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Seven gene sets were significantly enriched for SNP associations with diabetes, and
considered as potential diabetes pathways in a previous meta-analysis of diabetes
GWAS. This study aims to examine if these gene sets also have expression associations
with diabetes. The analysis was conducted using pooled data from 23 diabetes gene
expression studies. Gene associations were examined using linear modeling with an
empirical Bayes approach, and pathway associations were investigated by testing
enrichment for significant genes. Meta-analyses were performed to investigate gene
and pathway associations in all studies and tissue types. The analysis showed that six
gene sets and three member genes of ACADSB, RASSF2, and KLF12 had significant
associations with diabetes traits. The findings suggest that these gene sets are related
to diabetes regulation, and their functions tend to be tissue non-specific.
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INTRODUCTION

Diabetes mellitus is a chronic metabolic disease of hyperglycemia resulting from defects in insulin
secretion, action, or both. The disease has two common etiologies: Type I diabetes (T1D) is mainly
caused by beta-cell destruction, and Type II diabetes (T2D) is characterized by defects in insulin
action and/or secretion. Development of diabetes is usually accompanied by varied symptoms and
complications, and long-term diabetes may cause diabetic nephropathy, retinopathy, peripheral
neuropathy and a range of cardiovascular symptoms (American Diabetes Association, 2014).
Insulin regulation has been implicated in the pathogenesis of many of these diabetes traits.

Development of diabetes is affected by genetic predispositions within familial aggregations. The
heritability of type I diabetes (T1D) is as high as 88% (Hyttinen et al., 2003). The concordance
rate of type 2 diabetes (T2D) is 50–92% for monozygotic (MZ) twins, consistently greater than the
rate for dizygotic (DZ) twins (Permutt et al., 2005). The complication of diabetic nephropathy
has been observed in familial clustering (Seaquist et al., 1989). A twin bivariate genetic study
of the Atherosclerosis Risk in Communities (ARIC) population showed that genetic heritability
is 30% for fasting glucose and 39% for fasting insulin, and genetic correlation between them is
22∼ 39% (Vattikuti et al., 2012). Although T1D and T2D have different etiologies with pathologic
changes observable in multiple tissues, they present some common clinical manifestations. A gene
expression study has shown that both types of diabetes share pathogenic mechanisms and common
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pathways (Kaizer et al., 2007). Findings from these studies suggest
that these diabetes traits have strong genetic susceptibility, and
there are shared genetic components among them. Further
genetic studies of diabetes traits and complications can help
improve our understanding of the etiology and pathogenesis of
diabetes.

Genome-wide association studies (GWAS) have identified
hundreds of genetic risk variants associated with diabetes (Welter
et al., 2014), typically single nucleotide polymorphisms (SNPs).
In the post-GWAS era, ascertaining the biological roles of
these variants underlying diabetes pathogenesis is essential.
Investigations of expression quantitative trait loci (eQTL) have
demonstrated that diabetes risk variants are linked to gene
expression (Kang et al., 2012; van de Bunt et al., 2015), providing
biological insight regarding variant associations and diabetes
development. These linkages may be present in different tissues,
showing non-specific characteristics. A genetic pathway, defined
as a gene set, consists of genes related to specific biological
functions. A diabetes pathway study of GWAS has suggested that
SNP associations with diabetes traits are enriched in particular
genetic pathways (Mei et al., 2015). Pathway investigations of
gene expression have supplemented diabetes GWAS and eQTL
studies that have been based on individual SNPs; this approach
enhances our comprehension of how systemic genetic regulation
may affect the etiology of diabetes. The broad application of
advanced high-throughput technology in the past decade has led
to the generation of abundant gene expression data sets collected
from different tissue types, and gene expression studies can
provide insight into genetic functions and biological mechanisms
of diseases (Barrett et al., 2011). An investigation of pooled
gene expressions from different studies and tissue types can
help improve the power to identify gene and pathway signatures
associated with a disease.

In our previous study, we proposed a novel method
of uniform-score gene-set analysis (USGSA) that uses
hypergeometric exact test statistic for GWAS-based pathway
identification, and analysis of diabetes GWAS showed that
seven gene sets are associated with diabetes traits and pathway
member genes share common binding motifs for transcription
factors (TFs) of FOXO4, NFAT, TCF3, VSX1 and POU2F1 and
microRNA of MIR-218 (Mei et al., 2015). We extended the
exact test of USGSA method with developed software package
of snpGeneSets to generalize pathway analysis for both GWAS
and gene expression study (Mei et al., 2016). Our analysis
of NHGRI GWAS catalog and gene expression data using
snpGeneSets evidenced that significant SNP associations and
differential gene expressions of diabetes are enriched in particular
pathways. We further performed pathway analysis of genome-
wide differential gene expression and the results suggested that
diabetes pathogenesis was involved with both tissue-specific and
non-specific genetic pathways (Mei et al., 2017). Based on our
studies and published findings, we hypothesize that diabetes
pathways enriched for GWAS SNP associations are also enriched
for differential gene expressions. We therefore conducted the
present follow-up study to investigate our previously identified
seven gene sets for their expression associations with diabetes
traits in different tissues.

