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Cancer survivors experience numerous treatment side effects that negatively affect their

quality of life. Cognitive side effects are especially insidious, as they affect memory,

cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising

even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics

is a new area of research that focuses on metabolome profiles and provides important

mechanistic insights into various human diseases, including cancer, neurodegenerative

diseases, and aging. Many neurological diseases and conditions affect metabolic

processes in the brain. However, the tumor brain metabolome has never been analyzed.

In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish

the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain

metabolome of TumorGraftTM mice. We found that the growth of malignant non-CNS

tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and

amino acid and sphingolipid metabolism. The observed metabolic changes were similar

to those reported for neurodegenerative diseases and brain aging, and may have

potential mechanistic value for future analysis of the tumor brain phenomenon.

Keywords: tumor brain, non-CNS tumors, metabolomics/metabolite profiling, animal models, brain aging

INTRODUCTION

Recent successes in the development of cancer treatments have changed cancer from being a
deadly disease to a chronic condition, thereby bringing cancer survivorship and quality of life
to the forefront of healthcare. Cancer survivors suffer numerous side effects from treatments,
including fatigue and gastrointestinal, hematological, and skin issues. Moreover, they experience
chemotherapy-associated cognitive changes spanning across various domains such, as working
memory, cognition, executive function, and processing speed. These chemotherapy-induced
cognitive changes result in “chemo brain” and affect up to 75% of patients, persisting for years or
even decades in one-third of individuals (Janelsins et al., 2011; Ahles, 2012; Andreotti et al., 2015).

Several studies conducted over the past decade have indicated that cognitive impairment occurs
long before cancer treatment begins and even before cancer diagnosis (Hurria et al., 2007; Ahles,
2012). These findings suggest that cancer alone (independent of any therapy or treatment) exerts
a negative impact on the central nervous system (CNS) (Hurria et al., 2007). However, the
mechanisms of cancer-induced cognitive impairment, or “tumor brain,” still need further study.
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In our recent studies, we established that the growth of
malignant non-CNS tumors resulted in noticeable changes to
global gene expression patterns, affecting numerous signaling
and metabolic pathways. These alterations in gene expression
patterns may in turn impact cellular metabolite levels (Brink-
Jensen et al., 2013).

The cellular metabolome is comprised of all the lowmolecular
weight molecules, called metabolites, which are the end products
of biochemical and gene expression pathways in cells and tissues.
Metabolomics is a relatively new area of research and seeks to
analyze metabolome profiles and provide biologically relevant
insights into metabolic processes. This is valuable for the analysis
of various human diseases, including cancer, neurodegenerative
diseases, and aging, yielding both mechanistic insights and new
disease biomarkers (Armitage and Barbas, 2014; Jones and C.
A. B. International, 2014; Jové et al., 2014; Botas et al., 2015;
Ivanisevic and Siuzdak, 2015; Shao et al., 2016; Wishart et al.,
2016; Zhang T. et al., 2016; Zhang X. et al., 2016). Metabolomics
facilitates the understanding of an organism’s physiology and
its responses to nutrition and various environmental conditions
and stimuli. It has also been proposed as a new tool for
exposure studies (Wild, 2005; Lenox, 2015; National Academies
of Sciences, 2016; Cheung et al., 2017; Golla et al., 2017). Cancer
significantly alters the metabolic profiles the blood, urine and
saliva (Armitage and Barbas, 2014; Falegan et al., 2015; Mal, 2016;
Shao et al., 2016, 2017; Wishart et al., 2016; Zhang X. et al., 2016;
Zhou et al., 2017). However, the tumor brain metabolome has
never been analyzed.

In our study, we applied a direct flow injection/mass
spectrometry (DI-MS) analysis to determine whether the growth
of malignant stage IV non-small cell lung carcinoma (NSCLC),
pancreatic cancer, and sarcoma caused alterations in the
brain metabolome of TumorGraftTM mice. We discovered that
the growth of malignant non-CNS tumors affected metabolic
processes in the brain and identified the metabolic fingerprints
for tumor brain. The observed metabolic changes were similar to
those reported for neurodegenerative diseases and brain aging,
and may have significant mechanistic and diagnostic value for
future tumor brain research.

