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Searching for the Multiple Longest Common Subsequences (MLCS) of multiple

sequences is a classical NP-hard problem, which has been used in many applications.

One of the most effective exact approaches for the MLCS problem is based on dominant

point graph, which is a kind of directed acyclic graph (DAG). However, the time and space

efficiency of the leading dominant point graph based approaches is still unsatisfactory:

constructing the dominated point graph used by these approaches requires a huge

amount of time and space, which hinders the applications of these approaches to

large-scale and long sequences. To address this issue, in this paper, we propose a new

time and space efficient graph model called the Leveled-DAG for the MLCS problem.

The Leveled-DAG can timely eliminate all the nodes in the graph that cannot contribute

to the construction of MLCS during constructing. At any moment, only the current level

and some previously generated nodes in the graph need to be kept in memory, which can

greatly reduce the memory consumption. Also, the final graph contains only one node in

which all of the wanted MLCS are saved, thus, no additional operations for searching the

MLCS are needed. The experiments are conducted on real biological sequences with

different numbers and lengths respectively, and the proposed algorithm is compared

with three state-of-the-art algorithms. The experimental results show that the time and

space needed for the Leveled-DAG approach are smaller than those for the compared

algorithms especially on large-scale and long sequences.

Keywords: multiple longest common subsequences, longest common subsequence, dominant point method,

directed acyclic graph, biological sequence alignment

1. INTRODUCTION

Measuring the similarity of biological sequences is a fundamental problem in bioinformatics,
which has many applications such as in cancer diagnosis (Aravanis et al., 2017) and detection of
the species common origin (Zvelebil and Baum, 2007), etc. One of the most important ways to
measure the similarity of sequences is to find their Longest Common Subsequences (LCS), which
has been proved to be a NP-hard problem (Maier, 1978). According to the number of sequences,
the problems are classified into two cases: (1) Looking for the longest common subsequence of
two sequences is called the Longest Common Subsequence (LCS) problem. (2) Looking for the
longest common subsequence ofmore than two sequences is called the Multiple Longest Common
Subsequences (MLCS) problem.

Traditionally, the works are mainly focused on the first kind of problem. However, in
recent years, more and more applications in bioinformatics (and many other fields) require to
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look for the longest common subsequence of many sequences.
For example, one of the most important applications of
the MLCS algorithms in bioinformatics is multiple sequence
alignment (MSA), which is an essential technique of arranging
the sequences of DNA, RNA, or protein to identify regions of
similarity that may be a consequence of functional, structural,
or evolutionary relationships between the sequences. The MLCS
algorithms can also be used for other types of sequences, such
as calculating the edit distance cost between strings in a natural
language or in financial data. Although there are algorithms
proposed for these applications, they are not efficient enough
for many and long sequences due to their high time and space
overhead.

In this paper, we propose a new time and space efficient graph
model called the leveled directed acyclic graph (Leveled-DAG for
short) and design the corresponding algorithm to construct it.
The Leveled-DAG is constructed level by level, which is similar
to the construction of DAG in the existing dominant point
based algorithms, however, the existing dominant point based
algorithms have to generate a huge number of the nodes and save
them all in memory, while the Leveled-DAG approach can timely
eliminate all the nodes in the graph that cannot contribute to the
construction of MLCS any more. At any moment, only the nodes
in the current level as well as some nodes in the previous levels are
saved, therefore, the Leveled-DAG is much smaller than the DAG
constructed by the existing dominant point based algorithms,
which can save a lot memory space. Moreover, with the progress
of the construction procedure, the scale of the Leveled-DAG
becomes smaller and smaller, and the final graph contains only
one node (the end node) with the wanted MLCS saved in it, thus,
no operations to search for them are needed, which can save
a lot of running time. The experimental results show that our
approach is both time and space efficient for large-scale MLCS
problems with real biological sequences and performs better than
the compared leading dominant point based algorithms.

This paper is organized as follows: Section 2.1 introduces
some preliminaries and reviews the related work. In Section
2.2, the Leveled-DAG model and its construction algorithm is
presented in detail. In Section 3, we compare the performance
of the proposed algorithm with that of the existing stat-of-the-art
ones via experiments. At last, we summarize the paper.

2. MATERIALS AND METHODS

In Section 2.1, we will first introduce some preliminaries and
related work about MLCS problem, and then in Section 2.2, the
new Leveled-DAG model and the algorithm to construct it will
be illustrated in detail.

2.1. Preliminaries and Related Work
First of all, let6 denote the alphabet of the sequences, i.e., a finite
set of symbols. For example, the alphabet of the DNA sequences
is 6 = {A,C,G,T}.

Definition 1. Let 6 denote the alphabet and s = c1c2...cn be a
sequence of length nwith each symbol ci ∈ 6 , for i = 1, 2, · · · , n.
The i-th symbol of s is denoted by s[i] = ci. If a sequence s′

is obtained by deleting zero or more symbols (not necessarily

consecutive) from s, i.e., s′ = ci1ci2 ...cik satisfying 1 ≤ i1 < i2 <

· · · < ik ≤ n, then s′ is called a length k subsequence of s.
Definition 2.Given d sequences s1, s2, ..., sd on6, if a sequence

s′ = ci1ci2 ...cik satisfies: (1) It is a subsequence of each of these d
sequences. (2) It is the longest subsequence of these d sequences.
Then s′ is called a Longest Common Subsequence (LCS) of these
d sequences.

Generally, LCS of multiple sequences is not unique. For
example, given three DNA sequences ACTAGTGC, TGCTAGCA
and CATGCGAT, there exists two LCSs of length 4, which are
CAGC and CTGC, respectively. The multiple longest common
subsequences (MLCS) problem is to find all the longest common
subsequences of three or more sequences.

Many algorithms have been proposed for the MLCS problem
in the past decades. According to the models on which the
algorithms are based, the existing MLCS algorithms can be
classified into two categories: the dynamic programming based
approaches and the dominant point based approaches. Next, we
will give an brief introduction to each of the two approaches.

2.1.1. Dynamic Programming based Approaches
The classical approaches for the MLCS problem are based on
dynamic programming (Sankoff, 1972; Smith and Waterman,
1981). Given d sequences s1, s2, ..., sd of length n1, n2, ..., nd,
respectively, these approaches recursively construct a score
table T having n1 × n2 × ... × nd cells, in which the cell
T[i1, i2, ..., id] records the length of MLCS of the prefixes
s1[1...i1], s2[1...i2], ..., sd[1...id]. Specifically, T[i1, i2, ..., id] can be
computed recursively by the following formula:

T [i1, i2, ..., id]

=











0 if ∃j(1 ≤ j ≤ d), ij = 0

T[i1 − 1, ..., id − 1]+ 1 if s1[i1] = s2[i2] = ...= sd[id]

max(T̄) otherwise

(1)

where T̄ = {T[i1 − 1, i2, ..., id], T[i1, i2 −

1, ..., id], ..., T[i1, i2, ..., id − 1]}. Once the score table T is
constructed, the MLCS can be collected by tracing back from the
last cell T[n1, n2, ..., nd] to the first cell T[0, 0, ..., 0]. Figure 1A
shows the score table T of two sequences s1 = ACTAGCTA and
s2 = TCAGGTAT. The MLCS of these two sequences, which are
TAGTA and CAGTA, can be found by tracing back from T[8, 8]
to T[0, 0], as shown in Figure 1B.

