
ORIGINAL RESEARCH
published: 06 February 2018

doi: 10.3389/fgene.2018.00018

Frontiers in Genetics | www.frontiersin.org 1 February 2018 | Volume 9 | Article 18

Edited by:

Quanxin Zhu,

Nanjing Normal University, China

Reviewed by:

Qiang Zheng,

Yantai University, China

Na Li,

Central South University, China

*Correspondence:

Xia-an Bi

bixiaan@hnu.edu.cn

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Genetics

Received: 16 November 2017

Accepted: 15 January 2018

Published: 06 February 2018

Citation:

Bi X, Wang Y, Shu Q, Sun Q and Xu Q

(2018) Classification of Autism

Spectrum Disorder Using Random

Support Vector Machine Cluster.

Front. Genet. 9:18.

doi: 10.3389/fgene.2018.00018

Classification of Autism Spectrum
Disorder Using Random Support
Vector Machine Cluster
Xia-an Bi*, Yang Wang, Qing Shu, Qi Sun and Qian Xu

College of Mathematics and Computer Science, Hunan Normal University, Changsha, China

Autism spectrum disorder (ASD) is mainly reflected in the communication and language

barriers, difficulties in social communication, and it is a kind of neurological developmental

disorder. Most researches have used the machine learning method to classify patients

and normal controls, among which support vector machines (SVM) are widely employed.

But the classification accuracy of SVM is usually low, due to the usage of a single SVM as

classifier. Thus, we used multiple SVMs to classify ASD patients and typical controls (TC).

Resting-state functional magnetic resonance imaging (fMRI) data of 46 TC and 61 ASD

patients were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database.

Only 84 of 107 subjects are utilized in experiments because the translation or rotation

of 7 TC and 16 ASD patients has surpassed ±2mm or ±2◦. Then the random SVM

cluster was proposed to distinguish TC and ASD. The results show that this method

has an excellent classification performance based on all the features. Furthermore, the

accuracy based on the optimal feature set could reach to 96.15%. Abnormal brain

regions could also be found, such as inferior frontal gyrus (IFG) (orbital and opercula

part), hippocampus, and precuneus. It is indicated that the method of random SVM

cluster may apply to the auxiliary diagnosis of ASD.

Keywords: random support vector machine cluster, neuroimaging, autism spectrum disorder, classification,

feature selection

INTRODUCTION

Autism spectrum disorder (ASD) is mainly reflected in the communication and language barriers,
difficulties in social communication, and it is a kind of neurological developmental disorder (Karten
and Hirsch, 2015; Khundrakpam et al., 2017). The behavioral phenotype of ASD is well-depicted
but its etiology and pathogenesis is rarely known (Amaral et al., 2008). According to the results of
Hallmayer et al. (2011), the causes of ASD mainly include genetic and environmental risk factors.
Some of the symptoms of ASD generally appear in about 2 years old (Ecker et al., 2015), thus
the early diagnosis is needed (Plitt et al., 2015). It is recognized that traditional clinical methods
cannot well distinguish patients from healthy controls (HC) (Mwangi et al., 2012). And it may
not be complex enough to capture the abnormal brain regions in individuals who suffering from
ASD (Uddin et al., 2011). To avoid this disadvantage, machine learning is introduced in the
neuroimaging field. It is a valid means to extract messages from neuroimaging data and further
predict the future changes of the disease (Klöppel et al., 2012; Orrù et al., 2012). Among numerous
machine learning methods, support vector machines (SVM) is an excellent classification method
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(Zhang et al., 2015). SVM has distinct merits such as the higher
classification accuracy (Zhang and Wu, 2012) and no need for
a large number of training samples to avoid over-fitting (Li et al.,
2010). Thus, SVMhas aroused widespread concern of researchers
in the field of neuroimaging (Sundermann et al., 2014).

