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Advances in DNA sequencing technologies have allowed the characterization of somatic

mutations in a large number of cancer genomes at an unprecedented level of detail,

revealing the extreme genetic heterogeneity of cancer at two different levels: inter-tumor,

with different patients of the same cancer type presenting different collections of somatic

mutations, and intra-tumor, with different clones coexisting within the same tumor. Both

inter-tumor and intra-tumor heterogeneity have crucial implications for clinical practices.

Here, we review computational methods that use somatic alterations measured through

next-generation DNA sequencing technologies for characterizing tumor heterogeneity

and its association with clinical variables. We first review computational methods for

studying inter-tumor heterogeneity, focusing on methods that attempt to summarize

cancer heterogeneity by discovering pathways that are commonly mutated across

different patients of the same cancer type. We then review computational methods for

characterizing intra-tumor heterogeneity using information from bulk sequencing data or

from single cell sequencing data. Finally, we present some of the recent computational

methodologies that have been proposed to identify and assess the association between

inter- or intra-tumor heterogeneity with clinical variables.

Keywords: cancer heterogeneity, mutations, cancer pathways, mutual exclusivity, clinical association

1. INTRODUCTION

Somatic mutations, alterations of the DNA which accumulate during the lifetime of an individual,
are the most common cause of cancer. High-throughput sequencing technologies now allow
to identify and catalog the entire complement of somatic mutations in a tumor (Mardis, 2008;
Meyerson et al., 2010) and many studies, including the ones from TCGA1 and ICGC 2, have used
these technologies to measure mutations in the whole exome or whole genome of hundreds or
thousands of tumors (e.g., see The Cancer Genome Atlas Research Network, 2017a,b for recent
studies). These studies provide a detailed characterization of the landscape of somatic mutations
in cancer, describing the hundreds-thousands of somatic mutations appearing in each tumor. Such
somatic mutations include single nucleotide variants (SNVs) as well as copy number aberrations
(CNAs), larger scale events which modify (by amplifications or deletions) the number of copies of
a DNA region. Only a handful of all somatic mutations, called driver mutations, confer selecting
advantage to cancer cells, while most somatic mutations are passenger mutations not contributing
to the disease (Garraway and Lander, 2013; Vogelstein et al., 2013).
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One of the most striking features of cancer mutational
landscape is its inter-tumor heterogeneity (Figure 1): no
two cancer genomes bear the same collection of somatic
mutations, with many pairs of tumors having no mutation
in common (Stratton et al., 2009), and a limited number of
mutations appear in a large fraction of tumors, with most genes
being mutated (by SNVs or CNAs) in < 5% of all patients with
a given cancer type (Ciriello et al., 2013; Kandoth et al., 2013;
Tamborero et al., 2013). Inter-tumor heterogeneity hinders
efforts to identify driver genes, bearing driver mutations, by
detecting frequently mutated genes, i.e., genes mutated in a
significantly high fraction of patients (Dees et al., 2012; Lawrence
et al., 2013). In addition, frequency-based methods may result
in several false positives (D’Antonio and Ciccarelli, 2013) since
genomic features not related to the disease, including (normal)
gene expression levels and replication time (Lawrence et al.,
2013), can nonetheless lead to a high mutation frequency for
a gene and must therefore be taken into account to identify
significantly mutated genes (Lawrence et al., 2014).

One of the causes of inter-tumor heterogeneity is the
fact that driver mutations target signaling and molecular
pathways (Vogelstein and Kinzler, 2004; Vogelstein et al.,
2013), groups of interacting proteins and genes performing
specific functions in a cell. Mutations in genes belonging
to cancer pathways lead to the acquisition of the biological
capabilities (e.g., resisting cell death and inducing angiogenesis)
or hallmarks (Hanahan and Weinberg, 2000, 2011) featured by
cancer cells. A cancer pathway may be altered by mutations
in any of its genes, leading to a wide spectrum of mutation
frequencies for genes in the same cancer pathway, with one
or few genes mutated with relatively high frequency and many
genes mutated at much smaller frequency, which may not
be sufficient for detection by frequency-based methods. In
addition, each cancer genome is exposed to different mutational

FIGURE 1 | Inter-tumor heterogeneity and its causes. Driver mutations (in red)

target genes which are members of different cancer pathways, sets of

interacting genes which perform specific functions and are altered in cancer.

Passenger mutations (in black) not related to the disease comprise the

majority of mutations in a tumor. Different mutated genes in cancer pathways

and different passenger mutations are observed in tumors of the same type,

with two cancer genomes often having no mutation in common.

processes characterized by different combinations of mutations
or signatures (Alexandrov et al., 2013b; Petljak and Alexandrov,
2016), with different cancer types presenting differentmixtures of
such signatures (Nik-Zainal et al., 2012a, 2016; Alexandrov et al.,
2013a, 2015, 2016). Studying and characterizing mutations at the
level of pathways is therefore crucial to deal with heterogeneity
for the identification of driver mutations and to identify common
themes extending the “rulebook” of cancer (McGranahan and
Swanton, 2015), with important implications in prognosis and
therapy (Swanton, 2016).

