbes interact with our bodies. Thanks to the Human
Microbiome Project cheaper low-depth sequencing techniques
are available that yield reasonable descriptions of human
microbial samples. These techniques, such as shallow-shotgun
sequencing, map the sequenced reads to previously-assembled
genomes. With this mapping, researchers can infer, from fewer
sequences, which organisms are present in their samples, as
well as which genes and in what abundance. This correlation
can also be computed by sequencing the transcriptome of the
microbiome and then correlating the levels of the transcripts
obtained with specific human genotypes. This type of correlations
are commonly tested with expression quantitative trait loci
(eQTLs), in which particular genotypes are correlated with the
expression levels of a certain gene. Any of the above-mentioned
methods is expected to outperform the widely used 16S studies
in terms of the depth of information obtained, since they can
describe the species of the sample as well as their abundances and
functionality.

There are several important considerations that should be
taken into account when trying to estimate the heritability of
a phenotype through the inclusion of microbial data. First of
all, despite that microbial composition may depend on our
genetics to a certain degree, microbial genes are not ours. If
we use the definition of heritability as the proportion of total
phenotypic variance explained by the human genetic variance,
microbes would be considered as external to our genetics.
However, if we consider ourselves as an ecological system or
holobiont, microbes and their genes are a significant part of
it, and as we have discussed, they are capable of influencing
our phenotypes. Thus, including their genes is only natural
if we are to understand how heritable a phenotype is, and
close the gap with familial studies estimations. Secondly, it
has become apparent that microbial composition is strongly
dependent on the environment. Since heritability is associated
to genetic variance and not to environmental aspects, particular
attention has to be paid to separate environmental factors
from genetic ones when including microbial genetics. It appears
that the microbiome blurs the line that separates genetic
and environmental forces acting on phenotypes, as genetic
components of the microbiome are much more flexible than
our own and can change depending on external factors such
as antibiotic ingestion, infections, dietary changes, etc. This
flexibility makes the analysis more difficult, as taxa can change
over a short time. However, gene content has proven to be a
more consistent measurement in time and across individuals, to
the point that a core microbiome can be defined in functional
terms. This can prove useful when determining the microbial
genetic factors that influence the development and heritability
of a phenotype. Integrating data coming from GWAS and
MWAS is not simple. GWAS data is categorical and each SNP
has a discrete set of values. Values can be either 0, 1 or 2,
depending if the genotype is homozygous for the major (0) or
minor allele (2), or heterozygous (1). However, MWAS deals
with continuous amounts. In fact, taxa abundance is not only
continuous, but is also given in terms of relative abundance.
Hence, careful normalization must be carried out before any
valuable interpretation can be given. Microbial functional data is

also given in terms of abundance, so each gene or gene cluster has
a corresponding abundance whose correlation with the presence
of the phenotype can be assessed. One possibility to incorporate
microbial data into GWAS to estimate the heritability of traits,
is to discretize the continuous variable into bins as is usually
done in data mining techniques. This discretization may not be
straightforward, as it may depend on the observed values in the
population. However, once this step is achieved, several methods
to estimate correlations with phenotype are already available
(Lee et al., 2011; Bloom et al., 2013). If properly designed,
twin studies can be of much use to control environmental
and human genetic factors. For instance, follow-up studies that
analyze the microbiome of twins in its infancy, when diet
and behavioral habits are almost identical, can provide insights
into how its composition is modified later in life, when such
environmental factors are no longer similar. This may help
explain to which extent the environment influences microbial
composition, and how much of this variance correlates with the
appearance of conditions such as obesity, diabetes, or several
other gastrointestinal diseases. Finally, microbiome composition
and functionality is known to change with age, gender and
ethnicity, so other important factors to consider in the design of
the study should involve population stratification. Calculating the
heritability of a trait using GWAS and MWAS is certainly not
a straightforward task and new statistical techniques will need
to be developed. However, we believe that it is a worthwhile
undertaking, since suchmethods will no doubt play an important
role in the proper assessment of the role of our microbiome
in our physiology and evolution, in the emerging paradigm of
organisms seen as ecosystems.