In the researches of machine learning, SVM has been applied
to classify ASD from corresponding controls. Gori et al. (2015)
extracted features from the gray matter subregions, then these
features were used in SVM to identity ASD from HC and
the area under ROC curve (AUC) is 0.74. Jin et al. (2015)
proposed an original multi-kernel SVM classification method
to classify ASD from HC and the accuracy can reach to 76%.
Chen et al. (2016) used the SVM to classify 112 adolescent
subjects with ASD and 128 HC, and the classification accuracy
was 79.17%. Odriozola et al. (2015) used the SVM based
on functional magnetic resonance imaging (fMRI) data to
classify 20 children with ASD and 20 typically developing
(TD) peers, and the result showed 85% classification accuracy.
Chanel et al. (2016) used the method of SVM and Recursive
Feature Elimination (RFE) based on fMRI data to classify ASD
from HC, and the result showed good classification accuracy
(up to 92.3%).

These SVM classification studies on ASD have achieved
relatively high classification accuracy in the range of 70–93%
compared with traditional methods. They usually employed
a single SVM and common features such as functional
connections, gray matter volume to classify ASD from HC, and
the classification accuracy is generally lower than 90%. In this
paper, a novel method of random SVM cluster is proposed
and several graph metrics of brain functional connectivity
(e.g., local efficiency, shortest path) are employed to classify
ASD and typical controls (TC). This method has some good
performance. Firstly, the classification accuracy reaches to a
higher level based on all the features. Then, we could find out
the optimal feature set, the classification accuracy could also
reach to the same level based on the optimal feature set. Thirdly,
on the basis of the optimal feature set, we could find out the
abnormal brain regions such as inferior frontal gyrus (IFG)
(orbital and opercula part), hippocampus, and precuneus. Thus,
the random SVM cluster may apply to the auxiliary diagnosis
of ASD.

MATERIALS AND METHODS

Demographic Information
The Autism Brain Imaging Data Exchange (ABIDE) database
(http://fcon_1000.projects.nitrc.org/indi/abide/) (Di Martino
et al., 2014) contains a variety of neuroimaging data. And the
resting-state fMRI data include 539 ASD and 573 age-matched
TC. There are 12 kinds of image protocols. This study chooses
one of the image protocols, details as follows. MRI scanner= 3.0-
T Siemens, TR = 3,000ms, TE = 28ms, data matrix = 64∗64,
Pixel Spacing X = 3.0mm, Pixel Spacing Y = 3.0mm, Flip
Angle = 90◦, Slice Thickness = 0.0mm, no slice gap, axial
slices= 34, time points= 120. Finally, 61 subjects with ASD and
46 TC met the image protocol. The original studies included in
ABIDE received approval from each site’s Institutional Review

Board (IRB). All images were obtained with informed consent
according to procedures established by human subject research
boards.

Only 84 of 107 subjects are utilized in experiments because
the translation or the rotation of 7 TC and 16 ASD patients has
surpassed ± 2mm or ± 2◦. Table 1 shows the basic information
of 84 participants. To assess the gender and age discrepancies
between ASD group and TC group, we employed chi-square
test and two-sample t-test respectively. The results show no
considerable discrepancies between TC group and ASD group in
gender (as the p-value is 0.359 and>0.05) and age (as the p-value
is 0.278 and >0.05).

Data Preprocessing
Because of the lower signal-to-noise ratio, all the fMRI images
are preprocessed by the Data Processing Assistant for Resting-
State fMRI (DPARSF) software (Cui et al., 2015) (http://d.rnet.
co/DPABI/DPABI_V2.3_170105.zip). The whole preprocessing
procedures include:(1) Converting DICOM to NIFTI, (2)
Removing the first 10 time points, (3) Slicing timing, (4)
Realigning, (5) Normalizing with the echo-planar imaging (EPI)
template, (6) Smoothing, (7) Removing the linear trend, (8)
Temporal filtering, (9) Removing covariates.

