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Polymorphic Tandem Repeat (PTR) is a common form of polymorphism in the human

genome. A PTR consists in a variation found in an individual (or in a population) of the

number of repeating units of a Tandem Repeat (TR) locus of the genome with respect to

the reference genome. Several phenotypic traits and diseases have been discovered to

be strongly associated with or caused by specific PTR loci. PTR are further distinguished

in two main classes: Short Tandem Repeats (STR) when the repeating unit has size

up to 6 base pairs, and Variable Number Tandem Repeats (VNTR) for repeating units

of size above 6 base pairs. As larger and larger populations are screened via high

throughput sequencing projects, it becomes technically feasible and desirable to explore

the association between PTR and a panoply of such traits and conditions. In order

to facilitate these studies, we have devised a method for compiling catalogs of PTR

from assembled genomes, and we have produced a catalog of PTR for genic regions

(exons, introns, UTR and adjacent regions) of the human genome (GRCh38). We applied

four different TR discovery software tools to uncover in the first phase 55,223,485 TR

(after duplicate removal) in GRCh38, of which 373,173 were determined to be PTR

in the second phase by comparison with five assembled human genomes. Of these,

263,266 are not included by state-of-the-art PTR catalogs. The new methodology is

mainly based on a hierarchical and systematic application of alignment-based sequence

comparisons to identify and measure the polymorphism of TR. While previous catalogs

focus on the class of STR of small total size, we remove any size restrictions, aiming

at the more general class of PTR, and we also target fuzzy TR by using specific

detection tools. Similarly to other previous catalogs of human polymorphic loci, we focus

our catalog toward applications in the discovery of disease-associated loci. Validation

by cross-referencing with existing catalogs on common clinically-relevant loci shows

good concordance. Overall, this proposed census of human PTR in genic regions is a

shared resource (web accessible), complementary to existing catalogs, facilitating future

genome-wide studies involving PTR.

Keywords: variable number tandem repeats, short tandem repeats, polymorphic tandem repeats, genic regions,
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1. INTRODUCTION

Tandem repeats (TR) in DNA sequences are patterns of similar
subsequences directly adjacent to each other. The human genome
is rich in TR, whose study is important for a wide range
of applications in forensics, medical genetics, and population
studies. A standard classification based on the number of bases
in the repeating unit subdivides TR in microsatellites when the
number of bases is within the range from 1 to 6 bps (for some
authors from 1 to 10 bps), minisatellites for the range from 7
to 50 bps (for some authors the range stretches from 10 to 100
bps), and satellites when the number of bases in the repeating
unit is beyond 50 bps (or beyond 100 bps). TR with a repeat
unit from 1 to 10 Kb on a string are termed Tandem Copy
Number Variations (TCNV) (He et al., 2011). In the scientific
literature, microsatellites are also termed Short Tandem Repeats
(STR), while minisatellites are also termed Variable Number
Tandem Repeats (VNTR), when emphasis is placed on their
highly polymorphic nature (Gelfand et al., 2014).

There are several important biological features that
distinguish these classes, in particular VNTR vs. STR. The
molecular mechanisms that generate variability of the number
of repeating units of VNTR and STR loci in a population are
distinct. In STR, repeat number variability is mostly generated by
strand-slippage during replication by the DNA polymerase (Fan
and Chu, 2007; Mirkin, 2007). In the case of VNTR, variability
in the number of repeat units occurs mostly by events of unequal
sister chromatid exchange (Wolff et al., 1991). Variability in
biological samples at VNTR loci and STR loci is measured
using different technologies. For microsatellite, variability
detection is performed by PCR using primers directed to
non-variable flanking regions, followed by fragment separation
through electrophoresis (Edwards et al., 1991; Butler, 2007).
Variability of VNTR is detected by restriction fragment length
polymorphism (RFLP), a restriction digestion followed by
Southern hybridization with a minisatellite probe (Nakamura
et al., 1987; Sreenan et al., 1997).

Expansions in TR size are causative of more than 30 diseases,
mostly neurodegenerative and neuromuscular disorders,
including Huntington disease (HD), Kennedy disease (SBMA),
and several types of Spinocerebral Ataxias (SCA) (Orr and
Zoghbi, 2007). Since initially all known cases of TR-related
diseases involved a repeating motif of 3 nucleotides, these
diseases were denoted as trinucleotide repeat expansion diseases
(TNR). However, cases of repeating units with 4, 5, and 12
nucleotides have been discovered (see Supplementary Materials),
thus the more general notion of repeat expansion diseases (RE)
became common. An interesting extreme case is that of the Prion
Protein (PRPN), in which TR expansions with a unit size of 24
bps is associated with Creutzfeldt-Jakob disease (Goldfarb et al.,
1991; Kovács et al., 2002). The TR involved in RE diseases thus
fall mostly in the STR size range, although a few also fall in the
VNTR range of motif size.

Typing VNTR, and STR is used for human population studies
(Nakamura et al., 1987; Edwards et al., 1991; Pemberton et al.,
2013; Putman and Carbone, 2014), for forensic applications
(Lazaruk et al., 1998), for quantitative determination of allogenic

bone marrow transplant engraftment (Schichman et al., 2002),
and to differentiate sub-populations in studying the molecular
epidemiology and phylogeny of bacteria (Smittipat et al., 2005).
Variability in TR may also influence predisposition to cancer
(Boland et al., 1998). PTR are a remarkable source of genetic
variability since they display a wide range of values, different from
the binary nature of single nucleotide polymorphism, allowing,
in principle, a finer regulation of many different biological
processes.