MATERIALS AND METHODS

Gene Expressions of Candidate Gene
Sets
The candidate pathways are seven gene sets enriched for GWAS
SNP associations with diabetes traits identified our previous
study (Mei et al., 2015) and annotated in the MSigDB database
(Liberzon, 2014). The candidate pathways are summarized in
Table 1, and each gene set was specified by its pathway ID (PID)
(Mei et al., 2016). Member genes of every candidate gene set share
common promoter binding motifs for particular transcription
factors, including FOXO4, TCF3, NFAT, VSX1, and POU2F1 and
microRNA of mir-218.

Gene expressions were obtained from the GEO data sets
(GDS) (Barrett et al., 2011) for diabetes traits. All expression
GDS were preprocessed and parsed through the R package of
GEOquery (Davis and Meltzer, 2007). The M-value of each
gene expression (i.e., log 2 -expression level) was extracted
and normalized by quantile normalization using the R package,
preprocessCore (Bolstad et al., 2003). Multiple GDS of the
same samples were merged into a single data set, and the
largest M-value was used as the study-specific gene expression
(Dozmorov and Wren, 2011).

Gene Expression Association and
Meta-Analysis
Differential gene expression (DGE) was investigated by testing
the null hypothesis that the expression M-value is equal across
different diabetes trait statuses. The hypothesis was tested by
fitting a linear model with the R package, limma (Smyth, 2004),
which adjusts the standard errors by empirical Bayes approach
to obtain an accurate p-value. The snpGeneSets package (Mei
et al., 2016) was applied to calculate the association U-score and
define significant genes. The association U-score for the i-th gene
(U i) is calculated as Ui =(

∑
j I (pj < pi)+ 0.5 ·

∑
j I (pj =pi))/N,

where pi is the p-value of the i-th gene and N is the total
number of genes. The U-score approximately follows a uniform
distribution, and genes with a U-score ≤ 0.05 were defined to
have significant DGE.

Meta-analyses of DGE were conducted using both the
binomial test and Fisher’s method over multiple expression
studies. For a particular gene, the binomial test counted the
number of studies with a U-score ≤ 0.05, and the meta-analysis
p-value was gene_binp = pr (X ≥

∑23
i=1 I (Ui < 0.05)), where

X is a random variable following a binomial distribution. The
Fisher’s method measured the gene’s combined U-scores over
GDS, and the p-value was gene_fishp=Pr (X ≥ −2

∑23
i=1 log (Ui)),

where X follows a chi-square distribution with df = 46. Study-
specific DGE analysis and meta-analysis across studies were
summarized in the Supplementary Figure 1.

Pathway Expression Association and
Meta-Analysis
The pathway expression association with diabetes traits was
examined using the snpGeneSets package (Mei et al., 2016), which
measures pathway enrichment of differential gene expressions
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TABLE 1 | Description of candidate gene sets.

PID Gene set Size Motif Binding

1461 AACTTT 1890 AACTTT Unknown1

2247 FOXO4 2061 TTGTTT FOXO42

2268 NFAT 1896 TGGAAA NFAT3

2240 TCF3 2485 CAGGTG TCF34

2076 MIR-218 398 AAGCACA MIR-2185

2239 VSX1 810 TAATTA VSX16

1551 POU2F1 214 NNGAATATKCANNNN POU2F17

PID, the pathway ID of gene set; Size, the number of member genes for candidate gene set; Motif, common promoter binding motif of member genes.
1http://www.broadinstitute.org/gsea/msigdb/cards/AACTTT_UNKNOWN
2http://www.broadinstitute.org/gsea/msigdb/cards/TTGTTT_FOXO4_01
3http://www.broadinstitute.org/gsea/msigdb/cards/TGGAAA_NFAT_Q4_01
4http://www.broadinstitute.org/gsea/msigdb/cards/CAGGTG_E12_Q6
5http://www.broadinstitute.org/gsea/msigdb/cards/AAGCACA_MIR218
6http://www.broadinstitute.org/gsea/msigdb/cards/TAATTA_CHX10_01
7http://www.broadinstitute.org/gsea/msigdb/cards/OCT1_02

by hypergeometric exact test. For a candidate gene set � and
total L genes (Gi, i = 1,. . .,L ), the enrichment effect was
measured as πd =k/S− l/L, where K=