RESULTS AND DISCUSSION

We analyzed the levels of various metabolites belonging
to acylcarnitines, glycerophospholipids, sphingolipids, hexose,
amino acids, and biogenic amines in the brains of lung cancer-,
pancreatic cancer-, and sarcoma-bearing tumor graft mice. We
identified the metabolic changes and established the metabolic
profiles of the brains of tumor-bearing mice. Initially we used
the principle component analysis (PCA), a statistical tool to help
analyze the sample differences and ascertain the main variables
within a multidimensional data set. PCA was based on all the
analyzed metabolites. Although there was no distinct clustering
observed by the first and second principal components, the
control group clearly separated from the samples of pancreatic
tumor-bearing mice across the second component (Figure 1A).
Likewise, the heatmap of various analyzed metabolites revealed

high intra-sample variability in metabolic profiles for all the
groups (Figure 1B and Figure S1). Nonetheless, it showed that
non-CNS tumor growth led to changes in the metabolic activity
in the brain of tumor-bearing animals.

Because of small sample sizes, we haven’t observed statistical
significance in metabolite changes. However, metabolites exist
and function as part of complex metabolic pathways and
networks; thus, focusing on individual, or even groups
of, metabolites is not informative. To gain an in-depth
understanding of the magnitude and functional significance
of the observed changes, we analyzed the metabolites in the
context of metabolic pathways and performed the metabolite set
enrichment analysis (MSEA) using MetaboAnalyst software (Xia
et al., 2015; Xia andWishart, 2016). MSEA allowed us to establish
which pathways were affected in the brains of tumor-bearing
mice as compared to controls. We also compared the metabolic
pathway patterns between the groups. The analysis revealed
several interesting patterns: 17 pathways were deregulated in
the brains of the pancreatic cancer-bearing mice, 15 in the
brains of the lung cancer-bearing mice, and 14 in the brains of
the sarcoma-bearing animals (Figures 2, 3). Five pathways were
affected in all groups. To understand if the observed enrichment
patterns were caused by up- or down- regulated metabolites, we
also performed enrichment analysis on up- and down-regulated
metabolites separately. Some pathways were identified only in
the lists of upregulated, some—only in the lists of downregulated
metabolites, while several exhibited bi-directional alterations in
the pathway metabolites (Figures 4, 5).

Of the five pathways that were affected in all three
experimental groups, the process of protein biosynthesis was
consistently upregulated (with Holm p < 0.05 in all three
cancers). Furthermore, in all groups, amino acid metabolism
was affected, as evidenced by the changes in phenylalanine and
tyrosine metabolism, as well as valine, leucine, and isoleucine
degradation. (Figures 3, 5, 6). The fold changes of all the amino
acids as compared to controls are represented in Table 1. In the
brain, excess amino acids are usually used for energy production;
and oftentimes, when neurons cannot catabolize glucose, they
oxidize amino acids as alternative energy sources.

These results suggest that the tumor–brain phenomenon
may be similar to neurodegeneration and aging (Griffin and
Bradshaw, 2017). Several previous studies have shown altered
amino acid levels in the brains of Alzheimer’s disease (AD)
patients and AD mouse models, even though the functional
and mechanistic significance of these changes has not yet been
established (Griffin and Bradshaw, 2017). The changes in these
AD studies were similar to the ones noted in tumor brain.