Obviously, both time and space complexity of dynamic
programming based approaches for a MLCS problem with
d sequences of length n are O(nd) (Hsu and Du, 1984).
Many methods have been proposed to improve the efficiency,
Hirschberg (1977), Apostolico et al. (1992), Masek and Paterson
(1980), and Rick et al. (1994). However, with the increase of d and
n, all these approaches are still inefficient from practical use.

2.1.2. Dominant Point based Approaches
In order to reduce the time and space complexity of the dynamic
programming based approaches, many other methods have been
proposed, among which the dominant point based approaches
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FIGURE 1 | (A) The score table of two DNA sequences ACTAGCTA and TCAGGTAT. (B) Constructing the MLCS from the score table, where the shaded cells

conspond to dominant points.

are the most efficient ones until now. Before discussing the
dominant point based approaches, some related definitions are
introduced first:

Definition 3. Given d sequences s1, s2, ..., sd on 6, a vector
p = (p1, p2, ..., pd) is called a match point of the d sequences, if
s1[p1] = s2[p2] = ... = sd[pd] = δ, i.e., δ is a common symbol
appearing at the position pi of sequence si for i = 1, 2, · · · , d. The
corresponding symbol δ of match point p is denoted by C(p).

Definition 4. Given two match points p = (p1, p2, ..., pd) and
q = (q1, q2, ..., qd) of d sequences, we call: (1) p = q if and only
if pi = qi (1 ≤ i ≤ d). (2) p dominates q (or q is dominated by p),
which is denoted by p � q, if pi ≤ qi for each i (1 ≤ i ≤ d), and
pj < qj for some j (1 ≤ j ≤ d). (3) p strongly dominates q (or q
is strongly dominated by p), which is denoted by p ≺ q, if pi < qi
for each i (1 ≤ i ≤ d). (4) q is a successor of p (or p is a precursor
of q), if p ≺ q and there is no match point r such that p ≺ r ≺ q
and C(q) = C(r).

Not that, one match point can have at most |6| successors
with each successor corresponding to one symbol in 6.

Definition 5. The level of a match point p = (p1, p2, ..., pd) is
defined to be L(p) = T[p1, p2, ..., pd], where T is the score table
computed by Formula (1). Amatch point p is called a k-dominant
point (k-dominant for short) if and only if: (1) L(p) = k. (2) There
is no other match point q such that: L(q) = k and q � p. All the
k-dominants form a set Dk.

The motivation of the dominant point based approaches is
to reduce the time and space complexity of the basic dynamic
programming based methods. The key idea is based on the
observation that only the dominant points can contribute to the
construction of the MLCS (as shown in Figure 1B, the shaded
cells correspond to the dominant points). Since the number of
dominant points can be much smaller than the number of all
cells in the score table T, a dominant point approach that only
identifies the dominant points, without filling the whole score
table, can greatly reduce the time and space complexity.

The search space of the dominant point based approaches can
be organized to a directed acyclic graph (DAG): a node in DAG
represents a match point, while an edge 〈p, q〉 in DAG represents

that q is a successor of p, i.e., p ≺ q and L(q) = L(p) + 1.
Initially, the DAG contains only a source node (0, 0, ..., 0) with

no incoming edges as well as an end node (∞, ∞, ..., ∞) with
no outgoing edges. Next, the DAG is constructed level by level as

follows: at first, let the level k = 0, and D0 = {(0, 0, ..., 0)}, and
then, with a forward iteration procedure, the (k + 1)-dominants

Dk+1 are computed based on the k-dominants Dk, and this
procedure is denoted by Dk → Dk+1. Specifically, each node in

Dk is expanded by generating all its |6| successors, then a pruning
operation calledMinima is performed to identify those successors

who dominant others, and only those dominants are reserved
to Dk+1. Once all the nodes in the graph have been expanded,

the whole DAG is constructed, in which a longest path from the

source node to the end node corresponds to a LCS, thus, the

MLCS problem becomes finding all the longest paths from the

source node to the end node. In the following, we will use a simple

example to illustrate the above procedure.
Example 1. Finding the MLCS of sequences ACTAGCTA and

TCAGGTAT based on the dominant point based approaches, as
shown in Figure 2.

• Step 0. Set source node (0, 0) and end node (∞,∞).
• Step 1. Construct nodes in level 1. For symbol A, the

components of match point (1, 3) are the first positions of

A in the two input sequences from beginning. Thus, node

A(1, 3) is a successor of the source node corresponding to

symbolA in level 1. Similarly, node C(2, 2),G(5, 4), and T(3, 1)
are also the successors of the source node corresponding to

symbol C, G and T, respectively. Among these four nodes
in level 1, find and delete dominated node G(5, 4) (using the

Minima operation), as shown in gray in Figure 2. The left three
dominant nodes form D1 = {A(1, 3),C(2, 2),T(3, 1)}.
• Step 2. Construct nodes in level 2. For each node in D1, e.g.,

for A(1, 3) ∈ D1, symbol A with match point (4, 7) is the first
common symbol A in the two sequences after symbol A with

match point (1, 3) (i.e., after node A(1, 3) ∈ D1). Thus, node
A(4, 7) is a successor of A(1, 3) corresponding to symbol A in
level 2. Similarly, nodes T(3, 6) and G(5, 4) are also successors
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FIGURE 2 | The DAG of two sequences ACTAGCTA and TCAGGTAT

constructed by the general dominant point based algorithms, in which the

black and gray nodes will be eliminated by the Minima operation.

of A(1, 3) corresponding to symbol T and G, respectively, in
level 2. In the same way, node C(2, 2) in level 1 can generate
three successors A(4, 3), G(5, 3) and T(3, 6) in level 2, and
node T(3, 1) in level 1 can generate four successors A(4, 3),
C(6, 2), G(5, 4), and T(7, 6) in level 2. Note that, some nodes
appear more than one times. Among these ten nodes in level
2, find and delete the duplicated nodes (usingMinima)A(4, 3),
G(5, 4) (delete two times) and T(3, 6) as shown in black in level
2. Also, find and delete all dominated nodes (using Minima)
(4, 7), (5, 4), and (7, 6) as shown in gray in level 2. The left
dominant points form the setD2 = {T(3, 6), A(4, 3), C(6, 2)},
which forms the final level 2 of the graph. Note that, if a node
has no successors, let the end node to be its only successor.
• Step 3. Repeat the above construction process level by level

until the whole DAG is constructed.