Graph Theory Application
Our brain is consisted of different regions. Although each region
carries out its own tasks, they often interconnect with each
other, and the connections form the brain network. Graph could
be employed to represent networks. A graph has two major
components, nodes and links. fMRI image could be divided
into 90 regions based on the Automatic Anatomical Labeling
(AAL) (Tzourio-Mazoyer et al., 2002) atlas. We make these
regions as the nodes of brain network, so there are 90 nodes.
An average of the time series of a region’s all voxels can be used
to capture the mean time series of this region (Khazaee et al.,
2016). The average time series of every two brain regions can
be employed to calculate the Pearson correlation coefficient
which is made as the link of the brain network (Khazaee et al.,
2015), so there are 4,005 (90∗89/2) weighted edges. Then we
take the absolute value of the correlation coefficient and set a
suitable threshold for the connectivity matrix to get an adjacency
matrix. In this paper, the threshold is 0.25. Graph metrics
calculated for this paper included: degree, shortest path, local
efficiency and clustering coefficient. Thus, results have 90◦, 4,005
shortest paths, 90 local efficiency, and 90 clustering coefficients.
These graph metrics were the subsequent experimental
features.

TABLE 1 | Basic information of ASD and TC.

Variables (Mean ± SD) Autism (n = 45) TC (n = 39) P value

Gender (M/F) 41/4 33/6 0.359

Age (years) 13.4 ± 2.4 12.9 ± 1.7 0.278

ASD, Autism spectrum disorder; TC, typical controls.
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The Random SVM Cluster
The Design of the Random SVM Cluster
Previous classification studies generally used a single SVM
as classifier. Although sometimes of the studies have good
performance, it is not stable and always be affected by many
factors such as the form of the kernel, the argument of the
kernel, the penalty coefficient. A new classifier based on the
random SVM cluster is proposed in this paper. It is featured with
universality, stable performance and high accuracy.

The process of the random SVM cluster is as follows. Firstly, a
sample set is divided into a training set and a test set. Then partial
samples are randomly selected from the training set and partial
features are extracted from all the sample features to establish
a single SVM. The process is repeated for several times to form
a random SVM cluster. When the sample of test set enters into
the random SVM cluster, multiple SVMs make decisions at the
same time and then we use the majority of votes to determine the
category of the sample.

In the above process, the randomness of the random SVM
cluster is reflected in two aspects, one is the randomness of
sample selection, and another is the randomness of feature
selection. Therefore, our model is universal and avoids the
influence of many factors.

Based on the performance evaluation of a single SVM, the
features of the classifier with higher classification accuracy
constitute the feature matrix. Then the frequency of each feature
in the features matrix is counted. The features with higher
frequency is called “important feature.” Figure 1 is an overall
flow chart of the random SVM cluster.

The Classification of the Random SVM Cluster
The application of the random SVM cluster in fMRI is to
construct a random SVM cluster based on the brain functional
data of the subjects, and then it is used for classification as well as
feature selection.

In this paper, the sample set is
{(

xi, yi
)}84

i
, where xi is the

sample feature, yi is the category label. Each sample has 4,225 (90
+ 4,005 + 90 + 90) features and the label of the ASD patient is
−1 and the TC is+1.

Firstly, the 84 samples are divided into 58 training samples
and 26 test samples based on the ratio of 7:3. Then 50 samples
are randomly selected from the 58 training samples and 62
features are randomly selected from 4,225 features, which form a
single SVM using Radial Basis Function (RBF) as kernel provided
by the SVM toolbox (http://see.xidian.edu.cn/faculty/chzheng/
bishe/indexfiles/indexl.htm) (Gunn, 1998). The width argument
of RBF equals to 3, and penalty coefficient equals to Inf. The
process is repeated for 500 times and these 500 SVMs constitute
into a random SVM cluster.

When the 26 test samples enter into the random SVM cluster,
and the 500 SVMs in the random SVM cluster make decisions
simultaneously. The result of the 500 SVMs is counted, and
the label with more votes is recorded as the predictive label of
the sample. Thus, the predictive label of 26 test samples can be
obtained. The number of samples with the same predictive label
and the real label is divided by 26, which is the classification
accuracy of the random SVM cluster.