Decreases in the levels of amino acid in the brain, or the
deregulation of the machinery that metabolizes them, may
cause neuronal death. Likewise, amino acid oxidation, and
catabolism that leads to the release of ammonia may also
cause neuronal apoptosis. This is due to much lower levels
of several urea cycle enzymes that are needed for ammonia
detoxification in neurons and glia. One of these enzymes is
glutamine synthetase, which sequesters ammonia into glutamine
and is expressed at very low levels in neurons. Changes in protein
synthesis may cause neuronal cell death and thereby contribute
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FIGURE 1 | Effects of non-CNS tumor growth on the brain metabolite profiles. (A). PCA plot for the first and the second principal components based on the analysis

of all metabolites. (B) Metabolite profile heatmap of brain tissues of pancreatic cancer-, lung cancer-, and sarcoma-bearing mice, as compared to controls. Each line

represents an individual sample, with 3 samples per group. The heatmap visually represents a metabolic signature of each individual sample, as well as reveals either

the up- or down-regulation of metabolites in samples belonging to various groups. The X axis shows sample group; the Y axis depicts individual metabolites in

metabolic groups.

to neurodegeneration. Altered amino acid metabolism was
previously linked to neurological deficits in dementia patients
(Liu et al., 2014; Griffin and Bradshaw, 2017), and aromatic
amino acids (phenylalanine and tryptophan) increased in the
AD brain (Xu et al., 2016). Furthermore, alterations in protein
biosynthesis pathways were previously reported in the brains of
transgenerationally stressed animals (Kiss et al., 2016), and were
suggested to be related to neurological deficits.

Amino acids play pivotal roles in neural cells as
neurotransmitters and their precursors. We observed
small increases in the levels of glutamate, an excitatory

neurotransmitter and precursor of inhibitory neurotransmitter
gamma-aminobutyric acid (GABA) (Xu et al., 2016). Glutamate
is involved in the pathophysiology of Alzheimer’s disease,
and altered glutamate levels were previously reported in AD
patients (Xu et al., 2016). Aromatic amino acids are precursors
of cerebral neurotransmitters, monoamine (serotonin) and
catecholamine (dopamine, norepinephrine and epinephrine)
(Xu et al., 2016). We observed significant changes (according
to Holm-Bonferroni p-values) in catecholamine metabolism
in the brain tissues of pancreatic cancer-, lung cancer-, and
sarcoma-bearing mice (Figure 7). Catecholamine biosynthesis
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had differential regulation due to dopamine down-regulation
in pancreatic and lung cancer-bearing mice and to dopamine
up-regulation in sarcoma-bearing animals.

The observed alterations in catecholamine biosynthesis and
the increases in levels of aromatic amino acids (phenylalanine
and tryptophan) may cause neurotransmitter imbalances
analogous to those previously exemplified by lowered levels
of serotonin, dopamine, and norepinephrine in the AD brain

FIGURE 2 | Venn diagram of metabolic pathways altered in the brains of

pancreatic cancer-, lung cancer-, and sarcoma-bearing mice, as compared to

controls.

(Storga et al., 1996; Matthews et al., 2002; Garcia-Alloza et al.,
2005; Xu et al., 2016), again suggesting a potential link between
tumor–brain and neurodegeneration. The causes of protein
and amino acid metabolism deregulation need to be further
analyzed. Altered protein biosynthesis may occur as part of a
compensatory or repair mechanism in response to oxidative
stress and oxidative DNA damage. In addition, more studies are
needed to further analyze the roles of deregulated protein and
amino acid metabolisms in tumor brain and the mechanisms
leading to this deregulation.

Along with protein and amino acid metabolism and amino
acid degradation, we observed changes in the urea cycle of the
brains of the tumor-bearing mice. The urea cycle was enriched
in the brains of the lung cancer- and sarcoma-bearing animals,
but not in the pancreatic cancer-bearing animals. One of the
constitutive compounds of the urea cycle—citrulline—which is
also a member of the amino acid pathway, was downregulated
in the brains of the sarcoma animals, but upregulated in the
brains of the lung and pancreatic cancer animals (Table 2).
This deregulation may be the consequence of altered protein
metabolism, and its roles remain elusive; however, it is yet
another pathway implicated in neurodegeneration (Xu et al.,
2016). We also noted changes in methionine metabolism in the
brains of all experimental groups (Table 3). Previously, altered
methionine metabolism was reported to occur upon traumatic
brain injury (Dash et al., 2016).