In addition to uncover such inter-tumor heterogeneity, cancer
genome sequencing has also uncovered intra-tumor heterogeneity
(Figure 2): a tumor is often composed by different populations of
cancer cells (Anderson et al., 2011; Gerlinger et al., 2012, 2014;
Schuh et al., 2012; Newburger et al., 2013; Bolli et al., 2014;
Brastianos et al., 2015; Gundem et al., 2015; Ling et al., 2015;
Sottoriva et al., 2015), called clones, arising from the evolutionary
process (Nowell, 1976) which starting from a normal cell leads,
through somatic mutations, to a collection of related but different
cancer cells (Greaves and Maley, 2012; Swanton, 2012). While
only providing measurements at the level of the entire cell
population, deep (e.g., >100-fold) bulk sequencing offers the
opportunity to study intra-tumor heterogeneity: the variant allele
frequency (VAF), or fraction of reads supporting a variant
among all the reads mapped to the same genomic location, of a
heterozygous variant in a diploid region is proportional to the
fraction of cells with the variant among all cells in the sample.
VAFs from a tumor can then be used to identify the various
clones present in a tumor. In addition, since the VAFs in a
cell are constrained by evolutionary relationships among the
clones in a tumor, they can be used to infer the evolutionary

FIGURE 2 | Intra-tumor heterogeneity and its causes. Cancer evolves from a

normal cell that accumulates mutations (in red, yellow, and blue), leading to

different clones, populations of cells of different genotypes, coexisting in the

same tumor. Bulk sequencing measures mutations from a sample of the

resulting cell mixture, that also comprises normal cells. The fraction of reads

supporting a mutation (VAF) is proportional to the number of cells with the

mutation in the sample.
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trajectory followed by the observed tumor (Ding et al., 2012;
Nik-Zainal et al., 2012b; Yates and Campbell, 2012; Burrell et al.,
2013). Understanding the clonal composition of a tumor is
crucial for prognosis and therapy (Greaves and Maley, 2012;
Swanton, 2012), since different clones may present drug resistant
mutations (Greaves and Maley, 2012; Swanton, 2012) and the
reliable characterization of the evolutionary history of a tumor is
needed to predict the development of the disease (Yachida et al.,
2010; Lipinski et al., 2016).

A more direct approach to study intra-tumor heterogeneity is
single-cell sequencing (Hou et al., 2012; Xu et al., 2012; Wang
et al., 2014; Navin, 2015a,b). Single-cell sequencing allows the
direct observation of the cooccurrence of mutations within cells
from different clones. However, single-cell data is currently noisy,
with high false-positive and false-negative rates for mutation
calls, and the number of cells that can be assessed is still limited
compared to the billions of cells in a tumor.

In this review we describe bioinformatic and computational
approaches to characterize cancer heterogeneity from next-
generation sequencing data. We consider methods to deal with
three aspects of cancer heterogeneity, after alterations such
as SVNs and/or CNAs have been identified in a tumor or
in multiple tumors (Raphael et al., 2014). First, we consider
methods that tackle inter-tumor heterogeneity by characterizing
tumor mutations at the pathway level. Second, we describe
methods to characterize intra-tumor heterogeneity by using
mutations from bulk sequencing or single-cell sequencing. Third,
we describe some methods to relate cancer heterogeneity with
clinical variables. The computational characterization of cancer
heterogeneity is a topic which has spurred a lot of work in recent
years and we only cover some of the tools that have been recently
proposed. In particular, we only focus on methods assuming
that somatic variants have already been called using one of the
many methods currently available (e.g., Lawrence et al., 2013),
and we refer the reader to other reviews discussing methods for
variant calling in cancer (e.g., Raphael et al., 2014). The methods
discussed in this review are mostly complementary, describing
different characteristics of inter- or intra-tumor heterogeneity,
which we believe constitute useful, multi-faceted information for
cancer researchers and practitioners.

2. METHODS FOR INTER-TUMOR
HETEROGENEITY

Several methods have been designed to characterize inter-tumor
heterogeneity by identifying pathways and processes altered
in a significant number of patients. These approaches can
be categorized into 3 classes (Figure 3): methods based on
predefined pathways; methods that extract pathways from a large
interaction network of genes or proteins; de novo methods that
do not use prior information of interactions among genes. Below
we review some of the representative methods in each class. In
general, the input to each method can be a list of genes mutated
in the patients cohort or a score (e.g., frequency of mutation, a
score reflecting the significance of the fraction of mutated genes
in the cohort; Lawrence et al., 2013, etc.) for each gene in the

FIGURE 3 | Computational analyses to characterize inter-tumor heterogeneity.