We set up a random SVM cluster with 500 SVMs in the above,
but we not sure whether the number of 500 is suitable. Therefore,
it is necessary to find the optimal number of SVMs to set up the
random SVM cluster. In this paper, we take the accuracy of the
random SVM cluster as the criterion. The number of SVM in
the random SVM cluster with the highest accuracy is the optimal
SVM number.

Extracting Features from Random SVM Cluster
In the random SVM cluster, the performance of each SVM is
different because the selected features for each SVM are different.
Since the “important features” make a significant contribution to
the classification performance of a single SVM, we could find the
“important features” through the SVM with higher classification
accuracy. The specific approach is as follows.

First of all, a random SVM cluster is built. Then the 26
test samples are used to test the classification of each SVM
performance. The features of the first 100 SVMs with better
classification performance constitute the feature matrix. The
first 400 features with the higher frequency are referred as the
“important features.”

We randomly select 62 features from the first
q
(

70 ≤ q ≤ 400
)

features in the “important features” to
build a random SVM cluster. The accuracy of the random
SVM cluster is used as the criterion. The first q features that
corresponding to the random SVM cluster with the highest
accuracy are the optimal feature set. Those q features are the
result of feature selection with random SVM cluster and can be
seen as distinguishing features between the ASD patient and TC.

This paper uses the optimal feature set to find the abnormal
brain regions. To show the abnormal brain region, the key is to
find the weight of each brain region. Firstly, we find the features
associated with certain region from the optimal feature set. Then
the number of these features is made as the weight of the region.

RESULTS

The Performance of a Random SVM
Cluster
As shown in Figure 2, the overall accuracy of the 500 SVM
is lower. On the contrary, the accuracy of the random SVM
cluster is as high as 96.15%. This is sufficient to show that the
performance of the random SVM cluster is much better than a
single SVM.

The Optimal Number of Base Classifiers
The number of SVMs in the corresponding random SVM cluster
with the highest classification accuracy is the optimal number of
classifiers. First, we change the number of base classifiers from 5
to 700 and the step is 5. Then we count the classification accuracy
of random SVM cluster with different number of classifiers.
Finally, we sort the results and draw the corresponding graph
as shown in Figure 3. The accuracy of the random SVM cluster
reached a maximum of 96.15% and stabilized when the number
of SVM is 500. Thus, 500 is regarded as the optimal number of
base classifiers. In the subsequent experiments, we also use 500 as
the number of classifiers.
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FIGURE 1 | The overall framework of random SVM cluster.

Retention of the “Important Features”
The important features should meet the following two criterions:
(1) The single SVM corresponding to these features has
high classification accuracy. (2) These features have high
frequency.

First of all, this study sorts the accuracy and picks out
the features of first 100 SVMs to form a 100∗62 matrix.
Then we count the frequency of each feature number in this

matrix. The highest frequency is 7 and the corresponding
features are the shortest path between PreCG.R and
IFGtriang.R, IFGoperc.R and PHG.L, REC.L and SMG.L,
ORBsupmed.R and TPOmid.R. Table 2 lists the features
whose frequency is 6 and 7. Since these features are all the
shortest paths between two brain regions, only two brain
regions corresponding to the shortest paths are listed in the
Table 2.
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FIGURE 2 | The accuracy of 500 SVMs.

The Optimal Feature Set
In order to find the optimal feature set, it is necessary to change
the rule of the selected features. Firstly, we retain the first 70
dimensional features in the “important features” as the total
dimension. Then the 62 dimensional features were randomly
selected from the 70 dimensional features to build a random
SVM cluster. Next, we change the number of the total dimension.
The number of the total dimension is from 70 to 400 and the
step is 2. Then we calculate the classification accuracy of random
SVM cluster with different number of total dimension. Finally,
we sort the results and draw the corresponding graph as shown
in Figure 4. The accuracy of the random SVM cluster reached
a maximum of 96.15% and stabilized when the first features
number is 272. Therefore, the optimal feature set is composed
by the first 272 features.