This study is the first to analyse and report the effects
of non-CNS tumor growth on the brain metabolome. Gene
expression pathways control metabolic pathways and, as such,
the cellular metabolome constitutes the outcome of global
gene expression. Overall, we observed altered regulation of
protein synthesis, amino acid metabolism and degradation,
sphingolipid metabolism, and several other metabolic pathways
in the brains of tumor-bearing animals. Metabolic changes, as

FIGURE 3 | Analysis of metabolic pathways bi-directionally altered in the brains of pancreatic cancer-, lung cancer-, and sarcoma-bearing mice, as compared to

controls. Metabolite set enrichment analysis allowed to establish which pathways were affected in the brains of tumor-bearing mice as compared to controls. Plots

show the results of overrepresentation analysis of various metabolic pathways based on individual metabolites that were identified in each sample within experimental

groups. Only one pathway “protein [amino acid] biosynthesis” was consistently up-regulated in all three cancers. Color coding represents the p values for metabolic

pathways (dark red showing the least p value and white the highest p-value). The lengths of the bars represent the fold enrichment. For pancreatic cancer, the

Holm-Bonferroni adjusted p value range was from 0.01 (dark red) to 0.9 (white). For lung cancer, p-values ranged from 0.0005 (dark red) to 0.9 (white). For sarcoma,

p values ranged from 0.04 to 0.9.
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FIGURE 4 | Venn diagrams of up- and down-regulated metabolic pathways in the brains of pancreatic cancer-, lung cancer-, and sarcoma-bearing mice, as

compared to controls.

FIGURE 5 | Analysis of metabolic pathways up- and down-regulated in the brains of pancreatic cancer-, lung cancer-, and sarcoma-bearing mice, as compared to

controls. Metabolite set overrepresentation analysis allowed to establish which pathways were affected in the brains of tumor-bearing mice as compared to controls.

Two separate lists of up- and down-regulated metabolites were supplied for the analysis (indicated in the left part of the figure as “UP” or “DOWN”). Color coding

represents the p values for metabolic pathways (dark red showing the least p value and white the highest p-value). The lengths of the bars represent the fold

enrichment.

well as the vast majority of other molecular effects observed
in this study, were previously implicated in aging and age-
related neurodegenerative diseases such as AD and dementia.
These changes may be associated with neurodegeneration and
aging and thus may have implications for cancer patients as
they age.

One way to better understand the functional significance
and interconnection between mechanisms and pathways in
tumor brain, is through integrating multi-omics data. Such
a large amount of data could only be handled using special
approaches—e.g., sophisticated machine learning techniques—
that have shown greater promise in handling large amounts
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FIGURE 6 | Schematic representation of KEGG Biosynthesis of amino acids

pathway in the brains of pancreatic cancer-, lung cancer-, and sarcoma-

bearing mice, as compared to controls. Red denotes upregulation as

compared to controls; blue denotes downregulation to as compared to

controls (see Table 1 for numeric values).

of complex, nonlinear, and multidimensional datasets than
traditional approaches. Machine learning, and deep learning in
particular, provides a tremendous opportunity to identify novel

TABLE 1 | Levels of amino acids in the brains of tumor-bearing animals (fold

changes as compared to control animals).

Compound Pancreatic NSCLC Sarcoma

Alanine 1.36 1.30 1.75

Isoleucine 1.75 1.93 1.89

Leucine 1.64 1.53 1.48

Lysine 1.66 1.03 1.12

Methionine 1.37 1.07 1.19

Ornithine 1.34 1.40 1.51

Phenylalanine 1.27 1.72 1.48

Proline 0.89 0.98 1.13

Serine 1.12 1.10 1.10

Threonine 1.45 1.47 1.39

Tryptophan 1.20 1.02 1.25

Arginine 1.43 1.62 1.39

Tyrosine 1.66 1.93 1.89

Asparagine 0.86 0.83 1.28

Aspartic acid 1.17 0.83 1.15

Citruline 1.15 1.08 0.66

Glutamine 1.08 1.12 1.17

Glutamic acid 0.95 0.99 1.10

Glycine 2.47 1.82 1.20

Histidine 1.08 1.25 1.49

Red denotes upregulation; blue denotes downregulation, albeit the observed changes

were not statistically significant after multiple test corrections.

biomarkers of diseases and conditions and establish mechanisms
of diseases and treatment responses (Mamoshina et al., 2016;
Putin et al., 2016; Borisov et al., 2018).