∑L
i=1 I (Gi ∈ �) I (Ui ≤

α), S=
∑L

i=1 I (Gi ∈ �) and l=
∑L

i=1 I (Ui ≤ α). The α equaled
0.05, defined as the significance level, and the estimate of πd
had a variation of π0 (1−π0)/S, approximately following a normal
distribution. The pathway exact p-value was calculated as

path_p = 1−
K∑

i=0

(
S
i

)(
L− S
l− i

)
(

L
l

)
Besides the exact test of snpGeneSets, we also conducted

test of pathway expression association with diabetes traits using
different methods of gene set enrichment (Hung et al., 2012;
Varemo et al., 2013), including Wilcoxon rank-sum and Fisher’s
test from piano package (Varemo et al., 2013) and GSEA
test (Subramanian et al., 2005) implemented in fgsea package
(Sergushichev, unpublished), and obtained p-value based on
10,000 permutations.

Meta-analysis was conducted using binomial test to
investigate pathway expression association over studies for
all methods (Supplementary Figure 1), and binomial p-value was
calculated as above. For exact test of snpGeneSets, the fixed-effect
model was also applied to estimate pathway enrichment effect
across studies, using the inverse of variance as a study-specific
weight. The analysis was performed using the R package of
metaphor (Viechtbauer, 2010).

Pathway Expression Heterogeneity and
KEGG Pathway Mapping
Pathway expression heterogeneity was tested using the
McNemar’s chi-squared method, to compare significant
expression patterns of a gene set between two studies
(Supplementary Figure 1). For every pair of GDS studies, the
number of inconsistent genes was counted, i.e., genes for which
we found a significant DGE in one study but that were found to

be insignificant in a second study. The p-value was adjusted by
the Bonferroni method, and a finding of significant heterogeneity
indicates that the gene set had a different expression pattern
between studies.

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2010) pathway database is a compendium
of known biological pathways related to human diseases. Our
mapping analysis identified KEGG pathways statistically related
to the candidate gene sets based on hypergeometric tests
(Supplementary Figure 1). For a total of L genes (Gi, i = 1,. . .,L),
a candidate gene set 8 and a KEGG pathway � of S genes, the
enrichment effect was measured as πd=k/S− l/L with a variation
of (l/L) (1−l/L)/S, and the p-value was

p = 1−
K∑

i=0

(
S
i

)(
L− S
l− i

)
(

L
l

) ,

where K=
∑L

i=1 I (Gi ∈ �) I(Gi ∈ 8) and l=
∑L

i=1 I(Gi ∈ 8).
An adjusted p-value was obtained using 10,000 permutation
tests. The KEGG mapping analysis was conducted using the
snpGeneSets package (Mei et al., 2016).

RESULTS

The procedures for gene and pathway expression analyses of the
seven candidate gene sets, which are significantly enriched for
GWAS SNP associations with diabetes traits (Mei et al., 2015),
are summarized in the Supplementary Figure 1.

Gene Expression Studies
Twenty-three expression studies, consisting of 30 GEO data sets
(GDS) (Barrett et al., 2011), are summarized in Table 2. Diabetes
traits explored in expression studies included insulin resistance,
insulin sensitivity, T1D, T2D, diabetic nephropathy, diabetic
neuropathy and diabetic heart failure (HF). Tissues used in
expression assays included skeletal muscle, glomeruli, endothelial
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TABLE 2 | Expression studies and GEO datasets.

