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While understanding the structure of RNA molecules is vital for deciphering their

functions, determining RNA structures experimentally is exceptionally hard. At the

same time, extant approaches to computational RNA structure prediction have limited

applicability and reliability. In this paper we provide a method to solve a simpler

yet still biologically relevant problem: prediction of secondary RNA structure using

structure of different molecules as a template. Our method identifies conserved and

unconserved subsequences within an RNA molecule. For conserved subsequences, the

template structure is directly transferred into the generated structure and combined with

de-novo predicted structure for the unconserved subsequences with low evolutionary

conservation. The method also determines, when the generated structure is unreliable.

The method is validated using experimentally identified structures. The accuracy of

the method exceeds that of classical prediction algorithms and constrained prediction

methods. This is demonstrated by comparison using large number of heterogeneous

RNAs. The presented method is fast and robust, and useful for various applications

requiring knowledge of secondary structures of individual RNA sequences.

Keywords: RNA, secondary structure, homology, prediction, template structure

INTRODUCTION

Despite recent improvements [SHAPE-seq (Loughrey et al., 2014), PARS (Kertesz et al., 2010), and
FragSeq (Underwood et al., 2010)], experimental identification of RNA structures is technically
demanding and only a limited number of RNA structures has been resolved. Therefore,
computational predictions of RNA secondary structures are frequently employed as proxies for
native structures. There is plenty of heterogeneous prediction methods, that could be broadly
categorized into (a) methods based on free energy and dynamic programming techniques, reviewed
in Mathews et al. 2006 (Mathews, 2006) or (b) comparative methods as reviewed in Gardner et al.
2004 (Gardner andGiegerich, 2004). However, knownmethods in both categories are unreliable for
longer sequences (∼>150 nucleotides) andmore complex structures, e.g., those that contain longer
single-stranded segments. This is owing to the extreme theoretical complexity of the prediction.

Nevertheless, the number of experimentally identified RNA structures is growing in spite of
the technical demands. These structures are available as potential templates to generate secondary
structures of uncharacterized but related RNA sequences. In principle, template-based prediction
can be treated as constrained prediction, which is supported by several methods, e.g., the RNA
Vienna Package (Lorenz et al., 2011), RNAstructure (Mathews, 2004), and Locarna (Smith et al.,
2010). However, the conversion of the template into a structural constraint for Locarna and
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RNAstructure is not trivial, as the template and the query
sequence frequently have different lengths. Locarna produces a
consensus structure different from an individual structure that
cannot bemapped directly. RNAstructure requiresmultiple input
sequences as input otherwise it predicts either MFE structure or
a set of probable structures. The only directly applicable method
is thus via RNA Vienna Package.

It includes a utility, refold.pl, that can be used for conversion
of secondary structures into an RNAfold constraint through a
sequence alignment. The constraint is then used for RNAfold
constrained prediction.

A different approach to the template-based prediction
was adopted for ribosomal RNAs (Gutell et al., 2002). The
rRNA structure cannot be predicted by available methods due
to their lengths and complexity. The method uses known
rRNA structures as templates for comparative prediction of
homologous sequences but it requires extensive manual input
and is slow.

Our approach differs from both free energy and comparative
methods: as we generate RNA secondary structure for the
molecule under investigation directly from the template
structure. The method uses a heuristic to determine which
fragments of the structure can be transferred directly and
employs free energy prediction algorithms to resolve the
structure of the rest of the fragments. The reliability of the
generated structure is then evaluated by a bootstrapping scheme.
We show that the proposed method achieves high-quality
predictions for sequences where a structure for a putative
homolog is known, including a number of sequences that are
intractable by current prediction software. The presentedmethod
is suitable for all RNAs that adopt a secondary structure.

An utility based on the method is available on request from
the authors.

MATERIALS AND METHODS

In this section, we first describe the proposed prediction method
and then deal with the evaluation methodology. In the following
text, we use the term “structure” to refer exclusively to secondary
structure.