Several techniques are available to calculate the heritability of
a phenotype based on GWAS studies (Zaitlen and Kraft, 2012).
As we show below, several of these techniques can be adapted
to include microbial metagenomic data to estimate the narrow
sense heritability of a particular phenotype. Mathematically, the
narrow sense heritability is defined as

h2 =
σ 2
g

σ 2
P

,

where σ 2
g is the additive genetic variance, and σ 2

P is the
phenotypic variance defined as

σ 2
P = σ 2

G + σ 2
E + 2σ 2

G,E.

In the last expression, σ 2
G is the total genetic variance, σ 2

E is
the environmental variance, and σ 2

G,E is the covariance between
genetic and environmental components, which is often assumed
as being nonexistent. In the additive model, phenotype of an jth

individual (yj) is defined by the sum of the lineal effects of its
genetic variants:

yj = m+
∑

i ∈ C

zij∗αi + εj.

In this equation m is a constant derived from the linear
regression, zij are the normalized genotypes shown below (which
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will represent discretized abundances in MWAS), C is the
collection of genotyped SNPs (genes or gene clusters in MWAS),
αi is the effect size for each variable and εj is the environmental
contribuition. The normalized genotype zij is calculated as
follows

zij =
gji − 2pi

√

2pi (1− pi)
.

When this formula is used to calculate the heritability of a
phenotype using human genotypes obtained from GWAS, gji

represents the ith genotype of the jth individual with values.
gji ∈ {0, 1, 2}, depending on the jth individual being

homozygous for the major allele (0), heterozygous (1), or
homozygous for the minor allele (2) in the ith SNP. Here pi
is the probability of the minor alleles in the ith SNP. In GWAS
the heritability of a trait is then calculated as the sum of the
squared effect sizes for each normalized genotype (Zaitlen and
Kraft, 2012):

σ 2
g =

∑

i ∈ C

α2
i .

The effect size is often calculated through the Cohen’s D
parameter, which measures how big the effect of a particular SNP
on the phenotype is.

However, the new metagenomic techniques allow us to
calculate the effect size using abundances of particular microbial
functions/genes instead of genotypes. This is so because MWAS
report the abundance of all genes in the microbiome regardless
of the particular organisms they belong to. These abundances
must be discretized into k-values (or categories) for each gene
in the population. After this categorization of each microbial
gene/function for each individual, the effect size can then be
calculated as

αik =
x̄ik − µ

σik
,

where x̄ik is the mean phenotypic value of all the individuals
pertaining to a category k of gene i, µ is the mean phenotypic
value of the population, and σik the phenotypic standard
deviation. It is important to note that several definitions of
the effect size exist depending on the selection of the standar
deviation σik. For instance, Cohen’s D uses

σik =

√

(nik − 1) S2ik +
(

n̂ik − 1
)

Ŝ2
ik

nik + n̂ik − 2
,

where nik is the number of individuals in the population that
belong to the kth category of the ith gene and Sik is the
standard deviation of this quantity, whereas n̂ik and Ŝik are the
corresponding quantities for individuals that do not belong to the
kth category of the ith gene.

With this effect sizes calculated for each category in each
microbial gene, we can now compute the linear contribuition of
the microbial genes to the heritability of the trait in question.
Since the population phenotypic variance is normalized to 1,

σ 2
P = σ 2

g + σ 2
E = 1, the microbial contribuition for the narrow

sense heritability can be directly obtained as:

h2MWAS =
σ 2
g

σ 2
g + σ 2

E

= σ 2
g ,

where now σ 2
g is the sum of all the α2

ik
computed using gene

abundances. Since h2MWAS estimates the linear contribuition of
genetic microbial components to the heritability of a phenotype,
it can be directly added to the heritability calculated through
GWAS. We propose that the total narrow-sense heritability of a
phenotype has to be computed as