Starting from somatic mutations measured in many patients, different types of

analyses are possible: annotation and enrichment analysis for known

pathways; network analyses to discover significantly mutated subnetworks of

a large interaction networks; the de novo identification of pathways, based for

example on the identification of mutual exclusivity patterns.

cohort. As described below, while some of the methods require
in input a list of putative driver mutations, identified for example
by frequency-based approaches (e.g., Dees et al., 2012; Lawrence
et al., 2013), other methods try to leverage the information
regarding interactions among genes/proteins to identify novel
driver genes which cannot be identified by frequency-based
approaches. We highlight here the main methods that produce,
in output, pathways, or sets genes summarizing inter-patient
heterogeneity, while we do not consider methods which provide
instead a ranking of genes (e.g., Vanunu et al., 2010; Shrestha
et al., 2014), or which focus on patients stratification (e.g., Hofree
et al., 2013), or which combine mutations with other data types
(e.g., Vaske et al., 2010; McPherson et al., 2012; Paull et al., 2013).
See Creixell et al. (2015) for a more comprehensive review of
network approaches to analyze cancer genomes.

2.1. Pathway-Based Approaches
A common way to identify significantly mutated pathways is
to use predefined pathways, obtained from databases such as
KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2015, 2017)
and MSigDB (Subramanian et al., 2005; Liberzon et al., 2015),
an then asses whether the set of genes in a predefined pathway
is significantly enriched for mutated genes or scores compared
to the entire set of genes. The simplest approach is to assess
whether a list of mutated genes is enriched for genes in predefined
set of genes, for example by using an hypergeometric test on
the overlap of the intersection among the list of genes and
the gene set. There are several tools [e.g., DAVID (Huang
et al., 2009), g:Profiler (Reimand et al., 2016)], some of which
originally designed for gene expression data, that can be used
for gene lists obtained from mutation data. A common feature
of these approaches is that they require the definition of the
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list of mutated genes, commonly based on thresholds based on
frequency or statistical significance of single genes. An alternative
is to use Gene Set Enrichment Analysis (GSEA) (Subramanian
et al., 2005), a general methodology to assess the association of
a ranking of genes with a given gene set. The rank of the genes
can be obtained from the various tools mentioned above; for
example, Lin et al. (2007) used the Cancer Mutation Prevalence
(CaMP) scores (Sjöblom et al., 2006), but other scores can be
used. A different approach is taken by PathScan (Wendl et al.,
2011), that computes a p-value for the enrichment of mutations
in a given set separately for each patient, and then combines the
p-values across all patients. Similarly, the method from Boca et al.
(2010) defines, given a gene set, a score for each patient and then
combines such scores across all patients.

The methods above are useful to characterize inter-tumor
heterogeneity using known sets of genes and pathways, but
have some major limitations. First, they require the a priori
definition of the list of mutated genes, and therefore, while they
are useful in organizing a list of mutated genes into pathways,
they cannot be used to reliably identify novel driver genes.
Second, some of the genes sets from datasets are extremely large
(>300 genes). With such large gene sets it may not be possible
to identify a small subset associated with the disease. Third,
these methods ignore the interactions among genes in a network,
considering all genes in a pathway equally, without including
the topology of network in their analysis. Fourth, they consider
each set of genes as a separate entity, while it is well-known that
there is cross-talk among pathways, which interact into larger
networks (McCormick, 1999).

2.2. Network-Based Approaches
A different approach to characterize cancer inter-tumor
heterogeneity at the pathway level while not restricting to known
sets of genes is to use a genome-scale protein-protein interaction
network. Several computational methods that combine mutation
data and networks to infer gene sets have been designed. A
first class of methods (e.g., NetBox; Cerami et al., 2010) looks
for significant network modules among a list of genes which is
provided as input. Such approaches require to define a score
threshold to include genes in the analysis, limiting the possibility
of themethod to identify novel driver genes. A different approach
is to identify significant subnetworks (comprising connected
genes) that are significantly mutated in the patients cohort.
While allowing to expand from predefined sets of interacting
genes to general interacting subnetworks, the identification of
significantly mutated subnetwork presents computational and
statistical challenges. There is a huge number of subnetworks
which need to be screened and which need to be considered
into a multiple hypothesis testing framework to identify the
significantly mutated ones, therefore naïve approaches (e.g., the
enumeration and testing of all subnetworks) cannot be employed
and more sophisticated techniques are required.

HotNet (Vandin et al., 2011) and HotNet2 (Leiserson et al.,
2015a) address the challenges above by using a diffusion process
on a graph to combine gene scores with the network topology
while capturing the local structure of the network. A novel
statistical test is used by HotNet and HotNet2, allowing the

identification of a set of subnetworks while bounding the false
discovery rate (FDR). The combination of gene scores and
network topology solves the issue of choosing a threshold for the
inclusion of genes in the analysis and allows the identification of
subnetworks whose significance is due to the mutation scores of
the genes and the local topology of a subnetwork. In the analysis
of >3,000 samples from 12 cancer types from TCGA (Leiserson
et al., 2015a), HotNet2 identified 16 significantly mutated
subnetworks that comprise well-known cancer pathways as well
as subnetworks with less established contributions to cancer,
including the cohesin complex.