Study GDS_ID Pub_ID N_genes Sample Status Tissue

1 GDS157 12436343 7129 10 Insulin resistant, insulin
sensitive

Skeletal muscle

GDS158 8934 10

GDS160 8924 10

GDS161 8928 10

GDS162 8928 10

2 GDS961 15042541 12625 6 Diabetic nephropathy,
normal

Glomeruli

3 GDS3656 19706161 24354 32 T1D, Healthy EPC

4 GDS3665 32878 10 T2D, control Adipocytes

5 GDS3681 18719883 12625 20 T2D, control Myotube

6 GDS3782 20644627 61359 20 T2D, control Pancreas

7 GDS3874 17595242 22283 117 Healthy, T1D, T2D Blood

GDS3875 22645

8 GDS3876 19549744 22283 18 T2D, control Liver

9 GDS3880 22802091 54675 42 T2D, pre-diabetes,
normoglycemic control

Skeletal muscle

10 GDS3881 21423737 48702 22 Pre-surgery for T2D
Obese, post-surgery for
T2D Obese

Blood

11 GDS3882 21127054 22283 13 Non-diabetes, T2D Pancreas

12 GDS3883 21035759 54675 17 T2D, normal glucose
tolerance

Liver

13 GDS3884 21393865 54675 50 T2D, insulin resistant
(FH-), insulin resistant
(FH+)

Skeletal muscle

14 GDS3963 21829658 24526 24 Control, impaired
fasting glucose, T2D

Blood

15 GDS3980 21926180; 22340758 22277 21 T2D, control Artery

16 GDS4012 21926103 17788 35 Progressive,
non-progressive
diabetic neuropathy

Nerve

17 GDS4314 22427379 33297 24 Diabetic HF,
non-diabetic HF

Heart

18 GDS4337 22768844 33297 63 T2D, non-diabetes pancreas

19 GDS2790 17472435 7129 12 Baseline, insulin Skeletal muscle

GDS2791 22283

20 GDS3104 17563058 54675 29 Healthy control, insulin
resistance

Skeletal muscle

21 GDS3181 18334611 22283 36 −60, 30, and 240 min
of hyperinsulinemia

Skeletal muscle

22 GDS3715 17709892; 21109598 12626 110 Insulin sensitive, insulin
resistant, diabetes

Skeletal muscle

23 GDS3781 20678967 54675 39 Insulin sensitive, insulin
resistant, diabetes

Adipocytes

GDS3962 19

Study, the ID of expression study; GDS_ID, the ID of GEO data set; Pub_ID, PubMed ID of the study; N_genes, the number of genes assayed for expression. Bolded
terms are the multiple datasets of a study.

progenitor cells (EPCs), blood, adipocytes, and liver, heart, artery,
nerve, myotube and pancreatic cells.

Analysis of Gene Expression Association
The proportion of member genes with significant differential
expression (i.e., an association U-score ≤ 0.05) is noted in
Figure 1 for every gene set. Given the null hypothesis that a
pathway is not associated with a diabetes trait, it was expected

that 5% of member genes would have significant expression
associations. Our analysis showed that with the exception of
the POU2F1 gene set (PID: 1551), more than 5% of member
genes from all of the other 6 gene sets had significant expression
associations.

Gene expression associations across studies were examined by
meta-analysis using Fisher and binomial tests, and the p-values
were calculated as gene_fishp and gene_binp, respectively.
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FIGURE 1 | Proportion of significant genes at candidate gene sets. The study IDs in the X-axis are arrayed from 1 to 23. The Y-axis indicates the proportion of
member genes with a U-score < 0.05. Pathway ID (PID): 1461 (AACTTT-motif), 2247 (FOXO4), 2268 (NFAT), 2240 (TCF3), 2076 (MIR-218), 2239 (VSX1), and 1551
(POU2F1).

Three genes were found to be significant: (1) ACADSB
(GID:36) belongs to the gene sets of VSX1 (PID:2239)
and TCF3 (PID:2240) with gene_fishp = 9.27∗10−5 and
gene_binp = 9.71∗10−6; (2) RASSF2 (GID:9770) belongs to the
gene sets TCF3 (PID:2240), AACTTT–motif (PID:1461), FOXO4
(PID:2247) and NFAT (PID:2268) with gene_fishp = 1.32∗10−4

and gene_binp = 9.71∗10−6; and 3) KLF12 (GID: 11278)
belongs to the gene set of MIR-218 (PID:2076) with
gene_fishp = 5.65∗10−4 and gene_binp = 9.4∗10−6 (see Table 3).
The negative log 10 of each U-score and the corresponding Bayes
p-value are shown in Supplementary Figure 2.

Analysis of Pathway Expression
Association
Study-specific pathway p-values with different methods are
shown in Supplementary Figures 3a–g. The hypergeometric

exact test of snpGeneSets (Exact), Wilcoxon, Fisher and GSEA
methods, respectively, had 28.0, 37.9, 37.9, and 28.6% of tests
with p-value≤0.05. The results suggest that different methods
have consistent pathway association pattern, and the Exact had
over 75% of concordant tests with the other three methods.
Study-specific pathway p-values of hypergeometric exact test
by snpGeneSets for each gene set is shown in Figure 2. The
significance level, based on Bonferroni adjustment, was p = 0.007.
The gene sets of FOXO4 (PID: 2247), NFAT (PID: 2268) and
VSX1 (PID: 2239) were found to have significant expression
associations in 6, 4, and 1 studies, respectively, and the gene
sets of AACTTT-motif (PID: 1461), TCF3 (PID: 2240) and MIR-
218 (PID: 2076) each were found to have significant expression
associations in two studies. There was no significant expression
association for POU2F1 (PID: 1551). The FOXO4 and TCF3 gene
sets both had the minimum p-values of 4.5∗10−5 and 5.3∗10−5

TABLE 3 | Meta-analysis of gene expression associations with diabetes traits.