Generating a Structure
Input to the template-based prediction task consists of a template
sequence, the corresponding template structure and a query
sequence. The task is to predict the structure of the query
sequence. The structure to be predicted is called the query
structure.

In terms of folding space, we have a subspace of the complete
folding space of the query sequence. The subspace contains all
possible structures of evolutionarily unconserved segments of the
query structure, while the structure of evolutionarily conserved
segments is taken from the template and kept fixed. The solution
over this subspace is in principle easier than over the complete
space, and can be found by determining the optimal structure of
the unconserved segments. An overview of the method is shown
in Figure 1. A detailed description of the individual steps follows:

I. A pairwise alignment of the query and template sequences is
computed with ClustalW2 (with default parameters except
for GAPOPEN = 7 a GAPEXT = 0.5) (Thompson et al.,
1994). The alignment can be treated as two functions: Aq

maps positions in the query sequence to positions in the
template sequence and At maps from template to query
sequence. An example alignment is shown in Table S1.

II. The template structure is mapped onto the query sequence,
producing intermediate structure. The intermediate
structure preserves base pairs that the alignment maps to
complementary nucleotides and marks all other bases as
unpaired (see Figure 2). More precisely, for each position p
in the query sequence, there are four possibilities:

1. Aq(p) is a gap,
2. Aq(p) is not paired in the template structure,
3. Aq(p) is paired to position r, but At(r) is either a gap or a

non-canonical pair for p,
4. Aq(p) is paired to position r and At(r) is a canonical pair

for p

In cases 1–3 the intermediate query structure marks p as
unpaired, in case 4, p is paired with At(r). Further, in cases
2 and 4, the position p is considered to be consistent while in
cases 1 and 3, p is considered to be inconsistent.
An example of an intermediate structure is shown in Table
S1 and Figure 1B.

III. The intermediate structure is decomposed into basic
structure elements: individual hairpins and stems
(Figure 1C). Hairpins are identified first, then stems.
Hairpins are identified by the following procedure:

1. The loops of the hairpins are identified first as base pairs
with only unpaired nucleotides in between the pairing
nucleotides.

2. From this base pair, both ends of the hairpin are extended
until first base pair of a different hairpin is encountered
on either end. The strands of the hairpin must contain
the same number of pairing nucleotides. All single-strand
nucleotides between pairing nucleotides are added to the
hairpin as well.

3. If there are single-strand nucleotides following the last
base pair of a hairpin, they are added to the hairpin while
ensuring they are not shared by multiple neighboring
hairpins.

Stems are identified in between hairpins. Stems have two
strands, the 5′ strand and the 3′ strand, identified by the
following procedure:

1. The strands of the stem start at the first nucleotide not
occupied by hairpins or previously identified stems at 5′

and 3′ ends of the intermediate structure for the 5′ and 3′

strands, respectively.
2. The strands are extended in opposite directions, i.e., the 5′

strand in 5′->3′ and the 3′ strand in 3′->5′ for the same
number of base pairs, until a base pair belonging already
to a hairpin or a base paired to a non-neighboring part of
the sequence is encountered.
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FIGURE 1 | Demonstration of the method using SAM I structure. Starting with input data (A), an intermediate structure is built first (B), the structure is decomposed

into individual hairpins and stems (C). If the structure of the individual elements is consistent, it is kept (D) while the structure of inconsistent elements is predicted de

novo (E). The structures for the individual elements are then combined to form the final predicted structure (F). Structures are plotted by VARNA viewer (Darty et al.,

2009). The sequence representation of the copy step is in Table S1. Note that VARNA interprets the signs for false non-canonical base pairs (“3”), gapped base pairs

(“1”) and gaps (“–”) used in Table S1 as “–”signs in yellow circles.

Unlike hairpins, stems are not extended with neighboring
single-strand nucleotides.