MEMo (Ciriello et al., 2012) is an algorithm that uses a
different approach to identify subnetworks: provided in input
with a relative short of list of (frequently mutated) genes
from which subnetworks (called modules) are to be found,
it identifies groups of genes sharing several neighbors in the
interaction network and showing significant mutual exclusivity
of mutations in the patients cohort. MEMo therefore identifies
modules summarize inter-patient heterogeneity through mutual
exclusivity, but it is unlikely to include in its modules genes that
are not significantly mutated on their own. MEMCover (Kim
et al., 2015) is a different algorithm that combines network
information and mutual exclusivity of mutations to identify
modules of mutated genes. MEMCover employs a greedy strategy
to identify high scoring subnetworks, where a subnetwork score
is a combination of the number of patients with at a least
a mutated subnetwork member and of the mutual exclusivity
of mutations in the subnetwork genes. Babur et al. (2015)
present a greedy approach to find gene sets sharing a common
down-stream target in the network and showing high mutual
exclusivity. They assess mutual exclusivity by comparing each
gene in the set with the union of the other genes.

Network-based approaches are useful to characterize inter-
tumor heterogeneity without restricting to know sets of genes
and pathways, but they suffer from the limitations of currently
available network. Such networks have only partial coverage
of genes and interactions: some genes have no interactions
in current networks, and interactions of different genes may
have been assayed to different extents, with genes known to
be associated to diseases that are likely to have been more
thoroughly assayed for interactions (ascertainment bias). In
addition, current networks include interactions that occur
among proteins in different tissues or at different phases of
the cell cycle. Improved methods are needed to integrate
additional information (e.g., co-location of proteins in cells)
with the interaction information provided by currently available
networks.

2.3. De novo Approaches
Previous approaches are based on knowledge of the interactions
among genes/proteins. A different class of methods characterize
inter-tumor heterogeneity by finding groups of genes or
pathways without restricting to predefined sets or to groups of
interacting genes in a large network. The de novo extraction
of pathways poses enormous computational and statistical
challenges, since every subset of genes is a candidate which
may need to be considered. However, some methods use
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combinatorial properties (Yeang et al., 2008) of important
mutations in cancer to restrict the set of potential candidates.
One such property is mutual exclusivity, with sets of genes
displaying at most 1 mutation in many patients. Mutual
exclusivity of mutations has been observed in various cancer
types (Kandoth et al., 2013) and may be due to the relatively
low number of driver mutations in each tumor and to the fact
that driver mutations target different pathways (Hanahan and
Weinberg, 2011; Garraway and Lander, 2013; Vogelstein et al.,
2013).

Several methods have been recently designed to identify gene
sets with high mutual exclusivity. Since most genes are mutated
with low frequency in a cohort of patients, it is easy to find
a set of unrelated genes with high mutual exclusivity. For this
reason, one needs to assess the statistical significance of the
gene set, assessing whether the observed mutual exclusivity
is likely to be due to chance alone. RME (Miller et al.,
2011) identifies mutually exclusive sets using a score derived
from information theory, and starts from pairs of genes to
build larger sets. It includes only frequently mutated genes
(>10%), limiting its applicability to characterize inter-tumor
heterogeneity. Dendrix (Vandin et al., 2012b) defines a gene
set score that combines the number of patients with at least a
mutation in the set and the mutual exclusivity of mutations in the
set, and uses a Markov Chain Monte Carlo (MCMC) approach
for identifying mutually exclusive gene sets altered in a large
fraction of the patients. Multi-Dendrix (Leiserson et al., 2013)
employs the same score as Dendrix and extends it to multiple
sets, and uses an integer linear program (ILP) based algorithm
to simultaneously find multiple sets of mutually exclusive genes.
CoMET (Leiserson et al., 2015b) uses a generalization of Fisher
exact test to higher dimensional contingency tables to define
a score that better characterizes mutually exclusive gene sets
altered in relatively low fraction of the samples, and uses an
efficient MCMC approach to identify such sets. WExT (Leiserson
et al., 2015b) generalizes the test from CoMET to incorporate
individual gene weights (probabilities) for each mutation in each
sample, and provides an efficient way to assess the statistical
significance of the sets using a saddle-point approximation.
Similarly, WeSME (Kim Y.A. et al., 2016) introduces a test
which incorporates the mutation rates of patients and genes
and uses a fast permutation approach to assess the statistical
significance of the sets. TiMEx (Constantinescu et al., 2015)
assumes a generative model for mutations and defines a test to
assess the null hypothesis that mutual exclusivity of a gene set
is due to the interplay between waiting times to alterations and
the time at which the tumor is sequenced. The test is used to
assess pairs of genes, and larger sets are built from significant
pairs and then assessed using the same test. As mentioned
above, MEMo and the method from Babur et al. (2015) employ
mutual exclusivity to find gene sets, but use an interaction
network to limit the candidate gene sets. The method by
Raphael and Vandin (2015) and PathTIMEx (Cristea et al., 2016)
introduce an additional dimension to the characterization of
inter-tumor heterogeneity, by reconstructing the order in which
mutually exclusive gene sets are mutated. Kim J.W. et al. (2016)
recently developed REVEALER, a method to identify mutually

exclusive genes sets associated with functional phenotypes (see
Section 4).