GID Gene Chr Start (BP) End (BP) Strand PID gene_fishp gene_binp

36 ACADSB 10 124768429 124817806 + 2240;2239 9.27E-05 9.71E-06

9770 RASSF2 20 4760669 4804291 − 1461; 2247; 2268; 2240 1.32E-04 9.71E-06

11278 KLF12 13 74260149 74708400 − 2076 5.65E-04 9.40E-05

GID: the NCBI gene ID. PID (pathway ID): 1461 (AACTTT-motif), 2247 (FOXO4), 2268 (NFAT), 2240 (TCF3), 2076 (MIR-218), and 2239 (VSX1). gene_fishp: meta-analysis
p-value by Fisher’s method; gene_binp: meta-analysis p-value by binomial test.
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FIGURE 2 | Pathway expression association of candidate gene sets. The study IDs in the X-axis are arrayed from 1 to 23. The Y-axis indicates the -log10 (p-value) of
every candidate gene set. Pathway ID (PID): 1461 (AACTTT-motif), 2247 (FOXO4), 2268 (NFAT), 2240 (TCF3), 2076 (MIR-218), 2239 (VSX1) and 1551 (POU2F1).

in Study 7, which measured gene expressions in blood samples
from healthy, T1D and T2D individuals, and in Study 18, which
measured expressions in pancreatic tissue samples from T2D and
non-diabetic individuals, respectively.

Meta-analysis p-values of seven candidate gene sets were
calculated by binomial test to measure their associations with
diabetes traits across studies for all four methods (Supplementary
Table 1). The meta-analysis suggested that these methods had
consistent test results: all gene sets, except the POU2F1 (PID:
1551), presented significant meta-analysis p-values of pathway
expression associations. The results also showed that the exact
test of snpGenesets had conservative meta-analysis p-value
compared to the other three methods.

The exact test of snpGeneSets provides estimate of pathway
enrichment effect and calculation of association p-value. Meta-
analysis of pathway expression associations with diabetes
traits was conducted using binomial and fixed-effect tests
to measure effects over studies, which yielded p-values of
path_binp and path_fixp, respectively. Results are summarized
in Table 4 and plotted in Supplementary Figures 4a–g. Except
for POU2F1 (PID:1551), all other six gene sets had strong
significant associations with diabetes traits after Bonferroni
correction (p-value < 0.007). MIR-218 (PID:2076) had the
largest effect of πd = 0.94% with a 95% confidence interval
of [0.46, 1.42], and p-values of path_fixp = 1.22∗10−4 and
path_binp = 9.4∗10−5. FOXO4 (PID:2247) had the smallest
p-values of path_fixp = 4.94∗10−6 and path_binp = 6.11∗10−8.
AACTTT-motif (PID:1461), NFAT (PID:2268), TCF3 (PID:2240)
and VSX1 (PID:2239) had path_fixp (path_binp) of 4.08∗10−5

(6.11∗10−8), 6.79∗10−5 (9.40∗10−5), 7.14∗10−4 (9.71∗10−6), and
0.02 (9.40∗10−5), respectively.

Stratified meta-analysis of pathway expression association
with T2D based on exact test of snpGeneSets was performed
over 11 studies and 7 tissues with results summarized in the
Supplementary Table 2. Consistent with diabetes traits, the
POU2F1 gene set (PID:1551) is insignificant (p-value > 0.05),
while all other six gene sets have p-value < 0.05 in meta-
analysis of binomial test. Besides, gene sets of FOXO4 (PID:2247)
and TCF3 (PID:2240) have p-values < 0.007 in both binomial
and fixed-effect tests; AACTTT-motif (PID:1461) and VSX1
(PID:2239) gene sets have p-values of path_binp = 1.12∗10−4

TABLE 4 | Meta-analysis of pathway expression associations with diabetes traits.