It can be seen from the above example that the dominant point
based approaches have the following main drawbacks:

1. There are a huge number of duplicated nodes and dominated
nodes in each level, which consumes a lot of memory.

2. All these duplicated nodes and dominated nodes in each level
should be deleted, and finding all these nodes in each level
needs a lot of pairwise comparisons of two d dimensional
vectors (while each pairwise comparison of two d dimensional
vectors needs d pairwise comparisons of two integers). Thus,
the deletions of duplicated nodes and dominated nodes in all
levels will be very time consuming.

Hunt and Szymanski (1977) proposed the first dominant point
based algorithm for two sequences with time complexity O((r +

n)logn), where r is the number of nodes in DAG and n is the
length of the two sequences. Afterwards, to further improve
the efficiency, a variety of dominant point based LCS/MLCS
algorithms have been presented. Korkin (2001) proposed the first
parallel MLCS algorithm with time complexity O(|6||D|), where
|D| is the number of dominants in the graph. Chen et al. (2006)
presented an efficient MLCS algorithm—FAST-LCS for DNA
sequences, it introduced a novel data structure called successor
table to obtain the successors of nodes in constant time and
used a pruning operation to eliminate the non-dominant nodes
in each level. Wang et al. (2011) proposed an algorithm Quick-
DPAR to improve the FAST-MLCS algorithm, it uses a divide-
and-conquer strategy to eliminate the non-dominant nodes,
which is very suitable for parallelization, it is indicated that the
parallelized algorithm Quick-DPPAR had gained a near-linear
speedup compared to its serial version. Li et al. (2012) and Yang
et al. (2010) made efforts to develop efficient parallel algorithms
on GPUs for the LCS problem and on cloud platform for the
MLCS problem, respectively. Unfortunately, Yang et al. (2010) is
not suitable for the MLCS problem with many sequences due to
the large synchronous costs. Recently, Li et al. (2016b,a) proposed
two algorithms: PTop-MLCS and RLP-MLCS based on dominant
points, these algorithms used a novel graph model called Non-
redundant Common Subsequence Graph (NCSG) which can
greatly reduce the redundant nodes during processing, and
adopted a two-passes topological sorting procedure to find the
MLCS. The authors claimed that the time and space complexity
of their algorithms is linear to the number of nodes in NCSG.

In practice, for MLCS problems with large number of
sequences, the traditional algorithms usually need a long time
and large space to find the optimal solution (the complete
MLCS), to address this issue, approximate algorithms have been
investigated to quickly produce a suboptimal solution (partial
MLCS) and gradually improve it when given more time, until an
optimal one is found. Yang et al. (2013) proposed an approximate
algorithm Pro-MLCS as well as its efficient parallelization
based on the dominant point model. Pro-MLCS can find an
approximate solution quickly, which only takes around 3% of
the entire running time, and then progressively generates better
solutions until obtaining the optimal one. Recently, Yang et al.
(2014) proposed another two approximate algorithms SA-MLCS
and SLA-MLCS. SA-MLCS used an iterative beam widening
search strategy to reduce space usage during the iterative process
of finding better solutions. Based on SA-MLCS, SLA-MLCS, a
space-bounded algorithm, is developed to avoid space usage from
exceeding the available memory.

2.2. A New Graph Model: Leveled-DAG and
Its Construction Algorithm
In this section, we introduce the Leveled-DAG model as well as
its construction algorithm. Before describing the details, we first
introduce some key data structures used.

2.2.1. Key Data Structures
I. Successor table

Efficiently generating the successors of a node is a key
operation in constructing Leveled-DAG. For this purpose, we
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need to construct a successor table (Chen et al., 2006) for each
input sequence. Through the successor tables, we can generate
the successors of each node in constant time. Specifically,
given a sequence s = c1c2...cn, the corresponding successor
table (denoted by ST) of s is a two-dimensional array with
|6| × (n + 1) elements, in which the element of the i-th
row and j-th column of ST (denoted by ST[i, j]) is defined as
follows:

ST[i, j] = min{m | cm = σi, m > j, 1 ≤ i ≤ |6|, 0 ≤ j ≤ n}(2)

where σi is the i-th symbol in 6. Indeed, ST[i, j] specifies the
position of the first occurrence of symbol σi in s, starting from
the (j + 1)-sort position. For instance, the successor tables of
two DNA sequences ACTAGCTA and TCAGGTAT are shown in
Figures 3A,B, respectively. Given d sequences of length n, we
can construct all the corresponding successor tables in O(d|6|n)
time.

By referring to the successor tables, given d sequences, all the
successors of one node can be generated in O(d|6|) time. For
example, the successors of the node C(2, 2) in Figure 2 can be
obtained by referring the successor tables shown in Figure 3:
(ST1[1, 2], ST2[1, 2]) = (4, 3), (ST1[2, 2], ST2[2, 2]) = (6,−),
(ST1[3, 2], ST2[3, 2]) = (5, 4) and (ST1[4, 2], ST2[4, 2]) = (3, 6),
corresponding toA,C,G, and T, respectively, where (6,−) means
(2, 2) has no successor corresponding to C. In fact, a node can
have no successors at all.

II. The structure of the node in Leveled-DAG
For each node, say t, in Leveled-DAG, it mainly contains the

following information:

• Thematch point of t, which is regarded as the unique identifier
of t.
• Suc(t): the set of all successors of t.
• P_LCS(t): the set of all partial LCSs corresponding to the

longest paths from the source node to t.

The match point of a node t is used to identify whether t has
existed in the graph. As will be seen later, whenever a node is
deleted, its partial LCSs will be inherited and extended by its
successors. Once the construction of Leveled-DAG is completed,
only the end node is left in the graph, and the P_LCS of the end
node contains the wanted MLCS of the input sequences.

III. Global data structures

• L_DAG : the data structure to maintain the nodes in the graph.
• Cur_Level : a queue to store the current level of nodes in the

graph.
• Next_Level : a queue to store the (newly generated) next level

of nodes in the graph.

The L_DAG is a mapping table to hold the generated nodes. A
node can be found in L_DAG by its key (i.e., the mach point),
and whenever a new node is created, we search its match point
in L_DAG to check whether the node is already existed, if not,
we insert that node into L_DAG. The queue Cur_Level is used to
store the nodes to be expanded, and the queueNext_Level is used
to store the newly created successors.

