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Genome-Wide Association Studies (GWAS) correlate the genotype with the phenotype, identifying
the genetic variants that are linked to any particular trait or disease. In 2005, a ground-breaking
successful GWAS in humans associated the complement factor H gene with age-related macular
degeneration (Klein et al., 2005). Since then, many successful GWAS using genotyping arrays have
been published (Manolio, 2017), but due to the lowering cost of DNA sequencing, whole genome
sequencing GWAS are becoming more frequent. However, the usefulness of classical GWAS has
recently been questioned in a Cell publication (Boyle et al., 2017). The authors explain that genetic
variants causing a disease should be part of a pathway connected with the etiology or prognosis
of the disease, and moreover, they describe the benefits of linking GWAS with cell specific gene
expression data. Still, many GWAS fail to correlate a specific genetic variant with a gene or a
pathway leading to disease. This is partially due to the loose definition of how to establish an
association between each genetic variant (frequently in non-coding regions) and the causal gene.
In addition, the size of the effect of each genetic variant in polygenic traits and low penetrance
genetic diseases is difficult to accurately establish due to confounding factors such as population
stratification.

One of the main weaknesses of whole genome sequencing GWAS is the fact that for every
diploid (or polyploid) organism we only obtain the “haploid genome.” Due to the prevalent short-
reads technology, we merge both gene copies of every chromosome into one, losing physical
connections and proximity between genetic variants in homologous chromosomes. Integrating
both allele sequences as if they were one hampers the elucidation of haplotype specific structural
variants (SVs). Indeed, SVs are more frequent in one haplotype vs. homozygous SVs (Sudmant
et al., 2015; Hehir-Kwa et al., 2016). In addition, linkage disequilibrium and genetic linkage are
difficult to accurately elucidate when the homologous chromosomes are merged, which decrease
the power of many gene- and pathway-based association studies (Mooney et al., 2014).

To solve this issue, there have been several studies reporting the separation of alleles into
chromosomes (phased chromosomes) of several genomes, but so far, only four studies have
reported de novo human diploid genomes (Levy et al., 2007; Cao et al., 2015; Seo et al., 2016;
Weisenfeld et al., 2017). In the paper Direct determination of diploid genome sequences,Weisenfeld
et al. recently demonstrated that an accurate and cost effective method can be routinely used
with the most popular Illumina sequencing technology. However, this method has only been
tested on human genomes and some difficulties may arise for other species. In fact, it is worth
to mention that GWAS have been widely used in plants (Korte and Farlow, 2013; Huang and
Han, 2014) where the polyploidy of some species can introduce even more noise in the final
haploid sequence. Thus, the benefits of using diploid (or polyploid) genomes materialize in two
ways. First, better disease/trait variant calling (since we would have the real genome without
noise coming from the “mix and match” of homologous chromosomes). Still, a high number of
diploid genomes would increase the statistical power for the identification of new variants causing
disease or a trait. The second advantage is the potential to detect protective genetic variants
which, as mentioned below, are now potentially actionable with CRISPR/Cas9 in combination
with correcting the faulty variant. Other general benefits can come from closing the “missing
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FIGURE 1 | The Diploid Manhattan Plot: To achieve personalized medicine we need to isolate individual diploid genomes and compare them with a reference

genome. Each homologous chromosome can be compared with the regular “haploid reference genome.” Thus, two GWAS that include the individual physical context

of each genetic variant (including structural variants) will be produced. Since those DNA stretches would have a manageable size, the highest individual hits could be

selected for further characterization comparing them with cases and control diploid genomes. For low penetrance diseases, protective SNPs in cis could be found.

Diploid genomes have the potential to close the gap of the missing heritability problem.

heritability gap” problem, and a better quantification of
penetrance. So far, we do not fully understand the reasons for
incomplete penetrance of most genetic diseases. Indeed, the
analysis of diploid sequences has the potential to modify how
we measure penetrance, since we would be able to include in
the analysis not only the genetic variant that directly cause
disease, but also any other protective variant that might co-exist
in cis. Even concepts such as conditional full penetrancemay arise
(conditional to the sequence in a different interacting locus).

Diploid genomes are not only required for understanding
allele-specific expression, but also to understand the real output
of each allele. Two frameshifts in a gene will have completely
different outcomes if they are both in the same allele or if each
frameshift occurs in a separate allele. In addition, penetrance
levels should be determined based not only on one genetic
variant, but also on the genetic variants occurring in close
proximity that are in linkage disequilibrium. This is particularly
important for genetic diseases with incomplete penetrance such
as celiac disease and allele-specific diseases such as Huntington’s
disease. Furthermore, with a high quality diploid sequence,
CRISPR/Cas technology provides a potential actionability in two
different ways. Allele-specific diseases can be precisely targeted,
without affecting the healthy allele (Paquet et al., 2016), and
diploid genomes may enable the discovery of allele-specific
protective genetic variants, which could be targeted with CRISPR
to improve health. Examples of how phasing loci improve the
identification of disease causing variants are still limited but
increasing (Safrany et al., 2013; Sharp et al., 2016; Subramanian
et al., 2017). Plant breeding programs will also benefit from
phased chromosomes since many important crops are polyploid
and the genetic makers for heterosis may be revealed with
polyploid sequences (Chen, 2013; Minio et al., 2017).

Although the cost of obtaining a diploid genome could cease
to be a problem, other challenges lie ahead. Finding a proper

reference for comparison will be daunting. However, the analysis
may be split in two steps. First, each homologous chromosome
of a diploid genome can be compared to a reference “haploid
genome” obtaining a “Diploid Manhattan Plot” (Figure 1). The
benefits of choosing a stratified population as reference need to be
elucidated yet. Then, the selected loci in individual chromosomes
with higher statistical significance should be explore in detail
and compared with control diploid loci. When causes and
controls are used, this method would work to reveal not
only the causal genetic variants, but also potential protective
variants from low penetrance diseases. Finally, comprehensive
graphical models will be needed along with the human
resources required to analyse, interpret and provide genetic
counseling.

Overall, to enable the rising field of personalized medicine,
we need to unwind the whole genomic information in our
diploid cells and elucidate what contributes to health and
disease. The field of personalized medicine has to lead the
change from “haploid” genomes to the real diploid ones since
it is not only the wealthiest genomic area but also the one
with a potential higher impact in the society. Therefore, it
is paramount that we start a new genomic generation with
a diploid revolution using the resources that have just been
developed.
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