PID Effect
(%)

SE Z CI_LB CI_UB path_fixp path_binp

1461 0.46 0.11 4.10 0.24 0.68 4.08E-05 6.11E-08

2247 0.49 0.11 4.57 0.28 0.70 4.94E-06 6.11E-08

2268 0.45 0.11 3.98 0.23 0.67 6.79E-05 9.40E-05

2240 0.33 0.10 3.38 0.14 0.53 7.14E-04 9.71E-06

2076 0.94 0.25 3.84 0.46 1.42 1.22E-04 9.40E-05

2239 0.41 0.17 2.38 0.07 0.75 0.02 9.40E-05

1551 −0.08 0.34 −0.22 −0.73 0.58 0.82 0.11

PID (pathway ID): 1461 (AACTTT-motif), 2247 (FOXO4), 2268 (NFAT), 2240 (TCF3),
2076 (MIR-218), 2239 (VSX1), and 1551 (POU2F1). CI_LB and CI_UB: lower and
upper bound of 95% confidence interval; path_fixp: meta-analysis p-value by the
fixed-effect model; path_binp: meta-analysis p-value by binomial test.
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and 0.002, respectively; and the MIR-218 gene set has p-value
of path_fixp = 0.002. Pathway analysis of expression association
with T1D in the EPCs (Study 3) did not find any significant
candidate gene set (p-value > 0.05). Pathway analysis of T1D
association in the blood mononuclear cells (Study 7) showed
that gene sets of AACTTT-motif (PID:1461), FOXO4 (PID:2247),
NFAT (PID:2268), MIR-218 (PID:2076) and VSX1 (PID:2239)
have p-values of 3.95∗10−4, 7.05∗10−6, 0.04, 0.04, and 0.06,
respectively (Supplementary Table 3).

Analysis of Expression Heterogeneity
and Pathway Mapping
We performed 253 pairwise heterogeneity tests of pathway
expression patterns for 23 expression studies, and the significant
p-value based on Bonferroni adjustment was≤2E-4. The negative
log 10 of each p-value for the heterogeneity tests is plotted in
Supplementary Figure 5. Ten significant tests were identified,
accounting for 0.6% of all comparisons. The FOXO4 gene set
(PID:2247) showed significantly different expression patterns for
Study 7 (blood) vs. Study 3 (endothelial progenitor cells) and
Study 23 (adipocytes). NFAT (PID:2268) had eight significant
heterogeneity tests—for Study 23 (adipocytes) vs. Study 6
(pancreas), Study 17 (heart) and Study 21 (skeletal muscle);
and for Study 11 (pancreas) vs. Study 6 (pancreas), Study 7
(blood), Study 17 (heart), Study 18 (pancreas), and Study 21
(skeletal muscle). These results suggest that the candidate gene
sets have tissue-specific expression associations with diabetes
traits. However, significant heterogeneity of pathway expressions
was not found in the majority of studies and tissues (>99%),
which indicates that the candidate gene sets tend to have
consistent expression patterns for different diabetes traits and
tissues.

KEGG pathway mapping of the candidate gene sets found
effects and p-values ranging from 5.5% ∼ 23.4% and 5.7E-
04 ∼ 3.63E-11, respectively (see Table 5). The AACTTT-motif
gene set (PID: 1461) was mapped to four signaling pathways
of Wnt, MAPK, Insulin and TGF-beta with an adjusted p-value
(adj_p) ≤ 3E-04. The FOXO4 gene set (PID: 2247) was mapped
to MAPK (adj_p = 6.1E-03) and TGF-beta (adj_p < 1E-04)
signaling pathways. The NFAT gene set (PID: 2268) was mapped
to Wnt (adj_p = 0.01), MAPK (adj_p < 1E-04) and TGF-beta
(adj_p = 5E-04) signaling pathways. The TCF3 gene set (PID:
2240) was mapped to Wnt and MAPK signaling pathways with
adj_p< 1E-04. The MIR-218 gene set (PID: 2076) was mapped to
the Axon guidance pathway with adj_p = 0.041. Finally, the VSX1
gene set (PID: 2239) was mapped to the tight junction pathway
with adj_p = 0.016. The POU2F1 gene set (PID: 1551) was not
significantly mapped to any KEGG pathways.

DISCUSSION

We investigated 7 GWAS-identified gene sets for their expression
associations with diabetes traits in 23 independent studies.
Our analysis found that 6 gene sets had a higher-than-
expected proportion of significant member genes with differential
expressions (Figure 1), suggesting potential correlations between

TABLE 5 | KEGG pathway mapping of candidate gene sets.