Hence, in the future it would be important to apply machine
learning and correlate metabolome levels with the levels of gene
expression, as well as with epigenome alterations. Multi-level
integration of various molecular domains may shed light on the
molecular mechanisms and outcomes of tumor brain. It may also
help develop tumor brain diagnostic and prognostic biomarkers,
and guide the development of appropriate mitigation and
prevention strategies. Moreover, further studies are needed to
compare metabolome profiles of tumors, the brain, as well as
blood in context of tumor brain models, as well as to establish
the effects of chemotherapy on brain metabolome.

Future studies are needed to further dissect organismal
repercussions of the observed changes, those, indeed may
constitute adaptive changes or deleterious ones. It would be
also important to further correlate metabolomic changes with
cognitive and behavioral outcomes in tumor brain.

MATERIALS AND METHODS

Animal Model
To study the effects of non-CNS tumor growth on the brain
metabolome, we used the mouse TumorGraft models developed
and provided by the precision medicine company Champions
Oncology, Inc. (Baltimore, MD). We obtained frozen brain
tissues of TumorGraft mice carrying pancreatic cancer, sarcoma
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FIGURE 7 | Schematic representation of SMPDB Catecholamine biosynthesis pathway. Two compounds belonging to this pathway were measured: L-Tyrosine and

dopamine. L-Tyrosine was up-regulated in all three cancer-bearing groups, while dopamine was only up-regulated in sarcoma-bearing groups. Red denotes

upregulation as compared to controls; blue denotes downregulation as compared to controls. Green nodes represent enzymes.

TABLE 2 | Levels of urea cycle components in the brains of tumor-bearing

animals (fold changes as compared to control animals).

Compound name Pancreatic Lung Sarcoma

Citrulline 1.15 1.08 0.66

L-Glutamic acid 0.95 0.99 1.10

L-Aspartic acid 1.17 0.83 1.15

L-Glutamine 1.08 1.12 1.17

L-Arginine 1.43 1.62 1.39

Ornithine 1.34 1.40 1.51

L-Alanine 1.36 1.30 1.75

Red denotes upregulation; blue denotes downregulation, albeit the observed changes

were not statistically significant after multiple test corrections.

and lung (NSCLC) cancer patient-derived xenografts (PDX).
Patients diagnosed with sarcoma, pancreatic, and lung cancer
had their tumors surgically removed and small pieces of the
tumor were implanted in mice. This allowed the production of
personalized TumorGraft mouse models for the development
of precision oncology strategies. All patients gave their full
informed consent for the use of their tumor tissues for research
purposes.

The animal experiments were approved by Institutional
Animal Care and Use Committee protocols. To generate mouse
TumorGrafts, small tumor tissue fragments with both malignant
cells and supportive stroma were implanted into the flanks of
6-week-old immunodeficient female mice (female nu/nu athymic
mice; Harlan Laboratories, Indianapolis, IND) and propagated
as previously described(Bertotti et al., 2011; DeRose et al.,
2011; Hidalgo et al., 2011; Morelli et al., 2012; Stebbing et al.,
2014). When the TumorGrafts reached more than 200 mm3,
the animals were divided into groups of three. Tumor growth

TABLE 3 | Methionine metabolism (fold changes as compared to control animals).

Compound name Pancreatic Lung Sarcoma

Putrescine 0.97 2.14 0.93

L-Serine 1.12 1.10 1.10

L-Methionine 1.37 1.07 1.19

Glycine 2.47 1.82 1.20

Spermidine 1.76 1.60 1.42

Red denotes upregulation; blue denotes downregulation, albeit the observed changes

were not statistically significant after multiple test corrections.

was monitored; tumor dimensions were regularly measured
and tumor volumes were calculated as previously described
(Stebbing et al., 2014). Intact animals (no tumor, no treatment,
n = 3) served as baseline controls. Animals were euthanized by
Euthansol overdose. The brains of the animals were removed
from their skulls and split in half. They were then frozen in
liquid nitrogen and stored at −80◦C until further metabolomics
analysis.