IV. Inconsistent elementary structure elements (Figure 1D) are
identified. Structural elements are considered inconsistent,
if their proportion of inconsistent positions identified in
step II is over a given threshold. The threshold was set to
20% for hairpins and 10% for stems. The threshold values
were identified based on optimization using both the cross-
validation and large scale datasets.

V De novo prediction of the structure of the inconsistent
elements (Figure 1E). RNAfold and RNAduplex (Hofacker
et al., 2004) were used for hairpins and stems, respectively.
The goal of this step is that the prediction corrects the
wrong structure information at inconsistent positions. The
advantage is that the inconsistent elements are small and
therefore the prediction of their structure is highly reliable
in contrast to the prediction of the whole structure.

VI The de novo predicted structures of the inconsistent
elements are combined with the intermediate structure of
the consistent elements (Figure 1F) to form the resulting
structure.

Bootstrap of the Generated Structure
Since the presented method will generate a structure for any
input, even if the template and query sequences are completely
unrelated, it is important that we distinguish reliable results from
spurious ones.

We compute the reliability using a bootstrapping scheme. We
use the query sequence to generate N sequences with randomly
shuffled dinucleotides. For the shuffled sequences, structures are
generated with the same procedure as for the query sequence.

First we validated a criterion that is evaluated by the
bootstrapping scheme. We chose between tree edit distances and

FIGURE 2 | Possible situations when building the intermediate structure from

the template structure. Dashed lines represent pairs in the template structure.

A position in the query sequence can be mapped to a gap (1) or mapped to an

unpaired position (2) or mapped to a position paired with a gap (3a) or a

non-canonical base-pair (3b) in the query sequence or mapped to a position

paired with a complementary nucleotide in the query sequence (4). Only the

pairs from case 4 are preserved in the intermediate structure and positions

from cases 1 and 3 are marked as inconsistent.

free energy (FE). For the first, distances drnd = {drnd,1,. . . ,drnd,N}
between the generated structures and the template structure
are computed. For the later, FEs ernd = {ernd,1,. . . ,ernd,N} of the
generated structures are computed.

Now drnd and ernd approximate the distributions of tree edit
distances and FEs obtained from non-homologous, i.e., shuffled
sequences with the same length and nucleotide composition. The
quality of the generated structure is then assessed with a z-score
(Kreyszig, 1979) relative to the population of non-homologous
sequences:

zd = (dgen − d̄rnd)/std(drnd), ze = (egen − ērnd)/std(ernd).

The generated structure of the original sequence is considered
reliable with a z-score ≥ 2 (corresponding to the limit of the
statistical significance of p = 0.05). In our experiments, we used
N= 100.
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Unlike direct use of the tree edit distance, the z-scores are
relevant also when the query sequence is only a fragment of
the template sequence. The generated structure is then naturally
dissimilar to the template structure and has a relatively large
tree edit distance. But reliable structure can still be generated
by transferring the relevant substructure of the template.
The presented bootstrapping scheme correctly classifies such
substructures as reliable.

For purpose of validation of the bootstrap metrics and
evaluation of the variance of z-scores, we repeated the bootstrap
100 times (100 runs with 100 randomized sequences each) for the
52 generated structures of the cross-validation dataset.

Comparison to Available Methods
The presented method was compared to a classical prediction
method (RNAfold), constrained prediction with refold.pl and
RNAfold, and constrained prediction using Rsearch/infernal
alignments and RNAfold. TheVienna RNApackage ver. 2.3.3 and
the infernal package ver. 1.1.2 (July 2016) were used. The first
method represents state-of-the-art of de novo prediction and is
included mainly to put the improvements made by our method
into proper scale. The latter two tools should in theory perform
the same task as our method and use the same input information
and thus are a more fair comparison.

The refold.pl script takes as input an alignment and a
consensus structure. To perform template-based prediction we
pass it a pairwise alignment between the subject sequence and
the sequence of the template and the template structure extended
to have the same length as the alignment by introducing the gaps
identified by the alignment into it. The constraints were then used
with RNAfold −C, as described in the Vienna RNA package
user guide.