While the approaches above allow the de novo discovery of
cancer gene sets, there are challenges that remain to be solved.
For example, larger sample sizes than currently available may
be needed to discover low frequency cancer pathways by using
mutual exclusivity (Vandin et al., 2012c, 2016). The methods
above are in general computationally intensive, mainly due to
the large search space that must be explored, and more effective
exploration strategies may be needed for larger datasets.

3. METHODS FOR INTRA-TUMOR
HETEROGENEITY

In recent years, several methods have been proposed to
characterize intra-tumor heterogeneity. Such methods can be
classified into three classes (Figure 4). First, methods that use
mutation data from bulk sequencing to reconstruct the clonal
composition of a tumor, thus identifying the different clones,
populations of cells, present in a tumor sample and quantifying
the fraction that each clone contributes to the tumor. Second,
methods that use mutation data from bulk sequencing to
reconstruct the evolutionary relationships among different clones
andmutations in the tumor. Third, more recent methods that use
mutation data from single cell sequencing to infer the evolution
of a tumor at the single cell level. Due to space constraints, below
we describe some of the methods in the three classes; we point the
reader to the recent reviews by Schwartz and Schäffer (2017) and
by Kuipers et al. (2017) for more details on approaches to infer
tumor evolution.

3.1. Inference of Clonal Composition from
Bulk Sequencing
Bulk sequencing data provides information regarding the
fraction of cells containing a mutation, and, therefore, regarding

FIGURE 4 | Computational analyses to characterize intra-tumor heterogeneity.

Starting from measurements (e.g.,VAFs) obtained from bulk sequencing of one

or more tumor samples, one can infer the clonal composition of the sample

and also the evolutionary relationships among clones. Single-cell sequencing

can be use to infer the evolutionary relationships among the individual cells for

which mutations have been assayed.
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the fraction of cells defining the clone with the given mutation.
In fact, for a heterozygous mutation in a copy neutral region the
expected number of reads supporting the mutation (VAF) equals
half of the clone frequency in the sample, since the mutation
appears in only one of the two copies of the DNA. However,
there are many confounders that make the identification of
the clones not straightforward. First, the relation above holds
only in expectation or for infinite coverage, while with finite
coverage the actual VAF can deviate substantially from the
corresponding clone frequency. Second, there are experimental
biases in sequencing technologies that can change the relation
between VAF and clonal frequency. Third, CNAs are quite
common in cancer and nullify the relation above, making the
inference of clones much more complex. Andor et al. (2016) have
recently shown that the number of clones in a tumor is associated
with mortality risk, which increases when between 2 and 4 clones
are present in a tumor, while it decreases when >4 clones are
present. The accurate characterization of the clonal composition
of a tumor is therefore extremely important for diagnosis and
therapy.

Several methods have been developed to identify the different
clones, or cell populations, in a tumor starting from mutation
data obtained from bulk sequencing. PyClone (Roth et al., 2014)
identifies clones and their abundances by considering VAFs
and allele-specific copy number data. It uses a beta-binomial
model for VAFs and identifies clusters of mutations and their
frequencies in a tumor sample with Bayesian nonparametric
clustering which simultaneously infers clusters and the number
of clusters. SciClone (Miller et al., 2014) considers VAFs in
copy number neutral, loss of heterozygosity (LOH) free regions
of the genome, and uses a variational Bayesian mixture model
to infer clones and their frequency in the sample. Zare et al.
(2014) present an algorithm to infer groups of mutations and
their frequency in a tumor using mutation data from multiple
sections of a tumor at a given time point. Their method is based
a generative binomial model to incorporate information from
the multiple sections and employs an expectation-maximization
(EM) algorithm to estimate clones and their relative frequencies.
BayClone (Sengupta et al., 2015) defines a class of nonparametric
models, the categorical Indian buffet process, and uses bayesian
inference to obtain posterior probabilities for the number
clones, their genotypes, and their proportions, in a tumor
sample.