2.2.2. The New Graph Model: Leveled-DAG
The key feature of the Leveled-DAG model is that it adopts a
strategy called generation and deletion to control the scale of
the graph. Specifically, once a new level of nodes are created,
all the nodes in the graph with no incoming edges are outdated
and will be deleted, because they can no longer be successors of
any subsequent node and their partial LCSs will not be changed
any more. Therefore, they will not affect the construction of
MLCS in the following procedure when they are deleted. Thus,
timely deleting these outdated nodes will greatly reduce the scale
of graph and save a lot of memory. By using this strategy, the
Leveled-DAG is constructed level by level from the source node,
and at any moment, only the nodes in current level and the
nodes with incoming edge in the previous level are kept in
memory. Moreover, once the construction is finished, only the
end node is left in the graph, and the wanted MLCS of the
input sequences are saved in the end node, thus, no additional
operations for searching the MLCS are needed, which can save
a lot of time.Next, we will give an example to illustrate the
Leveled-DAG model.

Example 2. Finding the MLCS of sequences ACTAGCTA
and TCAGGTAT based on the Leveled-DAG model. Initially,
the Leveled-DAG contains only the source node (0, 0) in level
0. Then the successors of the source node, which are A(1, 3),
C(2, 2), G(5, 4), and T(3, 1) corresponding to the four symbols,
respectively, are generated by referring to the successor tables
(Figure 3). Because the four successors are in level 1, their partial
LCSs are single characters A, C, G, and T, respectively, as shown
by the red symbols above the corresponding nodes in Figure 4A.
After that, since the source node has no incoming edges, it is
outdated and can be safely deleted from the graph.

Then, generate the successors of nodes in the first level as
the second level of nodes, which are A(4, 7), T(3, 6), A(4, 3),
A(8, 7), T(7, 6), and C(6, 2), as shown in Figure 4B. Note that, if
a successor has already existed in Leveled-DAG (such as G(5, 4)),
it needs not to be repeatedly created. After the second level of
nodes have been created, since A(1, 3), C(2, 2), and T(3, 1) have
no incoming edges, they are outdated and should be deleted,
also, their partial LCSs should be inherited and extended by
their successors. For instance, the outdated node A(1, 3) has
three successors (it has no successor corresponding to C):A(4, 7),
T(3, 6), and G(5, 4). Each of these successors needs to append its
own corresponding symbol to the partial LCS of A(1, 3) (which
is A), and then saves that appended partial LCS as its own partial
LCS. Specifically, the successor A(4, 7) appends A to A, and saves
AA as its partial LCS. The successor T(3, 6) appends T to A,
and saves AT as its partial LCS. Similarly, the successor G(5, 4)
appends G to A, and saves AG as its partial LCS. Note that,
since G(5, 4) is the successor of all three outdated nodes, it gets
three partial LCSs, which are TG, CG, and AG, by inheriting and
extending the partial LCSs of its three outdated precursors. After
removing the outdated nodes, only 7 nodes are left in the graph.

Next, as shown in Figure 4C, the nodes in the second level are
expanded by generating their successors, and the newly created
successor nodes T(7, 8) and A(8, 3) form the third level of the
graph. Note that, since A(8, 7) has no successors, the end node
(∞,∞) is defined to be its only successor. After constructing

Frontiers in Genetics | www.frontiersin.org 5 August 2017 | Volume 8 | Article 104

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Peng and Wang A Novel Graph Model for the MLCS Problem

FIGURE 3 | (A) The successor table of sequence ACTAGCTA. (B) The successor table of sequence TCAGGTAT.

FIGURE 4 | The Leveled-DAG constructed for sequences ACTAGCTA and TCAGGTAT. The mach point and the corresponding symbol are shown in each node. The

partial LCSs are shown by red strings near the nodes. The white nodes are newly created and will be expanded later. The green ones are outdated and will be

removed right away. The red ones with incoming edges are left from the previous levels and cannot be removed at present. (A) Generate the first level of nodes. (B)

Generate the second level of nodes. (C) Generate the third level of nodes. (D) No new node is created any more. (E) Delete the remaining outdated nodes. (F) Only

the end node is left.

the third level, the nodes T(3, 6), A(4, 3), and C(6, 2) become
outdated. Before removing them, their partial LCSs will be
inherited and extended by their successors first. As a special case,
since A(4, 7) is a successor of the outdated node T(3, 6), the
partial LCSs of T(3, 6), which are CT and AT, will be inherited by
A(4, 7) and appended by A. Because the appended partial LCSs
CTA and ATA are longer than the original partial LCS of A(4, 7)
(which is AA), the partial LCSs of A(4, 7) will be updated to CTA
and ATA accordingly. Similarly, the partial LCSs of G(5, 4) and

T(7, 6) are also updated by inheriting and extending the partial
LCSs of their outdated precursors.

As shown in Figure 4D, the newly generated nodesT(7, 8) and
A(8, 3) in the third level of the graph are expanded by generating
their successors. Since neither of them has successors, the end
node is defined to be the successor of both nodes. Because no
new node is created, no node needs to be expanded any more.
Therefore, from this moment on, the algorithm only needs to
repeatedly remove the outdated nodes and update the partial
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LCSs of their successors. At present, A(4, 7), G(5, 4), and A(8, 3)
will be removed. By inheriting the partial LCS of A(8, 3), the end
node gets TCA as its partial LCS (since the end node corresponds
to no symbol, nothing is appended to TCA). Next, as shown in
Figure 4E, T(7, 6) and T(7, 8) will be removed, and the partial
LCSs of the end node are updated to CTAT and ATAT. Finally,
as shown in Figure 4F, after removing the last outdated node
A(8, 7), the partial LCSs of end node are updated to TAGTA and
CAGTA, which are the wanted MLCS of the two input DNA
sequences.

From the example we can see that, at the beginning,
only the source node resides in Leveled-DAG, and then the
number of nodes grows gradually, once there is no new
node created, the number of nodes begin to decline until
only one node is left. During the procedure, only the new
created nodes and the nodes with incoming edges are saved in
Leveled-DAG, which greatly reduce the memory consumption.
Once the construction is finished, the MLCS can be obtained
immediately.

2.2.3. Construction Algorithm for the Leveled-DAG

Model
In this section, we will give a formal description of the
construction algorithm for the Leveled-DAG model.

Algorithm 1. Construction of Leveled-DAG

• Step 0. Preprocessing. For each input sequence, construct its
successor table.
• Step 1. Construct the first level of Leveled-DAG. Generate all

successors of the source node as the first level by referring to
the successor tables. Let the corresponding symbol of each new
successor to be its single char partial LCS. Delete the source
node.
• Step 2. Construct the next level of Leveled-DAG, and delete

the outdated nodes (generate and delete). If there exists nodes
in Leveled-DAG that have not been expanded, repeat the
following two sub-steps:

– Step 2.1. For each node t that is not expanded, generate all
successors of t (if a certain successor has already existed in
the graph, it does not need to be generated repeatedly and
just needs to make a pointer to it), and if t has no successors,
let the end node be its only successor.