To perform template-based prediction using Rsearch/infernal
method (Nawrocki and Eddy, 2013), we build a CM-model
using the sequence of the template and the template structure
in the Stockholm format using the command “cmbuild -
F –rsearch RIBOSUM85.mat/RIBOSUM65.mat CM_model
input_stockholm” and aligned the CM model with query
sequences using cmalign. Non-canonical base pairs were
removed from the alignment and the remaining base pairs were
used as constraints for RNAfold constrained prediction.

The comparison consists of two steps: first we validate the
proposed method on a small dataset of experimentally identified
RNA structures and then we perform a large scale evaluation on
sequences without known structure.

Cross-Validation Using Experimentally
Identified Structures
For the cross-validation, RNA families with at least two homologs
with experimentally identified structures were identified and
used. They let us to generate structure of one homolog
using structure of other homolog of the same family as a
template/constraint and vice versa. The generated structures were
then compared to their experimentally identified counterparts.

The sequences and structures of the experimentally identified
RNAs used for the cross-validation are shown in Supplementary
File S1.fasta. We collected 34 families with at least two

experimentally identified structures per one family mainly from
PDB, allowing for 52 predictions. The sources of the structures
including databases and/or related papers are included in Table
S4.

Accuracy of the generated/predicted structures was
evaluated using two criteria: (1) percent of nucleotide
positions with correctly predicted structural information,
(2) tree edit distances (computed by RNAdistance; Hofacker,
2004) to the experimentally identified structures. Ideally, the
generated/predicted structures should have 100% of nucleotide
positions with correctly predicted structural information and
their tree edit distance to the experimentally identified structures
should be zero.

Large Scale Evaluation
While the cross validation dataset provides exact results since
true structures of the query sequences are known, it covers only
a small portion of the variability of known RNA species in terms
of both structure and sequence. We therefore performed a larger
comparison using RNA families where a structure of at least one
possible template is available, but using query sequences without
experimentally determined structures. This forces us to use a
proxy metric for evaluation of the quality of the structures, but
permits testing our method on a much more variable dataset and
understanding its robustness.

The comparison was carried out using a reference dataset. Its
characteristics are summarized in Tables S2, S3. The sequences
are included in Supplementary File S2.fasta. Templates including
their sequences and structures are included in Supplementary
File S2a.fasta. The dataset was created from the test dataset
of CentroidHomfold (Kiryu et al., 2007; Hamada et al., 2009)
and extended with other RNAs to get more sequence/structure
variability. The dataset consisted of 32 RNA families where at
least one experimentally identified structure is known. In total,
the dataset contains 3,192 sequences with pairwise sequence
similarity within families ranging from 43 to 95% and sequence
similarity to the templates of 20–93%. The sequences were
downloaded from Rfam (Gardner et al., 2009) and SRPDB
(Andersen et al., 2006) databases, or when unavailable in
the databases, identified using corresponding papers cited in
Table S3 and downloaded from Genbank. As templates, the
experimentally identified structures were used, downloaded
together with their sequences from databases (mostly PDB;
Sussman et al., 1998) or acquired using corresponding papers
(Table S3).

RESULTS

Cross-Validation with Experimentally
Identified Structures
The results of the cross-validation are summarized in Table
S4 and Figure 3. The methodology of the cross-validation
is explained in details in Methods. The proposed method
generated more accurate structures than RNAfold and the
refold method for 49 of total 52 predictions (94%), and was
more accurate than the Rsearch-based method for 42 of total
52 predictions (81%). The result was the same, when the
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FIGURE 3 | Cross-validation. In (A,B), x-axis shows RNAs, whose structure is

predicted and (in parenthesis) the RNAs, whose structures were used either

for constraints or as templates. Y-axis shows tree edit distances (A) and

percentage of nucleotide positions with correctly predicted structural

information (B). Circles, squares, crosses, and x’s show values for the

proposed method, the refold method, RNAfold and the Rsearch-based

method, respectively. For (A), the lesser the distance, the higher the structural

similarity to experimentally identified structure; 0 for identical structures. For