With the coverage (30x–40x) used in many large scale
cancer studies, there is a high variance in the number of reads
covering a given position in the genome, weakening the relation
between VAF and clonal frequency. In contrast, each copy
number aberration perturbs many reads, and can provide a more
reliable signal for clonal inference for tumors in which clones
present different copy number profiles. THetA (Oesper et al.,
2013) uses CNAs profiles from whole genome sequencing to
characterize clones and their frequencies in a tumor mixture.
It defines and optimizes an explicit probabilistic model for the
generation of the observed sequencing data from a mixture
of normal cells and different clones, and uses a BIC criteria
to choose among the many models that may explain the data
while balancing the likelihood of the data and the model

complexity. THetA2 (Oesper et al., 2014) extends THetA in
various directions, including the possibility to consider whole
exome sequencing data and the use of B-allele frequencies (which
indicates the relative quantity of the one allele compared to the
other) to distinguish among several clonal population models
consistent with the data. A different approach is taken by
TITAN (Ha et al., 2014), which employs a generative factorial
hidden Markov model framework to simultaneously infer CNA
and LOH segments from read depths and digital allele ratios
at heterozygous variant loci in the genome from whole genome
sequencing data. CloneHD (Fischer et al., 2014) provides a
statistical framework using read depth, B-allele frequencies, and
VAFs to infer the clonal population structure of a tumor, allowing
the simultaneous analysis of multiple samples from different
regions of the same tumor or from longitudinal sequencing of
the same tumor.

3.2. Inference of Clonal Evolution from Bulk
Sequencing
While methods to infer clones, their mutations, and their
abundance, provide important and clinically relevant insights
into intra-tumor heterogeneity, they do not explicitly provide
information about the evolutionary relations among mutations
and clones in a tumor. In addition to expanding our
understanding of how a tumor arises, such information
can provide extremely important information for clinical
intervention. For example, the order in which mutations arise
can influence the prognosis of a patient (Ortmann et al., 2015).
Moreover, the characterization of the evolutionary paths followed
by tumors is crucial to be able to predict the development of the
disease for future patients (Yachida et al., 2010; Lipinski et al.,
2016).

The computational reconstruction of the evolutionary
relations among clones in a tumor from bulk sequencing data
is a challenging task, due to several reasons. First, we do not
directly observe clones in a tumor, but bulk sequencing provide
aggregate information, in the form of VAFs, from a mixture of
clones. Second, a natural model to describe tumor evolution
is provided by phylogenetic or evolutionary trees, but there
are in general several evolutionary trees consistent with the
data from a single tumor sample. In most cases this may be
mitigated by sequencing several sections of the same tumor,
but reconciling the information from the different sections is a
complex problem. Third, VAFs in regions affected by CNAs and
LOH can be significantly different from VAFs of other mutations
in the same clone, complicating the reliable identification of
clones and their relations.

Many methods have been designed to reconstruct the
evolutionary history of a tumor from bulk sequencing of one
or more sections of the tumor and address the challenges
above. TrAp (Strino et al., 2013) is a method designed to
infer clones, their abundance, and clones’ evolutionary paths
using VAFs for SNVs from a single tumor sample. It first
groups together mutations with similar frequencies, and then
uses an iterative procedure to build evolutionary paths for such
groups, starting from simple (height 1) trees. PhyloSub (Jiao
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et al., 2014) considers VAFs from deep sequencing experiments
to infer the evolutionary relationship of clones, and uses a
Dirichlet process prior over phylogenetic trees to group SNVs
into clones. It employs Bayesian inference, based on MCMC
sampling, to infer a distribution over possible evolutionary trees.
PhyloWGS (Deshwar et al., 2015) builds on PhyloSub and allows
the reconstruction of tumor evolution from SNVs and CNAs
obtained from whole genome sequencing data. CITUP (Malikic
et al., 2015) proposes a combinatorial model for the problem of
inferring clonal evolution from SNVs obtained from multiple
tumor samples, and designs an exact algorithm based on a
quadratic integer programming to solve the problem, which
may require high computational resources when the tumor
contains a large number of clones. LICHeE (Popic et al.,
2015) is another method to reconstruct clones, abundances, and
their evolutionary relationships starting from SNVs measured
in multiple samples of a tumor. LICHeE first groups SNVs
and identifies clusters of SNVs based on VAFs, and then
uses a network to represent VAFs constraints imposed by the
evolutionary process. It then identifies an evolutionary model by
looking for the spanning tree that best supports the cluster VAF
data. BitPhylogeny (Yuan et al., 2015) provides a probabilistic
framework that allows the joint inference of the number and
composition of clones in a tumor, as well as the most probable
tree representing their evolutionary relationship. SPRUCE (El-
Kebir et al., 2016) infers evolutionary trees jointly from SNVs
and CNAs from multiple tumor samples, with CNAs that are
modeled as multi-state alterations, in which alterations can only
mutate to a given state at most once in the tree. SPRUCE starts
from clusters of SNVs and copy number mixing proportions,
and derives a compatibility graph describing the compatibility
of state trees for pairs of clusters. The evolutionary trees
compatible with the input data are derived by enumerating all
spanning trees with appropriate constraints in a labeled multi-
graph constructed starting from the compatibility graph. The
application of SPRUCE on real data show that many evolutionary
trees are compatible with data frommultiple samples, cautioning
on drawing strong conclusions on any single such tree (Hu and
Curtis, 2016). Canopy (Jiang et al., 2016) is a related method
to infer evolutionary trees using both CNAs and SNVs from
one or more samples, but it starts from raw copy number
ratios estimated from CNA segmentation programs. It uses a
statistical model and a MCMC algorithm to sample from the
space of evolutionary trees, providing a confidence assessment
from the posterior distribution. Additional methods to infer
clonal evolution are presented in Hajirasouliha et al. (2014),
Donmez et al. (2016), Qiao et al. (2014), and El-Kebir et al.
(2015).