The Abnormal Brain Regions
The weight of each brain region is displayed in Figure 5. In this
figure, the point represents the brain region. The brain regions
with higher weight are shown in Table 3. The regions with the
greater weight are listed as follows: the right IFG (opercular part),
the right precuneus, superior frontal gyrus (orbital part), the
left inferior occipital gyrus, the right hippocampus, the bilateral
superior frontal gyrus (dorsolateral), the right median cingulate
and paracingulate gyri, the right posterior cingulate gyrus, the left
supramarginal gyrus, the right thalamus, the right superior, and
middle temporal gyrus.

DISCUSSION

Classification Effect
In the experiment, we choose the specific values of some
parameters of the random SVM cluster and now we discuss
the parameter setting. On one hand, we make the RBF as
kernel of a single SVM, the width argument of RBF equals to 3
and penalty coefficient equals to Inf. Although these parameter
values are selected in this paper, we have tried other parameter
values in the experiment and there is no significant difference

FIGURE 3 | The optimal number of base classifiers.

in the performance of random SVM cluster. This shows that the
random SVM cluster is universal. On the other hand, we make
0.25 as the threshold of the function connection network. Then
we calculate the four graph metrics of the network. The larger the
threshold is, the smaller the degree is and the larger the shortest
path is. The usage of these graph metrics makes the accuracy of
random SVM cluster lower. In turn, the smaller the threshold
is, the greater the degree is and the smaller the shortest path is.
Similarly, the usage of these graph metrics makes the accuracy of
random SVM cluster lower. We found that the optimal threshold
was 0.25 by dozens of experiments.

In recent years, there are various studies on the classification
of ASD. For instance, Chen et al. (2015) used the SVM in
combination with a fresh feature selection algorithm to classify
126 participants with ASD and 126 TD, and the classification
accuracy was <70%. Jin et al. (2015) proposed an original multi-
kernel SVM classification method to classify ASD from HC and
the accuracy can reach to 76%. Anderson et al. (2011) used a
leave-one-out classifier to discriminate 40 ASD from 40 controls
with 79% total accuracy. Chen et al. (2016) used the SVM to
classify 112 adolescent subjects with ASD and 128 HC, and the
classification accuracy was 79.17%.

Themajority of the classifier’s accuracy is not higher than 90%.
We employ a random SVM cluster to identify ASD and TC with
the accuracy of 96.15%. Furthermore, the accuracy of the random
SVM cluster reached a maximum of 96.15% and stabilized from
500 SVMs. It is sufficient shows that our method possesses an
unexceptionable classification performance.

In this paper, we first establish a random SVM cluster, and
then find the optimal number of classifiers based on the accuracy
of the random SVM cluster. Then the important features are
retained on the basis of the optimal number of the base
classifiers. According to the accuracy of the random SVM cluster,
the optimal feature set could also be discovered. Finally, the
number of selected features is 272. These features constitute the
optimal feature set for the random SVM cluster to distinguish
ASD patients and TC, and the accuracy could also reach
to 96.15%.
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TABLE 2 | The part of features with higher frequency.

Frequency Feature

7 PreCG.R-IFGtriang.R, IFGoperc.R-PHG.L, REC.L-SMG.L,

ORBsupmed.R-TPOmid.R

6 OLF.R-HIP.R, INS.L-HIP.R, ORBinf.R-PHG.L, SFGdor.R-LING.L,

ORBsup.L-FFG.L, REC.L-SPG.R, ROL.L-SMG.L, SMG.R-PCL.L,

HIP.L-CAU.R, ORBsupmed.L-PUT.L, REC.R-HES.L,

PCUN.R-MTG.R IFGoperc.R-STG.L, SMA.R-STG.L,

ORBsup.L-STG.R

Analysis of the Brain Regions with Greater
Weight
The experimental results show that the IFG, precuneus
hippocampus, and cingulated cortex are the mainly abnormal
regions of ASD. The following are the analyses of these regions
in detail.