(B), the maximum of structural similarity to experimentally identified structure is

indicated by 100%. For predictions marked with *, three structural versions

were obtained by removing pseudo knots. Organism names are abbreviated:

E.c., E. coli; H.m., H. marismortui; B.s., B. subtilis; D.m., D. melanogaster;

H.s., H. sapiens; O.c., O. cuniculus; T.t., T. tencogensis; C.s., C. subterraneus;

P.f., P. falciparum; T.m., T. maritime; S.c., S. coelicolor.

accuracy was evaluated by tree edit distance and percentage
of nucleotide positions with correctly predicted structural
information.

Figure 3 indicates that the proposed method was capable to
generate more accurate structures than both classical prediction
represented by RNAfold and the principally same methods
represented by the refold method and the Rsearch–based
method. The main improvement is the ability to generate both
large structures of long sequences and structures with long
single-strand segments that are notoriously hard to be predicted
with available prediction methods. Such typical structures here
are ribosomal RNAs and bacterial RNaseP. For some species
of shorter and highly paired structures, as the E. coli and
T. tencogensis 5S RNAs and lysine riboswitches, the proposed
method, the refold method and the Rsearch–based method
provided similar accuracy (Figures 3A,B).

With respect to the structure similarity metrics, both tree edit
distance and percentage of nucleotide position with correctly
predicted structural information, were similarly efficient, thus
cross-validating each other. In the remainder of the evaluation,
we use tree edit distance. The other metrics depends on the
sequence alignment method. Note that the value of tree edit
distance depends on the size of structures. As it is a distance, the
higher the similarity, the lower the score, and the value of zero
indicates structural identity.

Reliability of the Generated Structure
The bootstrap procedure for evaluation of the reliability of
the generated structure and its metrics (see section Materials
and Methods) was validated using the cross-validation dataset,
i.e., experimentally identified structures. The FE-based z-scores
obtained by the repeated bootstrap (100 runs with 100
randomized sequences each) evaluated 18 of total 52 generated
structures as unreliable. Nevertheless, 15 of these 18 unreliable
structures were false negatives (FNs). An example of a FN is
shown in Figure 4. It is the secondary structure ofC. subterraneus
glmS ribozyme generated using synthetic glmS ribozyme as
the template. The generated structure is obviously accurate (cf.
Figures 4B,D), but its ze = 1.85, marking it as unreliable (ze < 2).
For comparison, we generated true negative (TN) structure of
the same sequence using the proposed method with different
values of inconsistency thresholds (30% for hairpins and 20%
for stems; Figure 4C). Its ze = 2.7, i.e., evaluated as reliable
(>2), though it is obviously unreliable (cf. Figures 4B,C) and
therefore a false positive. In spite of the z-scores, the accuracy
of both the structures was documented well by their tree edit
distances (d= 4 and d= 44, respectively) to their experimentally
identified counterpart. Analogous situations occurred for the
other 15 generated structures that were evaluated as unreliable
by the FE-based z-scores.

We therefore used tree edit distance between generated
structures and templates instead of FE. The distance-based z-
scores evaluated 3 of 52 generated structures as unreliable with
more than 50% of their z-scores obtained by the repeated
bootstrap (100 runs with 100 randomized sequences each) <2.
Reliability of the remaining structures with their zd > 2 is
demonstrated by the example in Figure 4. The z-scores were
zd = 3.5 and 0.3 for the accurate and inaccurate structures,
respectively (Figures 4C,D, respectively). Such z-scores better
corresponded to the reliability of the structures.
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FIGURE 4 | Validation of the structural similarity metrics. An example of glmS ribozyme is used for demonstration. The template was the synthetic glmS ribozyme with

secondary structure derived from PDB ID 3l3c (A), the reference RNA was C. subterraneus glmS ribozyme with secondary structure derived from PDB ID 3b4c (B).