– Step 2.2. Let |p| denote the length of the partial LCSs of
node p. For each node p that has no incoming edges, and
for each successor s of p:

∗ If |p| ≥ |s|, delete the (old) partial LCSs of s. Append the
corresponding symbol of s to each partial LCS of p, and
then save all the appended partial LCSs as the new partial
LCSs of s.
∗ Otherwise, if |p| = |s| − 1, append the corresponding

symbol of s to each partial LCS of p, and add all the
appended partial LCSs to the existing partial LCSs of s.

Delete node p (as well as its partial LCSs) from the graph.

• Step 3. Repeat Step 2.2, until only the end node is left in the
graph.

• Step 4. Output the partial LCSs saved in the end node, which
are the real MLCS of the input sequences.

Algorithm 1: Pseudocode
Input:

The successor tables of the input sequences.

Output:

The MLCS of the input sequences.

Suc(source)← ∅, P_LCS(source)← ∅

Suc(end)← ∅, P_LCS(end)← ∅

L_DAG← {source, end}

Cur_Level← {source}

while Cur_Level 6= ∅ do

for each node t ∈ Cur_Level do

for each successor s of t do

Suc(t)← Suc(t) ∪ {s}

if s /∈ L_DAG then

L_DAG← L_DAG ∪ {s}

Next_Level← Next_Level ∪ {s}

end if

end for

if t has no successor then

Suc(t)← {end}

end if

end for

Remove_Outdated(L_DAG)

Cur_Level← Next_Level

end while

while ∃t ∈ L_DAG and t 6= end do

Remove_Outdated(L_DAG)

end while

Output: P_LCS(end)

Remove_Outdated(L_DAG):

for each node p ∈ L_DAG that has no incoming edges do

for each successor s of p do

|p| ← the length of partial LCSs of p

|s| ← the length of partial LCSs of s

δ← the corresponding symbol of s

if |p| ≥ |s| then

for each plcs ∈ P_LCS(p) do

Append δ to plcs

end for

P_LCS(s)← {all the appended partial LCSs}

else if |p| + 1 = |s| then

for each plcs ∈ P_LCS(p) do

Append δ to plcs

end for

P_LCS(s)← P_LCS(s) ∪ {all the appended partial LCSs}

end if

Delete p from L_DAG

end for

end for

As shown in Algorithm 1, after preprocessing (Step 0), the
Leveled-DAG contains only the source node at the beginning
(Step 1), and then it adopts a generate and delete strategy to
generate the next level of Leveled-DAG (Step 2.1) and delete
the outdated nodes (Step 2.2), once all the nodes in Leveled-
DAG have been expanded, i.e., there is no new node created, the
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algorithm begins to repeatedly delete the outdated nodes (Step
3), until only the end node is left. At last, output the partial LCSs
of the end node, which are the MLCS of the input sequences
(Step 4).

The pseudocode of Algorithm 1 is shown above, where
the data structures used are introduced in Section 2.2.1. The
preprocessing procedure of building the successor tables is
omitted in the pseudocode, and the successor tables are used
directly as input data. The Step 1 and Step 2 in Algorithm 1

are combined into a big while loop of line 7 ∼ 22, and Step 3
corresponds to a while loop of line 24 ∼ 26. The operations to
remove the outdated nodes in Leveled-DAG are wrapped into a
single procedure called Remove_Outdated corresponding to line
30∼ 49.

2.2.4. Analysis of Time and Space Complexities
Next, we will give a rough estimate of the time and space
complexities of the Leveled-DAG approach.

Asmentioned above, the procedure of Leveled-DAG approach
consists of two stages: 1. Build the successor table for each
input sequence; 2. Construct the Leveled-DAG graph based on
the successor tables. For the first stage, as shown in Section
2.2.1, building the successor table for a given sequence of length
n takes O(|6|n) time, thus, the time complexity of building
all the successor tables for d input sequences of length n is
O(d|6|n). For the second stage, from the overall point of view,
construction of Leveled-DAG is just generating all the nodes of
the graph and then deleting them all. Although the generating
and deleting procedures are mixed together during running,
one node is generated and deleted only once, and there are no
recursive procedures at all (as shown in the pseudocode code of
Algorithm 1). Therefore, the time complexity of constructing the
Leveled-DAG is O(2|Nodes|), where |Nodes| is the number of all
nodes created, and each of the generating and deleting procedure
takes O(|Nodes|) time. Combine the two stages, the time
complexity of the Leveled-DAG approach isO(d|6|n+2|Nodes|).
Since there is always O(d|6|n)≪ O(2|Nodes|) (this is indicated
by experiments), we haveO(d|6|n+ 2|Nodes|) ≈ O(2|Nodes|) ≈

O(|Nodes|), which means the time complexity of the Leveled-
DAG approach is linear to the number of nodes in the
graph.

For the space consumption, on the one side, our approach
needs to store all the successor tables which takes O(d|6|(n+ 1))
space. On the other side, as stated before, the Leveled-DAG graph
(mainly) needs to store the latest level of nodes, and the number
of nodes in the latest level will increase first and then decline,
thus the memory consumption of the Leveled-DAG graph will
grow to a peak and then decrease. Therefore, the (peak) space
consumption of the Leveled-DAG graph will be O(|Max_Level|),
where |Max_Level| is the number of nodes in the max level
of the graph. Combine the two sides, the space complexity of
Leveled-DAG approach is O(d|6|(n + 1) + |Max_Level|), and
since there is always O(d|6|(n+ 1))≪ O(|Max_Level|), we have
O(d|6|(n+ 1) + |Max_Level|) ≈ O(|Max_Level|), which means
the space complexity of the Leveled-DAG approach depends on
the max level of the graph.

3. RESULTS

In this section, we compare the time and space efficiency of
the Leveled-DAG approach with three other state-of-the-art
algorithms: Top_MLCS by Li et al. (2016b), Quick-DP by Wang
et al. (2011) and Fast_LCS by Chen et al. (2006) on real biological
sequences.

3.1. Experimental Setups
We choose two types of biological sequences: DNA sequences
with |6| = 4 and protein sequences with |6| = 20 as the input
data. We conduct two kinds of experiments:

1. Evaluation under various numbers of sequences: for each type
of the sequences, the number of sequences used increases from
3 to 700 and the length of all used sequences is fixed to 100.

2. Evaluation under various lengths of sequences: for each type
of the sequences, the number of sequences is fixed to 5, but
the length of the sequences increases from 50 to 5,000.

For each test, according to the specified number and length,
the input sequences are generated by randomly extracting and
truncating a large raw sequence set. In the experiments, all the
test algorithms are run on a server with Intel Xeon E7-8880
2.2 GHz CPU and 700 GB RAM (since the server is shared by
many users, the available memory for each process is at most 300
GB). The operating system is GNU/Linux (amd64), and all the
algorithms are implemented with C/C++ and compiled by gcc
with option “−O2.”