Inferior Frontal Gyrus (IFG)
The right IFG possesses the largest weight in the experimental
results which implied that this region is an indispensable part in
the classification of our method.

Inferior frontal gyrus, bilateral amygdala, and hippocampus
are associated with facial emotion recognition (Ji et al., 2016).
During target-oriented actions or when observing the same
exercise behavior, the IFG is active (Hamzei et al., 2015). The
IFG is a part region of lateral prefrontal cortex which affects
regulating mood and attention (Sagaspe et al., 2011; Ochsner
et al., 2012; Vanderhasselt et al., 2012). In healthy individuals, the
responsiveness of IFG to terrible faces was positively related to
the inhibition of amygdala responses, but was negatively related
to trait anxiety (Mujica-Parodi et al., 2009). Doricchi et al. (2010)
and Shulman et al. (2009) found that the right IFG was activated
only when redirecting to an unexpected stimulus.

The abnormal IFG was found in several ASD studies. Keehn
et al. (2016) found that compared with the TD group, the
activation of the right IFG in the autism group increased
obviously. In the study of Grezes et al. (2009) and Philip et al.
(2010), the authors found that activation of the right IFG and
inferior temporal gyrus in ASD participants decreased when
doing the task of fearful gestures. Kim et al. (2015) found that
ASD individuals appear to have lower activation in the right IFG
than typically developing children (TDC) when fearful face were
given to them. Gaffrey et al. (2007) found that less activation of
left IFG in the ASD patients than controls.

The abnormal IFG probably bring about impairment in ASD
patients such as facial emotion recognition impairment, attention
impairment. The experimental result contributes to the clinical
diagnosis and treatment of ASD.

Precuneus (PC)
The precuneus possesses the relatively larger weight in the
experimental results which shows that the precuneus is a
considerable part in the classification of our method.

Precuneus is a subregion of superior parietal cortex
which is connected with consciousness and self-processing

FIGURE 4 | The number of optimal feature sets.

(Cavanna and Trimble, 2006). According to the previous
studies, active precuneus is related to the degree of
autocorrelation of the retrieved judgments (Lou et al., 2004),
and the connectivity of the precuneus is related to the degree
of consciousness of a person (Vanhaudenhuyse et al., 2009). It
is observed that the precuneus is not activated at any stage of
sleep (Maquet et al., 1997) or in vegetative states (Crone et al.,
2011). Francis et al. (2016) observed that reduced activation in
the precuneus when doing the recognition task. Ashizuka et al.
(2015) disclosed that the precuneus is selectively activated during
the polite judgment task. From the fMRI studies, we can see that
the precuneus participated in a lot of highly integrated duty,
including spatial guidance behavior, visual spatial images, and
awareness (Mailo and Tang-Wai, 2015).

The abnormal precuneus was found in the abundant studies of
ASD. For example, Schulte-Ruther et al. (2011) mentioned that
the precuneus activation was positively related to compassion
in ASD subjects rather than control subjects. Aoki et al. (2015)
found hyperactivation in the cortical structures of ASD patients,
including right precuneus and bilateral thalamus. Bookheimer
et al. (2008) found that the precuneus was the only region in the
ASD group which showed a strong activation when performed a
post hoc identification. Cheng et al. (2017) found that functional
connectivity of precuneus and orbitofrontal reduced significantly
in autism. Silani et al. (2008) discovered that ASD patients
displayed obviously less activities in precuneus.

The abnormal precuneus is likely to cause the consciousness
disorder and poor integration ability in ASD patients. The
experimental result may help in the clinical diagnosis and
treatment of ASD.

Hippocampus
The hippocampus possesses the relatively larger weight in the
experimental results which shows that the hippocampus also is
a critical part in the classification of our method.