True negative and true positive structures generated by the proposed method using different values of parameters are shown in (C,D), respectively. The structures

predicted by RNAfold and the refold method are shown in (E,F), respectively. The proposed method and the refold method used the secondary structure of synthetic

glmS ribozyme as template and constraint, respectively. 1G—free energy, d—tree edit distance, ze and zd are z-scores based on FE and tree edit distances,

respectively.
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Our z-scores are however not definitive proofs of quality of
the structure and zd > 2 should be interpreted only as with a
high likelihood the structure is reasonable. Themain reason is the
z-scores’s variance with respect to the randomized structures used
in the bootstrap. The variance was estimated using the repeated
bootstrap (100 runs with 100 randomized sequences each) for
the 52 generated structures of the cross-validation dataset and
counting how many z-scores were <2 and >2 for each generated
structure. Besides the 3 unreliable structures, 39 of total 52
structures had 100% z-scores >2. Remaining 10 structures had
their z-scores >2 from 90.6% in average (for individual values,
see the black curve in Figure S1).

The reason why FE was inadequate for our task was most
likely its position independency. Two dissimilar structures
with similar base pairs, though at different position on a
sequence, can have similar FEs. As a result, an inaccurate
structure can have correct FE, as demonstrated by the
example in Figure 4. This fact is further demonstrated by
the structure predicted by the refold method (Figure 4F)
that is relatively dissimilar to its experimentally identified
counterpart (Figure 4B). Nevertheless, the difference in FE
between the predicted and experimentally identified structure
is 1.2 Kcal/Molecule (−23 to −24.2 Kcal/Mol). The structure

generated by the proposed method (Figure 4D) is fairly similar
to the experimentally identified structure, but the difference in
FE is 3.8 Kcal/Mol (−23 to−27Kcal/Mol), i.e., higher, indicating
stronger dissimilarity than for the structure predicted by the
refold method.

Large Scale Evaluation
As shown above, tree edit distance is biologically more relevant
for comparison than free energy. In the following section we thus
treat tree edit distance as our primary metric.

Results of the large-scale evaluation are summarized by Table
S5 and Figure 5 and Figure S2. They document higher accuracy
of the presented method when compared to RNAfold, the refold-
based method and the Rsearch-based method. In the first case,
the higher accuracy was achieved due to the extra information
used by the presented method. For the latter two methods, that
use the same input information, the higher accuracy was due
to the active search for inconsistent structural elements and
correction of their structure.

For 3 families (SRP bact small, Bs2 6S and group I ribozyme)
the compared methods performed nearly the same. These
families include densely and unambiguously paired structures

FIGURE 5 | Comparison of the presented method. The compared methods were RNAfold as a representative of classical, single sequence secondary RNA structure

prediction, a refold.pl-based method and the Rsearch method that both allow for the principally same type of prediction as the presented method. In the figure, 32

panels show results for 32 families of the reference dataset. In each panel, four box plots for the presented method, RNAfold, the refold method and the

Rsearch-based method, are shown (x-axis). Individual box plots show the median (red line), the 25th and 75th percentiles (the tops and bottoms of the boxes,

respectively) and outliers (the whiskers) of the edit tree distances of the predicted structures of a single family to templates. The distances between the tops and

bottoms of the boxes are the interquartile ranges. The families are indicated by titles of the plots.
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that are convenient for the classical prediction, represented by
RNAfold.

Examples
In the following, the presented method is demonstrated in details
using selected RNAs from the reference dataset. The examples
are intended to illustrate situations when the proposed method is
advantageous. Additional state-of-the-art prediction algorithms,
principally different from the proposed method, were included
in this demonstration to cover a broader spectrum of available
prediction methods.