3.2. Evaluation under various numbers of
sequences
In the first kind of experiment, each test is conducted on a
specific number of sequences from 3 to 700 with the length
fixed to 100, for both DNA and protein sequences. All the
algorithms are independently run 5 times with 32 threads, and
their average running times (as well as the standard deviation
of the running times) and memory consumption are measured
and shown in Tables 1, 2, respectively. It is worth pointing
out that, the running time and the memory consumption of
the algorithms are highly depended on the contents of test
sequences. In particular, for the sequence sets with the same
size but containing different sequences, the time and memory
consumption of the test algorithms may vary significantly.

The experimental results show that, the FAST_LCS andQuick-
DP algorithms cannot process datasets containing 20 (or more)
sequences, due to out of memory. As shown in Table 2, the
memory consumption of these two algorithms are quite close
(since they use the same framework and the only difference is
how to delete the dominated points) and both grow exponentially
as the number of sequences increases, because both algorithms
need to generate a huge number of redundant nodes and save
them all in memory. As shown in Table 1, their running times
also grow rapidly as the number of sequences increases, and this
is mainly because that, as the number of sequences increases,
the dimension of the match point in each node increases
accordingly. Therefore, to eliminate the dominated points, the
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TABLE 1 | The average running times (in seconds) of the test algorithms on different numbers of DNA and protein sequences with the length of sequences fixed to 100.

(Using 32 threads).

Number DNA (|6| = 4) Protein (|6| = 20)

FAST_LCS Quick-DP Top_MLCS Leveled-DAG FAST_LCS Quick-DP Top_MLCS Leveled-DAG

3 0.052 (0.003) 0.041 (0.001) 0.031 (0.002) 0.018 (0.001) 0.021 (0.001) 0.034 (0.002) 0.027 (0.001) 0.016 (0.001)

4 0.255 (0.01) 0.203 (0.02) 0.071 (0.004) 0.053 (0.003) 0.183 (0.02) 0.152 (0.03) 0.051 (0.003) 0.037 (0.002)

5 2.9 (0.1) 1.5 (0.09) 0.12 (0.008) 0.082 (0.004) 2.1 (0.1) 1.0 (0.08) 0.098 (0.008) 0.077 (0.006)

6 26.5 (1.7) 10.3 (0.8) 1.3 (0.09) 1.1 (0.1) 20.8 (1.2) 6.9 (0.6) 0.94 (0.03) 0.75 (0.02)

7 151.8 (10.0) 32.8 (1.9) 3.6 (0.1) 2.7 (0.2) 116.5 (10.3) 21.8 (1.3) 2.8 (0.2) 1.9 (0.1)

8 834.9 (43.8) 147.6 (8.8) 8.5 (0.6) 6.9 (0.4) 746.5 (58.8) 107.0 (8.7) 6.3 (0.3) 4.7 (0.2)

9 4,174.6 (408.7) 738.5 (51.5) 16.4 (0.9) 13.7 (0.6) 3,059.2 (301.4) 585.6 (40.2) 12.5 (0.8) 9.9 (0.4)

10 25,671.4 (2,433.8) 3,385.4 (326.4) 30.0 (2.3) 25.3 (0.9) 22,751.9 (1,596.7) 2,645.3 (215.7) 24.7 (1.5) 20.6 (1.1)

20 – – 64.8 (4.6) 51.2 (2.1) – – 57.7 (3.3) 45.3 (2.3)

30 – – 136.7 (6.7) 96.7 (3.7) – – 124.3 (8.9) 89.2 (4.7)

40 – – 250.3 (9.4) 191.4 (7.5) – – 223.4 (14.7) 180.8 (10.5)

50 – – 463.2 (17.5) 380.1 (12.3) – – 432.7 (22.4) 366.4 (16.0)

60 – – 665.4 (42.2) 530.3 (27.4) – – 590.6 (31.2) 509.5 (20.4)

70 – – 1,088.1 (76.7) 875.5 (39.4) – – 967.8 (76.4) 848.6 (39.6)

80 – – 1,684.6 (127.5) 1,233.2 (62.3) – – 1,432.6 (105.2) 1,167.0 (66.8)

90 – – 2,217.9 (188.3) 1,764.6 (85.5) – – 2,053.5 (127.1) 1,715.1 (84.1)

100 – – 3,041.5 (220.9) 2,417.8 (174.9) – – 2,320.2 (144.8) 2,056.2 (101.5)

200 – – 3,398.3 (241.4) 2,778.2 (190.2) – – 2,492.6 (152.4) 2,118.5 (114.9)

300 – – 3,665.0 (263.8) 2,962.5 (206.7) – – 2,614.2 (165.7) 2,214.3 (138.8)

400 – – 3,981.6 (285.0) 3,191.2 (218.0) – – 2,745.3 (172.8) 2,375.4 (152.9)

500 – – 4,237.2 (310.3) 3,384.0 (231.4) – – 2,862.4 (181.1) 2,435.1 (164.3)

600 – – 4,555.9 (336.9) 3,547.2 (243.7) – – 2,947.9 (193.4) 2,479.2 (170.7)

700 – – 4,880.3 (362.7) 3,854.7 (266.2) – – 3,174.8 (204.5) 2,511.9 (183.2)

The standard deviations of the running times are shown in the parentheses.

Minima operation used by both algorithms needs to compare
each pair of the match points dimension by dimension at every
level. This needs a lot of comparisons and is extremely time-
consuming. On the other hand, Quick-DP is much more efficient
than FAST_LCS since it adopts a divide and conquer strategy
to eliminate the dominated points, which is very suitable for
parallelization. Unfortunately, the Quick-DP algorithm is still
not efficient enough in either time or space for sets with many
sequences.

By contrast, it can be seen from the results that the Top_MLCS
algorithm and the proposed Leveled-DAG algorithm are able to
process up to 700 sequences. As shown in Table 2, the memory
consumptions of these two algorithms are much less than that
of the previous ones, this is because both algorithms adopt new
graph models to reduce the scale of the dominant point graph:
the ICSG model adopted by Top_MLCS will not generate the
redundant nodes, while the Leveled-DAG model only keeps one
level (and some more) nodes of the graph in memory. Compared
with Top_MLCS, the Leveled-DAG algorithm can save about
35% ∼ 40% / 33% ∼ 35% of the space for DNA/protein
sequence sets with more than 100 sequences, this is due to that
for large sequence sets the nodes saved by Leveled-DAG (which
includes the max level of nodes as well as the nodes retained from
the previous levels) account for only about 40% of the total nodes.
Also note that, at the beginning, the memory consumptions

of both algorithms grow rapidly as the number of sequences
increases, but after the sequences increasing to a certain volume
(about 80 ∼ 90 in this experiment) the memory growth rate
begins to decline, and finally the growth of memory trends to be
roughly a constant. We find that this is because the increase of
nodes begins to slow down once the volume of sequences exceeds
a certain threshold (the threshold is hard to determine since
it depends on many factors such as the alphabet of sequences,
the length of sequences and the contents of sequences), and
finally the number of nodes remains roughly the same for further
increase of sequences, and at this time the memory growth
mainly comes from the increase of the dimension of match point
in each node.