While each method displays specific features addressing one
or more of the challenges above, they are all based, in one form
or the other, on the infinite-site assumption: the same site is
not mutated twice during the evolutionary history of a tumor.
Such assumption may be violated in tumors with high genomic
instability, undermining the accuracy of the inferred evolutionary
trees. However, without such assumption the inference problem
becomes computationally intractable even assuming perfect
knowledge of mutations in each clone.

3.3. Inference from Single Cell Sequencing
While bulk sequencing provides some information to infer
the evolutionary tree describing a tumor history, the best
way to elucidate such history is from single-cell data, which
provides direct measurements for some of the leaves of a tumor
evolutionary tree. Single-cell sequencing technology has been
improving in recent years and datasets with SNVs from >40
single-cells are now available (Hou et al., 2012; Xu et al., 2012;
Wang et al., 2014). However, mutation calls from single-cell
sequencing still suffer from high false positive and false negative
rate and missing values, due to various technical reasons (e.g.,
allele dropout; Kuipers et al., 2017). In addition, while obtaining
measurements from hundreds of single-cells is an incredible
advance, such cells still represent an extremely small fraction
of all cells in a tumor (> 109 in advanced tumors). For these
reasons, standard phylogenetic approaches cannot be used to
infer evolutionary trees from single cell data.

Few methods have been designed to infer the evolutionary
relationships among single cells. Youn and Simon (2011)
develop a method to infer a mutation tree, in which each node
corresponds to a mutation and the tree relations describe the
relative order among the appearance of mutations in a sample.
The mutation tree is reconstructed by using a pairwise test to
define the order for pairs of mutations. While the restriction
to pairs of genes makes the method efficient, it discards the
information among high order relations among mutations.
SCITE (Jahn et al., 2016) identifies evolutionary trees from
noisy and incomplete mutation data from single-cell sequencing.
SCITE uses a statistical model and anMCMC approach to sample
trees, error rates, and placement of single cells in the tree. While
providing interesting insights, the method is fairly expensive
computationally, allowing proper inference only for the limited
number of cells available in current datasets. OncoNEM (Ross
and Markowetz, 2016) is a related method that uses a nested
effects model for the data and employs a heuristic local search
algorithm to explore possible tree topologies. While appropriate
for current dataset sizes, for much larger dataset such a search
algorithm may be too expensive.

4. ASSESSING THE ASSOCIATION OF
CANCER HETEROGENEITY WITH
CLINICAL VARIABLES

A major goal in characterizing inter- and intra-tumor
heterogeneity is to understand its impact on prognosis and
therapy. In most case, clinical data has been used after the
computational characterization of tumor heterogeneity, as
a post-processing step testing whether heterogeneity-related
features are associated to or predictive for some clinical
variable, mostly survival time. For example: survival data or
other clinical information are used to evaluate the results of
patients stratification methods (Hofree et al., 2013); Andor
et al. (2016) computationally assessed the clonal composition
of >1,000 samples of various cancer types and then assessed
the association between the number of clones in a sample with
overall and progression-free survival; Chowdhury et al. (2014,
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2015) designed and used a novel algorithm to reconstruct
trees describing cancer evolution from single cell copy number
data obtained by fluorescence in situ hybridization (FISH),
and showed that improved prediction accuracy is obtained for
classification tasks (e.g., distinguishing primary vs. metastases in
the same patient) when features from the cancer evolutionary
tree are considered.