Large Single-Strand Segments: gcvb RNA
The first example is gcvB RNA, whose structure, experimentally
identified in Sharma et al. (2007) for S. typhimurium (Figure 6A),
is difficult to predict as it includes relatively long single-strand
segments. For this example we predict structures of gcvB
homologs identified in the above cited paper. The sequence and
structure of the template and the sequences of gcvB homologs
and their predicted/generated structures are in Supplementary
File S3.fasta in sections (a) and (b), respectively.

RNAfold and CentroidHomfold (used for single sequence
prediction) tended to pair the sequences of long single-
strand segments (Figures 6b,d). More accurate was Turbofold
thanks to all the sequences of the homologs used as input
(Figure 6a). Locarna and the refold.pl-based method that used
the experimentally identified structure as constraint did not
predict plausible structures of homologs (Figures 6c,e). Tree edit
distances that quantify the similarity of the generated/predicted
structures are shown in Table S6.

In contrast, the presented method was capable to generate
structures that were similar to the experimentally identified
structure (cf. Figures 6A,f). The similarity is measured by tree
edit distances (see Table S6). It was for two reasons: (i) the
wrong, excessive pairing was prevented by the information of
single-stranded segments copied from the template. This made
the proposed method more accurate than the single-sequence
prediction methods. (ii) The proposed method actively searched
for inconsistent structural elements after copy step and predicted
their structure de novo. This made it more accurate than the other
methods that use the same information as input. Comparison of
the accuracy using tree edit distances is in Table S6.

The improved accuracy can help to recognize non-
homologous sequences. It is demonstrated here with the
sequence of E. coli gcvB with randomly shuffled dinucleotides.
Structure of this shuffled sequence, which represented an RNA
not homologous to gcvB, could be distinguished from the gcvB
homologs by its edit tree distance to the experimentally identified
gcvB structure, when generated by the proposed method. The
distance was twice longer than those of the structures of the gcvB
homologs (Table S6). Recognition of this non-homologous RNA
was not clear by the available methods as its tree edit distance
was not unambiguously higher than the distances of the gcvB
homologs (Table S6). The predicted structures of the shuffled
RNA are in Supplementary File S4.fasta.

The non-homologous RNA with the shuffled sequence could
also be recognized by z-score of its generated structure. It was

−3.6, which indicated strong unreliability. In contrast, z-scores
for the gcvB homologs were all higher than 2 (namely 9.7,
3.6, 2.9, and 4.4 for E. coli, V. cholera, H. ducreyi, and M.
succiniciproducens, respectively). The usefulness of z-scores of the
generated structures is further demonstrated in the next example.

Large Structure: 18S Ribosomal RNAs
Large structures with long sequences are another class of
sequences, when the classical prediction is often inaccurate.
This is demonstrated here by the structure of mammalian 18S
rRNAs. The methods of classical prediction that use either a
single input sequence (RNAfold) or multiple input sequences
(CentroidHomfold, Turbofold), and also methods that use a
homologous experimentally identified structure (H. sapiens 18S
rRNA) as a constraint (Locarna and the refold method) were
largely inaccurate. This is demonstrated visually by Figures 7b,c
(for RNAfold and the refold method only from technical
reasons due to the large size of the 18S rRNA structures).
The predicted structures were included in Supplementary File
S5.fasta.

The presented method was more accurate as its accuracy
is largely independent of sequence length (Figure 7a). The
improved accuracy was demonstrated by shorter tree edit
distances of the generated structures to the experimental
identified template of H. sapiens 18S rRNA (Table S7).

Interesting is the identification of the 18S rRNA fragment of
S. harrisii 18S rRNA and the elongated 18s sequence of S. scrofa
18S rRNA. The proposed method identified correctly that the
S. harrisii fragment contained only the expansion segments 3
and 6 of the whole 18S rRNA structure (Figure 7a). In contrast,
the S. scrofa sequence included, beside the entire 18S rRNA
structure, an additional ∼700 nucleotides flanking the regular
18S rRNA structure (Figure 7a). Tree edit distances of these
two structures were relatively high, when compared to the G.
variegatus 18S rRNA structure that is complete (Table S7). This
was due to the natural dissimilarity of either structural fragments
or elongated structures to regular structures. However, z-scores
were far greater than 2 (6.6, 12.1, and 19.2 for S. harrisii, S. scrofa,
and G. variegatus, respectively) indicating that these sequences
are genuine 18S rRNAs, yet fragmented/elongated.