Moreover, both algorithms are significantly (about one to
two orders of magnitude) faster than FAST_LCS and Quick-
DP. This mainly because they do not need a similar operation
such as the Minima operation used by FAST_LCS and Quick-DP
to make comparisons on each pair of match point. Compared
with Top_MLCS, our Leveled-DAG is about 10% faster for
smaller datasets (containing less than 10 sequences), and 10%
∼ 20% faster for larger datasets. This is because the Top_MLCS
algorithm needs two topological sorting operations (forward and
backward topological sort) to search for theMLCS after the graph
is built, while the Leveled-DAG does not need any searching
operation after Leveled-DAG is constructed. In fact, the wanted
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TABLE 2 | The memory consumption (in MB) of the test algorithms on different numbers of DNA and protein sequences with the length of sequences fixed to 100.

Number DNA (|6| = 4) Protein (|6| = 20)

FAST_LCS Quick-DP Top_MLCS Leveled-DAG FAST_LCS Quick-DP Top_MLCS Leveled-DAG

3 28 31 8 5 25 28 7 4

4 373 447 23 17 330 403 19 14

5 1,358 1,485 93 85 1,167 1,304 77 62

6 3,315 3,490 297 223 2,718 2,960 203 190

7 5,190 5,862 534 489 4,152 47,06 469 418

8 11,057 12,051 1,211 1,124 8,513 9,871 1,017 943

9 20,634 21,183 3,058 2,765 15,138 16,062 2,538 2,238

10 35,769 36,934 5,813 5,232 25,637 26,048 4,766 4,251

20 – – 32,329 28,126 – – 24,246 18,045

30 – – 48,765 39,291 – – 36,824 26,713

40 – – 67,813 52,607 – – 49,503 35,182

50 – – 91,128 68,103 – – 64,292 46,137

60 – – 121,268 87,359 – – 81,379 58,174

70 – – 156,470 118,600 – – 98,541 61,036

80 – – 197,387 141,859 – – 117,390 76,283

90 – – 209,145 146,402 – – 120,833 81,429

100 – – 229,372 151,386 – – 124,124 84,069

200 – – 252,247 163,948 – – 131,920 88,132

300 – – 261,963 167,085 – – 138,255 92,025

400 – – 268,993 170,811 – – 144,213 96,044

500 – – 276,103 173,945 – – 151,318 101,250

600 – – 290,398 177,140 – – 157,986 104,986

700 – – 299,498 179,846 – – 162,298 108,107

MLCS are saved in the only end node left in the graph, which can
be gotten immediately. In summary, the Leveled-DAG approach
is more suitable than the compared algorithms for large-scale
sequences sets. Note that, the growth in running time of both
algorithms also begins to slow down as the number of sequences
grows to a threshold.

From Tables 1, 2, we can also see that both time and space
efficiency of all the test algorithms for protein sequences are
superior to that for DNA sequences, this is because the scale of
DAG for large alphabet sequences (such as protein) is smaller
than that for small alphabet sequences (such as DNA). We leave
the detailed discussion of the effect of alphabet size in the later
section.

3.3. Evaluation under various lengths of
sequences
In the second kind of experiment, each test is conducted on
5 DNA/protein sequences with length increasing from 50 to
5,000. As before, all the algorithms are independently run 5
times with 32 threads, and their average running times (as
well as the standard deviation of the running times) and
memory consumption are measured and shown in Tables 3, 4,
respectively.

It can be seen from the experimental results that, the
FAST_LCS cannot process DNA sequences longer than 400 or
protein sequences longer than 500 due to the extremely long
running time, while the Quick-DP algorithm cannot process

DNA sequences longer than 800 or protein sequences longer
than 1,000 due to out of memory. (Again, the performance of
the algorithms for protein sequences is better than that for DNA
sequences). Since as the length of the sequences increases, the
number of levels in the graphwill grow accordingly and the nodes
in each level will grow exponentially, which makes the graph
take up too much memory. Also, the running times of FAST_LCS
and Quick-DP grow rapidly as the length of sequences increases,
the main reason is that as the nodes increase exponentially in
each level, the Minima operation for the levels is very time-
consuming, moreover searching the longest paths in a graph with
many levels is also time-consuming. Consequently, neither of the
two algorithms are suitable for finding MLCS of long sequences.

On the other hand, as shown in Table 4, both Top_MLCS and
Leveled-DAG can handle DNA/ protein sequences with length up
to 5,000. Compared with Top_MLCS, the Leveled-DAG approach
can save about 43% ∼ 46% / 41% ∼ 45% of memory for
DNA/protein sequences longer than 1,000, since the growth in
memory requirement of Leveled-DAG mainly depends on the
max level of nodes, whose proportion in the total nodes will
decrease as the sequence length increases. Further, as shown
in Table 3, the running times of both algorithms grow much
more slowly than that of FAST_LCS and Quick-DP. Even for
long sequences (length ≥ 1, 000), both Top_MLCS and Leveled-
DAG can still find their MLCS. Particularly, note that in all cases,
the proposed algorithm Leveled-DAG is the fastest algorithm: it
is at least two orders of magnitude faster than FAST_LCS and
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TABLE 3 | The average running times of the test algorithms under different lengths of DNA and protein sequences with the number of sequences fixed to 5. (Using 32

threads).

Length DNA (|6| = 4) Protein (|6| = 20)

FAST_LCS Quick-DP Top_MLCS Leveled-DAG FAST_LCS Quick-DP Top_MLCS Leveled-DAG

50 0.57 (0.03) 0.13 (0.01) 0.038 (0.002) 0.026 (0.001) 0.06 (0.001) 0.018 (0.001) 0.004 (0) 0.001 (0)

100 2.7 (0.2) 1.4 (0.08) 0.23 (0.03) 0.96 (0.04) 0.3 (0.02) 0.16 (0.01) 0.077 (0.003) 0.058 (0.006)

200 244.1 (10.4) 10.6 (0.2) 8.5 (0.3) 6.8 (0.2) 28.5 (1.5) 1.2 (0.1) 0.96 (0.102) 0.77 (0.05)

300 4,064.8 (312.6) 95.3 (4.7) 38.7 (2.2) 32.6 (2.7) 467.1 (14.4) 11.4 (1.1) 4.4 (0.2) 3.1 (0.2)

400 – 312.4 (11.5) 77.8 (4.9) 59.5 (3.8) 3,659.2 (363.8) 36.7 (1.8) 8.9 (0.8) 7.2 (0.6)