Hippocampus and amygdala are the key brain areas that
involved in emotional memory (Mackiewicz et al., 2006). Some
studies on fMRI in patients with depression have displayed that
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FIGURE 5 | The weight of each brain region.

hippocampus is overactive when it comes to tasks related to
working memory (Harvey et al., 2005; Walsh et al., 2007). The
hippocampus is especially responsible for learning, making up
fresh memories, and spatial navigation, and belongs to the limbic
system (Ding et al., 2015). Dennis and Thompson (2014) found
that the functional connectivity of hippocampus existed during
the encoding memory task.

The abnormal hippocampus was found in several ASD
studies. For instance, Cooper et al. (2017) found that functional
connectivity of hippocampus reduced markedly in ASD group.
ASD was associated with a raising relative hippocampus volume
(Maier et al., 2015). Stanfield et al. (2008) found that the
volume of hippocampus and amygdala was abnormal in ASD.
Via et al. (2011) discovered that there was obviously decreased
gray matter volume of bilateral amygdala-hippocampus complex
in ASD patients. Yu et al. (2011) discovered that gray matter
volume of hippocampus decreased distinctly in participants
with ASD.

The abnormal hippocampus may result in memory and
learning impairment in ASD patients. The experimental result
may boost the clinical diagnosis and treatment of ASD.

Cingulate Gyrus
The cingulate gyrus possesses the comparatively larger weight in
the experimental results which shows that cingulate gyrus is a
decisive part in the classification of our method.

TABLE 3 | The brain regions with higher weight.

Weight Region

15 IFGoperc.R

13 PCUN.R

11 ORBsup.L IOG.L

10 HIP.R

9 SFGdor.L SFGdor.R DCG.R PCG.R SMG.L THA.R TPOsup.R TPOmid.R

Numerous studies have pointed out that anterior cingulate
cortex (ACC) affects basic cognitive processes, including
motivation, making decision, learning, and monitoring errors
to a large extent (Holroyd and McClure, 2015; Laubach et al.,
2015; Verguts et al., 2015; Kolling et al., 2016). The human
fMRI study reported that the posterior cingulate cortex (PCC)
is associated with prospective memories (Andrews-Hanna et al.,
2010). Silverman et al. (2015) discovered that PCC involved in
reward processing in adolescent. The anterior cingulate may take
part in the integration of emotional and control mechanisms
(Pessoa, 2009). The ACC could influence response monitoring
(Taylor et al., 2007).

The abnormal cingulate gyrus was found in several ASD
studies. For example, Luna et al. (2002) discovered that subjects
with ASD showed less task-related activation in PCC and
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dorsolateral prefrontal cortex when executing the space working
memory task rather than (HC). Philip et al. (2012) discovered
more activation of cingulate gyrus in controls compared to ASD
patients. Doyle-Thomas et al. (2012) discovered that there is
increased surface area (SA) of the right cingulate cortex in ASD
patients. There is abnormal activation of ACC in ASD when
performing tasks with different cognitive (Ashwin et al., 2007;
Dichter and Belger, 2007). Kana et al. (2007) found abnormal
connectivity between ACC and other regions in ASD during a
requiring response task.

The cingulate gyrus abnormalities can be seen as the
mark of ASD and which probably cause cognitive processes
impairment and response monitoring disorder in ASD patients.
The experimental result may enhance the clinical diagnosis and
treatment of ASD.

To identity ASD patients from TD, we proposed a novel
method, random SVM cluster, which has a better classification
performance (accuracy is 96.15%). But it also has few limitations.
Firstly, we only employed the brain level features in this
paper, and we could employ voxel level features in the future
studies. Secondly, our study only used four graph metrics as
features. In the future studies, we could use more kinds of
graph metrics as features. Finally, the random SVM cluster has
excellent performance based on only one modal feature, we
could boost its performance by multi-modal feature in the future
studies.
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