The discovery of mutations or mutated groups associated
with clinical data starting from genome-wide measurements
poses several challenges, due to the peculiar characteristic of
genomic data, including the relatively low frequency of individual
mutations (Vandin et al., 2015). A standard analysis (Gross et al.,
2014) is to first identify driver mutations or pathways and then
assess the association of the mutated genes or group of genes with
a clinical variable (e.g., survival time). While providing useful
information on the clinical relevance of the driver genes and
pathway identified by approaches above, such methods may not
identify groups of genes with low mutation frequency whose
mutations are collectively associated with survival. Few methods
have been developed to directly leverage clinical information
to identify gene sets associated with clinical data. Vandin et al.
(2012a) use gene scores derived from the p-values for the
association of individual gene mutations with survival as input
to HotNet to identify subnetworks associated with survival,
but do not provide a method to directly identify gene sets
associated with survival. HyperModules (Reimand and Bader,
2013) looks for subnetworks of a large interaction network
that are associated with survival using a local search algorithm
that builds a subnetwork by starting from one seed vertex

and then greedily adds neighbors (at distance at most 2) from
the seed. Leung et al. (2014) used it to find subnetworks of
a kinase-substrate interaction network with phosphorylation-
associated mutations associated with survival. NoMAS (Hansen
and Vandin, 2016) is an efficient method based on graph color-
coding which identifies subnetworks with mutations associated
with survival by looking for subnetworks maximizing the log-
rank statistic of subnetworks (Figure 5). NoMAS identifies
subnetworks with stronger association with survival compared
to greedy procedures, and also reports valid permutational p-
values. REVEALER (Kim J.W. et al., 2016) is a computational
method to identify groups of mutually exclusive genes correlated
with a functional phenotype, for example sensitivity to a drug
treatment. REVEALER uses a gene set score derived frommutual
information and employs a greedy strategy to find genes sets
associated with the target functional phenotype.

The methods above provide initial steps to discover gene sets
driven by inter-tumor heterogeneity and associated with clinical
features, but much more work is required to identify clinically
relevant features from tumor heterogeneity.

5. CONCLUSIONS AND FUTURE
PERSPECTIVE

This review described some of the challenges that arise in
studying and characterizing cancer inter- and intra-tumor
heterogeneity. We focused on some computational methods
which characterize inter-tumor heterogeneity at the level of

FIGURE 5 | Network of Mutations Associated with Survival (NoMAS). NoMAS combines mutations measured in many patients and the corresponding survival time

with a large interaction network to identify subnetworks of genes with significant association to survival. NoMAS is based on an efficient graph color-coding algorithm,

and uses a permutation test to correct for multiple hypothesis testing.
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pathways, infer intra-tumor heterogeneity from bulk or single-
cell sequencing, and identify pathways associated with clinical
variables. These and other methods are increasingly used
to characterize heterogeneity in large sequencing studies and
for individual patients. Given its importance for therapeutic
decisions, the fast and precise characterization of cancer
heterogeneity is likely to remain a key step in precision medicine.

The methods we described have significantly advanced our
understanding of cancer heterogeneity and its importance in
patient prognosis and treatment, but there still challenges to
be addressed. First, while recent studies have shown that intra-
tumor heterogeneity has clinical implications (McGranahan and
Swanton, 2015, 2017; Andor et al., 2016), it is still unclear which
ones among its features are key determinants for therapeutic
decisions. The development of more precise computational
methods to infer intra-tumor clonal composition and evolution
is a necessary step to properly assess the relevance of each aspect
for therapy and inform effort for noninvasive monitoring of
tumors (e.g., liquid biopsies; Diaz and Bardelli, 2014). Second,
the extensive intra-tumor heterogeneity and the stochasticity of
some of the processes shaping the evolution of a tumor may
limit the ability to accurately predict the future behavior of an
individual cancer. Studies (e.g., Jamal-Hanjani et al., 2014) that
are collecting molecular and clinical measurements at different
time points during treatment for a large number of patients
will provide the data necessary to understand the extent of the
diversity in the evolutionary paths explored by different tumors,
but substantially different computational methods are needed to
rigorously and effectively analyze such datasets. Third, current
methods for inferring a tumor evolution from single-cell data
are computationally intensive, and will not be able to analyze
much larger datasets which may soon be available. Fourth,
current methods for analyzing bulk sequencing and single-
cell sequencing data are orthogonal, but the two technologies

provide complementary information about the same tumor.
ddClone (Salehi et al., 2017) is a recent method which combines
data from the two technologies, but the development of
additionalmethodsmay be crucial in fully exploiting the power of
next-generation sequencing to characterize cancer heterogeneity.
Fifth, methods for inter-patient heterogeneity focus mostly on
coding variants, while noncoding variants are known to be
recurrently mutated in cancer (Weinhold et al., 2014; Melton
et al., 2015; Puente et al., 2015), with the mutation in the
promoter region of the TERT gene in melanoma (Huang
et al., 2013) and other cancer types (Fredriksson et al., 2014;
Melton et al., 2015) being a prominent example. Finally,
other data types, including RNA sequencing, methylation
data, and chromatin modifications need to be considered to
understand the genomic heterogeneity of cancer. While there
are some methods that integrate some of these data types
with mutation data (Vaske et al., 2010; McPherson et al., 2012;
Paull et al., 2013), additional work is required to characterize
cancer heterogeneity by the full integration of the various data
types. All these challenges need to be addressed to reach true
precision medicine, and computational methods will continue
to play a key role in advancing our understanding of cancer
heterogeneity.
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