500 – 1,566.9 (128.9) 132.6 (7.8) 112.2 (5.6) – 180 (6.2) 15.2 (1.1) 12.7 (0.9)

600 – 4,384.1 (297.4) 201.1 (11.7) 165.3 (8.3) – 533.8 (19.4) 23.1 (2.0) 18.9 (1.0)

700 – 10,347.5 (913.2) 287.3 (12.1) 223.4 (10.1) – 1,075.5 (32.7) 32.6 (2.5) 24.6 (1.03)

800 – 27,489.2 (2,351.3) 373.2 (14.5) 313.8 (13.3) – 2,958.1 (61.5) 43.9 (3.8) 35.3 (1.1)

900 – – 487.3 (21.6) 399.1 (15.5) – 6,709.0 (221.2) 54.1 (4.2) 44.8 (1.2)

1,000 – – 644.7 (29.3) 513.5 (19.8) – 11,508.6 (1,258.9) 70.8 (5.7) 57.0 (1.8)

2,000 – – 4,240.5 (251.2) 3,017.6 (87.2) – – 469.3 (13.7) 355.4 (10.2)

3,000 – – 9,915.1 (673.8) 7,922.0 (297.3) – – 1,168.5 (30.5) 873.1 (22.4)

4,000 – – 16,963.4 (1,553.3) 13,762.3 (1,433.4) – – 1,843.0 (41.3) 1,532.5 (32.4)

5,000 – – 24,672.9 (2,104.3) 19,074.7 (1,658.1) – – 2,788.3 (55.6) 2,065.2 (46.3)

The standard deviations of the running times are shown in the parentheses.

TABLE 4 | The memory consumption (in MB) of the test algorithms under different lengths of DNA and protein sequences with the number of sequences fixed to 5.

Length DNA (|6| = 4) Protein (|6| = 20)

FAST_LCS Quick-DP Top_MLCS Leveled-DAG FAST_LCS Quick-DP Top_MLCS Leveled-DAG

50 47 56 21 17 40 42 18 11

100 1,352 1,481 99 82 1,163 1,296 81 56

200 8,331 8,652 2,353 1,469 6,249 7,963 1,894 988

300 16,874 16,993 4,050 3,051 11,047 12,735 3,251 1,864

400 – 27,355 5,866 4,787 113,665 20,586 4,819 3,012

500 – 41,257 8,297 6,654 – 32,771 6,770 4,351

600 – 60,912 12,063 8,598 – 46,009 9,023 5,806

700 – 85,733 18,550 10,163 – 65,574 11,652 7,513

800 – 126,483 26,070 14,250 – 86,684 14,725 9,426

900 – – 36,341 20,539 – 111,748 18,380 11,573

1,000 – – 49,442 27,985 – 140,457 22,507 13,690

2,000 – – 95,784 55,549 – – 45,633 27,811

3,000 – – 152,178 86,732 – – 71,058 42,669

4,000 – – 224,135 125,454 – – 99,564 58,937

5,000 – – 301,375 165,756 – – 134,568 77,502

Quick-DP, and faster thanTop_MLCS about 20% on datasets with
longer sequences (length ≥ 20, 00). The reason for the proposed
algorithm Leveled-DAG being faster than Top_MLCS on longer
sequences is that with the increase of the length of sequences,
the first topological sorting scheme used in Top_MLCS will take
much more time, while the performance of Leveled-DAG will
not be affected much by the sequence length. Thus Leveled-
DAG algorithm is more suitable for finding MLCS of long
sequences.

In general, due to the much smaller scale of the Leveled-
DAG graph and the efficiency of the technique to gradually

construct the MLCS, the Leveled-DAG approach has better
performance than the compared algorithms on all the testing
datasets, especially on datasets with long sequences and many
sequences.

4. DISCUSSION

Next, we will discuss some factors that can affect the performance
of the MLCS algorithms.The length of the sequences is the key
factor that affects the performance of the algorithms: for the
same type of sequences, as the length of sequences increases,
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the number of levels in the corresponding DAG will increase
accordingly. Since the number of nodes in the levels will
grow (nearly) exponentially as the level increases, the total
number of nodes in DAG will explode as the sequence length
increases, therefore, the scale of DAG for long sequences is
larger than that for short sequences. Consequently, both time
and space overhead for finding MLCS of long sequences are
higher than that for finding MLCS of short sequences. On the
other hand, the number of sequences can also have an impact
on the algorithms’ performance: as the number of sequences
increases, the dimension of match point in each node will
grow accordingly, and therefore each single node in DAG will
take up more space, moreover, comparing two match point
will require more time. In addition, the number and length
of the sequences can also affect the result MLCS: obviously,
the longer the sequences are, the longer the result MLCS are;
conversely, the more the sequences there are, the shorter the
result MLCS are.

From the experimental results, we can also find that, the
alphabet size can have a significant impact on the performance
of the algorithms. For sequences with large alphabet (such as
protein sequences), the performance of the algorithms is much
better than that for sequences with small alphabet (such as DNA
sequences). This is because that, for a fixed-length sequence,
the larger the alphabet size is, the less each symbol appears
in that sequence, which means for large alphabet sequences,
the “distance” between one node and its successors is large,
therefore the DAG for large alphabet sequences has less levels
than that for small alphabet sequences. For instance, with the
sequence length fixed to 100, the DAG for DNA sequences has
about 30 levels, while the DAG for protein sequences has only
about 10 levels. Although a certain level in DAG for protein
sequences has more nodes than the same level in DAG for
DNA sequences (since one node in DAG for protein sequences
can have up to 20 successors, however, for DNA sequences
one node has at most 4 successors), the total number of graph
nodes for protein sequences is smaller than that for DNA
sequences. Therefore, the performance of algorithms for large

alphabet sequences is much better than that for small alphabet
sequences.

By profiling the program, we find that the most time-
consuming part of the Leveled-DAG approach is the procedure of
deleting the outdated nodes (i.e., the Remove_Outdated(L_DAG)
routine in the pseudocode of Algorithm 1, which takes about
50% ∼ 60% of the total running time), particularly, the
procedure of passing the partial LCSs of one node to its
successors. This procedure needs a lot of memory allocation,
resize, and free operations, which is not appropriate for
parallelization and therefore very time-consuming. To reduce
the time consumption, we are focusing on more efficient
passing strategy and more carefully implementation. We are also
searching for more efficient memory management routines to
replace the ones we used (which are provided by the standard
library).

5. CONCLUSION

In this paper, we propose a novel graph model called Leveled-
DAG which is much smaller than the existing DAGmodel. Based
on this model, the corresponding construction algorithm is also
proposed. Once the Leveled-DAG is constructed, there is only
one node left with all MLCS being immediately obtained without
any further operation for searching the MLCS. The experimental
results also show the proposed approach is both time and space
efficient on all testing cases, especially for long and large-scale
sequences.
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