h2 = h2MWAS + h2GWAS

CONCLUSIONS AND PROSPECTS

To summarize the ideas presented in this paper we consider
human weight as an example of a trait where both human and
microbial genetics are key factors to understand the missing
heritability problem. The first estimates of the heritability of body
mass index (BMI), taken from twins and family studies, were
around 45%.More recent studies found heritability to be between
50 and 90% (Elks et al., 2012) but when GWAS was used to
search for single nucleotide polymorphisms correlated with BMI,
the ones found were only able to explain 2% of the phenotypic
variation. This result clearly exemplifies the missing heritability
problem, given the huge gap between the two measurements.
Obesity is without a doubt a multifactorial disease that involves
genetic and environmental factors. However, maternal obesity
and diabetes are consistently among themost powerful predictors
of childhood obesity (Redsell et al., 2013). A maternal Western
diet has been shown to promote lipotoxicity and fatty liver disease
in mice. In addition, it reduces the diversity of the intestinal
microbiota which, along with lipotoxicity and fatty liver, persist
in offspring, even after changing to a healthier diet. Note that it
is particularly significant for our hypothesis that offspring display
lack of microbial diversity too (Brumbaugh and Friedman, 2014).
From these and other studies (some of which were discussed
before) we conclude that the inheritance of such obesity-related
treats cannot be attributed only to the transmission of the mice’
genes. This in turn suggests that an initial imbalance caused
by exposure to an obesity-related microbiota from overweight
parents (breast feeding, uterus colonization or delivery mode)
can have lingering consequences and can lead to the development
of obesity in offspring. MWAS and 16S rRNA sequencing have
shown a clear difference between obese and lean individuals in
terms of species diversity and gene count (Le Chatelier et al.,
2013). These observations strongly suggest that, when it comes
to phenotypic variation in BMI, microbial composition plays
an important role in determining weight gain. It follows that
estimates of heritability of weight gain in familial studies may
seriously overestimate the role of human genetics (heritability
up to 90% compared to 2% in GWAS) and, in accordance
to our hypothesis, probably such heritability arises from linear
genetic effects of the microbes that are shared in such families.
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We suggest that most estimates of the heritability of BMI, and
other human phenotypes, will be significantly improved if the
similarity between microbial composition and function is taken
into account.

To make this paper self-contained we first reviewed the
role of the microbiota in physiology. We then presented
evidence supporting the hypothesis that the microbiome must be
considered in order to improve our estimates of the heritability
of phenotypes. Our line of thought has been as follows. To begin
with, GWAS have not been able to find the reported heritability
obtained from twins and other familial studies. Even though
epigenetics and epistasis have been proposed as alternative
sources of phenotypic variability, no consensus has been reached
regarding the causing mechanisms or the vehicle for heritability.
Furthermore, no research so far has considered the microbiome
and its functional and genetic potential in attempting to solve the
missing heritability problem. It is crucial to take into account
this enormous source of variability, as has been demonstrated
by the large number of phenotypes it affects. Examples of
this include the development of the immune system, obesity,
diabetes, Crohn’s disease, irritable bowel syndrome, cancer and
neurological disorders. We have also emphasized in this paper
the fact that our body can have a strong influence on the
structure and composition of our microbiota. Diet modification
and antibiotic usage are known to change our microbiome
in fast, drastic and sometimes permanent ways. Additionally,
metabolites released by our body can regulate the behavior
of our microbial communities, which is an indicator of the
ecological interconnectedness of the microbiome with human
physiology. In terms of the inheritance of these microbes, it
has been proved that both horizontal and vertical transmission
between individuals take place, and that these transmissions
are able to influence the receptor’s phenotypes, such as making
it more susceptible or resistant to disease. The nature of the
particular microbes that are successfully transmitted between
individuals may also depend on the genetics of the host. But
since kinship or ethnicity are not only proxies for genetic identity,
but also for behavior and diet (which may shape microbial
composition), estimates of heritability based on family studies
that do not consider the genetic variation of our microbes gives
rise to the perception that phenotype variation is only due
to human genetic resemblance. Since the correlation between

microbiome composition and ethnicity or kinship could be
caused by shared environments, similar diets, and other habits,
studies with monozygotic and dizygotic twins that allow a
certain degree of control over these variables must be developed.
Some studies have shown only a slightly greater similarity
between the microbiota of MZ twins than that of DZ twins,
whereas other studies showed that no specific taxa were being
inherited and that the microbiome varies by a very small amount.
Nonetheless, when the functionalities of these microbiotas were
considered, many shared genes were indeed found, allowing for
the identification of a “core microbiome” at the functional level
instead of at the species level.

We have suggested in this paper that when assessing the
heritability of any human trait, searching for shared microbiome
functionalities between the studied groups, instead of specific

taxa, is of the utmost importance. Promising approaches to
achieve this include combining GWAS and MWAS, data mining
algorithms such as decision trees, Bayesian inference and
supervised classificators, among others. Such an integration of
the genetic diversity of the individual and its microbiome will
most likely result in a more accurate calculation of the heritability
for many important phenotypes, not only in humans but in
livestock and plants as well.
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