An interesting experiment and also validation of the above
identification was to use an RNA that was non-homologous to
both the fragment and the elongated sequence. To that end, we
deployed E. coli 16S rRNA as a template. Now the template and
the query sequences were no longer homologous, yet still related
(all were rRNAs), and the z-scores should indicate unreliability
of the generated structures. Indeed, the z-scores were −0.2, −6,
and 0.2 for S. harrisii, S. scrofa, and G. variegatus, respectively,
indicating that the query sequences were not homologous to
the 16S rRNA. In general, this procedure makes it possible
to recognize, when the template and query sequences are not
homologous, in other words, when the transfer of the template
structure is biologically irrelevant producing wrong structures.
What is important is that this bootstrap-based procedure is
independent of the fact that query sequences are fragmented or
elongated, as demonstrated in both this example and the previous
example.
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FIGURE 6 | Individual secondary structures of gcvB RNA homologs predicted by available methods (a–e) and generated by the presented method (f). Structures are

organized in rows and columns according to the method and species, respectively. The experimentally identified template structure of S. typhimurium gcvB RNA

structure is shown at the top (A).

DISCUSSION AND CONCLUSIONS

A method for template–based prediction/generation of
single-sequence secondary RNA structure is presented. As
demonstrated on examples, it is useful for determining
whether an RNA molecule under investigation can conform
to a secondary structure taken from a different molecule.

This is useful for both obtaining RNA secondary structures
and estimating ability of sequences to adopt the investigated
structure. The method provides a solution in situations when
available methods for secondary RNA structure prediction
cannot be used or are inaccurate. It is applicable to all RNAs
that adopt a secondary structure (Gorodkin and Ruzzo,
2014).
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FIGURE 7 | Individual secondary structures of 18S rRNA homologs predicted by available methods (b,c) and generated by the presented method (a). Structures are

organized in rows and columns according to the method and species, respectively. The experimentally identified template structure of H. sapiens 18S rRNA structure

is shown at the top (A).

It does not mean that a new de novo RNA secondary
structure prediction algorithm/method is devised. It should
be stressed that the presented method requires sequences and
structures as input in contrast to the prediction methods that
usually work only with sequences. However, when experimentally
derived structures of homologous sequences are available, our
method is able to correctly predict true biological structures, as
shown by our cross validation study. We have also performed
a large scale comparison of the results provided by our
method for sequences where the ground truth is unknown,
where our method also performed favorably. The large scale
comparison is not used to benchmark the method, but merely for
establishing a basis for evaluating the efficiency of the presented
method.

The quality of structures generated by our method depends
on the choice of the template. There are no strict guidelines
for choosing the template—in principle, any RNA secondary

structure either experimentally identified or predicted can be
used as a template. It is expected that the user leverages

their expertise to find a template that is homologous or

contains homologous subsequences. Naturally, reliability of the

generated structure depends on the biological similarity between

the template and the query. The z-score produced by the

bootstrapping step is a proxy for this similarity and low z-scores
should reveal situations when the template was not chosen
appropriately.

Our method fills a gap resulting from the poor performance
of the available methods of constrained prediction using known
structures. Such prediction is increasingly useful as number
of experimentally identified RNA structures (and thus the
number of available templates) grows. The presented method is
useful in various situations as demonstrated in this work. The
method does not depend on length of sequences neither on
the type of structure. It is fast and robust and it can be used
for characterization of large numbers of sequences including
fragments by structures of other RNAs. It produces z-scores
based on bootstrapping of generated secondary structures that
indicate whether the generated structures are relevant for the
sequences.
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