PID KEGG Effect (%) SE p adj_p

1461 WNT1 19.4 2.5 3.63E-11 <1E-4

MAPK2 11.8 1.9 1.01E-08 <1E-4

INSULIN3 13.8 2.7 3.12E-06 3E-04

TGF4 18.0 3.4 3.18E-06 3E-04

2247 TGF 23.4 3.4 7.60E-09 <1E-4

MAPK 8.0 1.9 6.25E-05 6.1E-03

2268 MAPK 11.6 1.9 2.38E-08 <1E-4

TGF 17.8 3.4 4.77E-06 5E-04

WNT 10.6 2.6 1.13E-04 0.01

2240 MAPK 13.0 2.2 1.14E-08 <1E-4

WNT 17.1 2.9 5.34E-08 <1E-4

2076 Axon guidance 5.5 1.3 5.7E-04 0.041

2239 Tight junction5 7.6 1.8 1.9E-4 0.016

PID (pathway ID): 1461 (AACTTT-motif), 2247 (FOXO4), 2268 (NFAT),
2240 (TCF3), 2076 (MIR-218), and 2239 (VSX1); 1WNT, Wnt signaling
pathway (http://software.broadinstitute.org/gsea/msigdb/cards/KEGG_WNT_
SIGNALING_PATHWAY); 2MAPK, MAPK signaling pathway (http://software.
broadinstitute.org/gsea/msigdb/cards/KEGG_MAPK_SIGNALING_PATHWAY);
3 INSULIN, Insulin signaling pathway (http://software.broadinstitute.org/gsea/
msigdb/cards/KEGG_INSULIN_SIGNALING_PATHWAY); 4TGF, TGF-beta
signaling pathway (http://software.broadinstitute.org/gsea/msigdb/cards/
KEGG_TGF_BETA_SIGNALING_PATHWAY); and 5Tight junction pathway (http:
//software.broadinstitute.org/gsea/msigdb/cards/KEGG_TIGHT_JUNCTION).

gene expression regulation and diabetes risk DNA variants. In
contrast to our previous hypothesis-free pathway expression
study of diabetes traits (Mei et al., 2017), this meta-analysis
of candidate gene sets following GWAS helps to expand our
understanding of biology function of GWAS findings.

Member genes of the candidate gene sets share particular
promoter motifs bound by transcription factors of FOXO4,
NFAT, TCF3, VSX1, POU2F1, or microRNA of MIR-218. We
applied two types of meta-analysis to test gene expression
association with diabetes traits across studies (Supplementary
Figure 1): the binomial method was based on the number of
significant study-specific DGE tests, and the Fisher’s method was
conducted using the combined p-values of individual studies.
Both meta-analyses presented consistent tests of DGE and the
results showed that genes of ACADSB, RASSF2, and KLF12
had significant gene expression associations with diabetes traits
(Table 3). ACADSB is a member gene of the TCF3 and VSX1
gene sets, and it encodes the mitochondrial enzyme involved
in metabolism of fatty acids (Rozen et al., 1994). The RASSF2
gene belongs to gene sets of AACTTT-motif, FOXO4, NFAT,
and TCF3, and it encodes the proteins of the RAS family,
which are important intracellular signal transducers regulating
various biologic processes. KLF12 is a component gene of the
MIR-218 gene set, and its protein represses expression of AP-2
alpha transcription factor (Roth et al., 2000), a developmentally
regulated activator of transcription. These genes are all highly
expressed in blood, and their significant expression associations
in different tissues suggest that the encoded proteins may be
potential biomarkers for measuring diabetes risk.

We applied four methods of pathway enrichment test to
study expression association of candidate gene sets with diabetes
traits. All methods showed consistent patterns of pathway
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association tests and the exact test of snpGeneSets presented
more conservative p-values than the other three methods. In
contrast to the methods of Fisher, Wilcoxon and GSEA, the
hypergeometric exact test of snpGeneSets also provides estimate
of pathway enrichment effect in addition to calculation of
pathway association p-value. We used two types of meta-analysis
to estimate pathway enrichment effect and association p-value for
pathway expression association with diabetes traits over studies:
the fixed-effect model test was dependent on the combined effects
of all studies and the binomial method was based on the number
of significant individual studies. Both types of meta-analysis
showed consistent results for the seven candidate gene sets.
Our analyses with different methods and meta-analyses provide
a relatively comprehensive evaluation of pathway expression
association with diabetes traits.

The pathophysiology of diabetes and its complications
typically involve diverse tissues. A prior gene expression study
has indicated that T1D and T2D share common pathways related
to hyperglycemia and beta-cell dysfunctions (Kaizer et al., 2007).
Our stratified meta-analysis of expression studies indicated that
the pathophysiology of diabetes involves tissue non-specific
pathways. For example, the FOXO4 gene set was found to be
significant in blood, skeletal muscle, heart, myotube, glomeruli
and pancreatic tissues (Figure 2 and Supplementary Figure 4b),
and more than 99% of our heterogeneity analyses found no
significant difference in expression patterns across studies and
tissues (Supplementary Figure 5). We also observed that 0.6% of
tests had significantly different expression patterns across tissues,
e.g., expressions of the FOXO4 gene set between blood (study 7)
and adipocytes (study 23), indicating that the candidate gene sets
also have tissue-specific roles in diabetes pathogenesis. Compared
to meta-analysis of diabetes traits over all expression studies, the
stratified meta-analysis of pathway expression association with
T2D among 11 studies and 7 tissues presented almost consistent
results for the 7 candidate gene sets (Supplementary Table 2).
For pathway analysis in the two expression studies of T1D, we
did not observe any significant association in the study 3 of
endothelial progenitor cells, while analysis in the study 7 of
blood mononuclear cells identified two gene sets with strongly
significant association (p-value < 0.001), two gene sets with
p-value < 0.05 and one with p-value = 0.06 (Supplementary
Table 3). The results suggest that some candidate gene sets are
not associated with T1D and some have pathway expression
associations at particular tissues.