Tissue Sample Extraction
Metabolomic profiling was carried out at The Metabolomics
Innovation Center, Edmonton, AB using mouse left hemibrains.
Each tissue sample was weighed and its mass was recorded, and
a tissue exaction buffer was prepared [85mL MeOH + 15mL
phosphate buffer solution (10mM)]. Next, each tissue sample was
homogenized in the tissue extraction buffer at a volume three
times that of the tissue. For example, 90 uL of tissue extraction
buffer was used for 30mg of tissue. Then, the homogenized
samples were centrifuged at 14,000 rpm and the supernatant
was transferred into a new vial. The resultant supernatant was
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stored at −20◦C until further analysis by liquid chromatography
tandem-mass spectrometry (LC-MS/MS).

Direct Flow Injection Mass Spectrometric
Compound Identification and
Quantification
We applied a targeted quantitative metabolomics approach
to analyze the samples by using direct flow injection mass
spectrometry (AbsoluteIDQTM Kit). This kit assay, in
combination with a 4000 QTrap (Applied Biosystems/MDS
Sciex) mass spectrometer, was used for the targeted identification
and quantification of a large number of endogenous metabolites,
including amino acids, acylcarnitines, glycerophospholipids,
sphingolipids, and sugars. This method combines the
derivatization and extraction of analytes with selective mass-
spectrometric detection using multiple reaction monitoring
(MRM) pairs. Isotope-labeled internal standards are integrated
in a Kit plate filter for metabolite quantification.

The AbsoluteIDQTM kit contains a 96-deep well plate with
a filter plate attached by sealing tape, as well as reagents and
solvents used to prepare the plate assay. Fourteen wells in the
kit were used for the following: one blank, three zero samples,
seven standards, and three quality control samples that were
provided with each kit. The samples were left to thaw on
ice. Once thawed, they were vortexed and then centrifuged
at 13,000 × g. Next, 10 µL of supernatant for each sample
were loaded on a filter paper of the kit plate and dried in a
stream of nitrogen. Next, 20 µL of a 5% solution of phenyl-
isothiocyanate was added for derivatization. After incubation, the
filter spots were dried again using an evaporator. Extraction of
the metabolites was then achieved by adding 300 µL of methanol
containing 5mM ammonium acetate. The extracts were obtained
by centrifugation in the lower 96-deep well plate, followed by a
dilution step with a kitMS running solvent. Amass spectrometric
analysis was performed on an API4000 Qtrap R© tandem mass
spectrometry instrument (Applied Biosystems/MDS Analytical
Technologies, Foster City, CA) equipped with a solvent delivery
system. The samples were delivered to the mass spectrometer
by liquid chromatography, followed by a direct injection (DI)
method. Biocrates MetIQ software was used to control the entire
assay workflow, from sample registration and the automated
calculation of metabolite concentrations and to the exporting of

the data into other data analysis programs. A targeted profiling

scheme was used to screen for known small molecule metabolites
using multiple reaction monitoring, neutral loss, and precursor
ion scans.

In-Depth Analysis of Brain Metabolome
For each cancer-bearing animal sample, we obtained the mean
metabolite level value and divided it by that of the control
samples to get the fold change (FC) values. Then, we submitted
the up- regulated genes (FC > 1.5) or down-regulated genes
(FC < 0.8), or both, to MetaboAnalyst to perform Metabolite
set enrichment analysis (MSEA) (Xia et al., 2012, 2015; Xia
and Wishart, 2016). The principal component analysis (PCA)
(Raychaudhuri et al., 2000) and hierarchical clustering were
performed in R, with the “stats” package. Pathway analysis
was performed in Cytoscape, based on pathway diagrams
obtained from KEGG (http://www.kegg.jp/kegg/pathway.html)
and SMPDB (http://smpdb.ca/) pathway databases.
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