We also performed a mapping analysis to infer the functions
of candidate gene sets. The mapped KEGG pathways suggest
that the gene sets are involved in the pathogenesis of diabetes
(Table 5). The Wnt (Jin, 2008), MAPK (Zhang et al., 2011),
TGF-beta (Yadav et al., 2011) and insulin signaling pathways
are known to regulate insulin sensitivity, lipid metabolism,
glucose and energy homeostasis; the axon guidance pathway is
associated with Wnt proteins (Zou, 2004); and the tight junction
pathway is related to the pathophysiology of diabetes (Harhaj and
Antonetti, 2004). The results from our mapping analyses are also
consistent with previous findings: miR-218 has a regulation effect
by stimulating the Wnt pathway (Hassan et al., 2012); activation
of the NFAT factor is calcium-dependent, and hypocalcemia is

associated with impaired insulin secretion (Pittas et al., 2007); the
FOXO4 factor binds to insulin-response elements, and insulin
can induce phosphorylation of FOXO4 and inhibit FOXO4-
dependent gene transcription (Kops et al., 1999).

In recent years, GWAS has been widely applied to identify
risk variants associated with diabetes, but it remains challenging
to explain how these variants affect diabetes traits. We believe
that this GWAS follow-up study will help to address the
challenge and may play an important role in improving our
understanding of the potential biological mechanisms of DNA
variants that underlie diabetes pathogenesis. Our expression
meta-analysis suggests that diabetes-associated variants are
related to gene and pathway expression associations, which is
consistent with previous investigations of expression quantitative
trait loci (eQTLs) based on GWAS risk SNPs of diabetes, shown
to influence gene expressions (Kang et al., 2012). A recent
study that investigated enrichment of functional elements for
GWAS-identified variants across tissues, including eQTL, protein
binding sites, enhancers and promoters, observed that although
a few comparisons were significantly tissue-specific for these
functional elements, most tests tend to be tissue non-specific
(Markunas et al., 2017). The findings are consistent with
our pathway heterogeneity tests across tissues, in which only
0.6% of comparisons had statistically significant tissue-specific
expression patterns. In contrast to these studies focused on
functional roles of individual GWAS risk variants, our study
was conducted to investigate expression associations between
diabetes traits and pathways enriched for GWAS-identified SNP
associations. We believe that our findings can be used to
guide follow-up functional studies of GWAS SNPs and genetic
pathways underlying diabetes pathogenesis.

Our study is not without limitations. All expression studies in
the current meta-analysis were based on the microarray platform,
which includes less transcriptome detail than is provided by
next-generation sequencing. In addition, our meta-analysis was
performed on curated GDS of gene expressions identified from
the GEO that have a few limitations: (1) most diabetes studies
are for T2D, with only two for T1D; (2) all expression datasets
have a relatively small sample size (≤117); and (3) many tissue
types were collected in only 1–3 studies. These limitations can
affect the reliability of statistical tests and reduce the study power.
It will be worthwhile to conduct replication studies on more
expression studies with larger sample sizes and different tissue
types in a future extension of the current meta-analysis. In
addition, identification of tissue-non-specific gene and pathway
expression associations were based on statistical tests which do
not provide direct evidence for the roles of genes and pathways
in diabetes pathogenesis. Therefore, future in vivo biological
studies of these genes and pathways will be essential in improving
our understanding of the genetic regulation mechanisms of
diabetes.

In summary, we investigated expression associations of 7
candidate gene sets and their member genes with diabetes traits
in 23 expression studies. Our analysis showed that these gene
sets, enriched for SNP associations with diabetes traits, were
also enriched for differential gene expressions, and the pathway
expression pattern tended to be tissue-non-specific. The mapping
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analysis of KEGG pathways identified potential regulation
mechanisms of these gene sets underlying the pathogenesis
and development of diabetes. We believe that our findings
will facilitate the discovery of novel regulation pathways for
understanding diabetes genetics, and will advance the study of
clinical biomarkers for early prevention and diagnosis of diabetes.
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