Large-scale analyses of STR in the human genome have been
published in recent years (Payseur et al., 2011; Duitama et al.,
2014;Willems et al., 2014), and interest has increased in the use of
PTR (both STR andVNTR) for genomic studies involving human
gene expression variations, complex traits, and complex diseases
(Nakamura, 2009; Brookes, 2013; Gymrek et al., 2015).

For computational methods that scan long DNA sequences in
order to detect TR, the size of the repeating unit, the sequence
divergence among the single repeating units of a TR and the total
size of the TR are the main features affecting their effectiveness.
Many modern TR in silico detection methods are not so much
affected by the differences between STR and VNTR, and indeed
work equally well in both range of values, when the input is
sufficiently long. For this reason we will refer more generically
to the class of PTR, encompassing both STR and VNTR, when
differentiating among them is not relevant for the discussion.

With the advent of high-throughput sequencing technology,
in principle, it is now possible to sequence large cohorts of
patients and search for highly variable TR in the sequenced data
within genotype/phenotype association studies. However, highly
repetitive regions and low entropy regions of the genome are
technically difficult to sequence accurately with current Next
Generation Sequencing (NGS) technologies, and even difficult
to locate precisely onto the reference genome, thus the detection
process is prone to high rates of false positives and false negatives.
Overcoming these technical hurdles is a very active field of
research. There is a pressing need for computational tools and
resources supporting for this type of studies.

Data mining tools to detect polymorphism of TR loci in
raw reads from sequencing assays are among the most useful
supporting tools/resources. Examples of such data mining tools
are: RepeatSeq (Highnam et al., 2012) lobSTR (Gymrek et al.,
2012), ReviSTER (Tae et al., 2013), VNTRseek (Gelfand et al.,
2014), myFLq (Van Neste et al., 2014). pSTR Finder (Lee et al.,
2015), STR-FM (Fungtammasan et al., 2015), ExpansionHunter
(Dolzhenko et al., 2016), HipSTR (Willems et al., 2017), and
TREDPARSE (Tang et al., 2017). Recent surveys in Cao et al.
(2014) and Gymrek (2017) compare the performance of many of
these tools.

Catalogs of loci in the human genome, whose polymorphic
nature is known (to a certain extent) and whose properties fit
the purpose of subsequent analysis, are important as guides and
facilitators for the tools used to detect PTR loci in raw reads.
For example forensic studies usually refer to the Combined
DNA Index System (CODIS) collection (O’Hara and O’Hara,
1956), while population studies make often use of the Marshfield
polymorphic marker sets (McCarty et al., 2005). More recently
Willems et al. (2014) produced a comprehensive landscape of
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variable STR in the human genome, based on data from the
1000 Genomes Project (Gymrek et al., 2015). Other catalogs
have been produced by Duitama et al. (2014) by using the SERV
predictor of polymorphism, and by Payseur et al. (2011) based on
a direct comparison of two assembled genomes. These catalogs
are suitable for studies at the genome-wide level.

In this article, we propose a new genome-wide catalog of
PTR (which we refer to as the census throughout) and a general
methodology to compile such catalogs starting from assembled
genomes. Similarly to other previous catalogs of human
polymorphic loci, we focused our catalog toward applications to
the discovery of disease-associated loci. To this purpose, in order
to ensure the presence in the catalogue of clinically relevant PTR
loci, we have used a list of 37 clinically relevant PTR loci (see list
in Supplementary Materials—Appendix A) as benchmark.

While many of the existing catalogs focus on the class of
STR we aimed at supporting the detection of PTR with any
motif size (within the technical limitations of the TR detection
tools we employ). A recent survey of Gymrek (2017) mentions
as an open problem that of extending the motif size of the TR
considered in TR profiling studies beyond the standard range of
STRmotif size. Our work is a step in this direction. One of the key
choices to attain this goal was to use as input assembled genomes
(available at various stages of assembly: as scaffolds, or assembled
chromosomes) from the NCBI web site.

2. METHODS

2.1. Overview of the Methods
2.1.1. Main Computational Pipeline
Building a catalog of PTR was done in two main phases (see
Figure 1). The first phase was the compilation of a list of TR
of interest by applying several existing and well established TR-
detection software tools to the human reference genome. The
second phase was the classification of each TR obtained in the
previous phase as variable or non variable. For this second phase
Willems et al. (2014) used the tool lobSTR (Gymrek et al., 2012)
which was optimized for short-read data. Searching for PTR in
short reads is a problem akin to searching them in long reads or
in assembled genomes. However, the different quality of the input
data and the limitations imposed by the short input sequences
imply that methods oriented to short reads need to exert an effort
to compensate for deficiencies in their input data. For this reasons
a new procedure, described in this paper (see sections 2.1.4 and
2.2.4), was developed to classifying the variability of TR in our
setting.

2.1.2. Datasets
The reference genome used was the NCBI GRCh38
(Genome Reference Consortium Human Build 38). Five
target genomes (in different stage of assembly) were
downloaded from the NCBI portal, namely: (1) Venter’s
genome (huref assembly accession=GCF_000002125.1);
(2) Chinese individual YH2.0 genome (assembly
accession=GCA_000004845.2); (3) CHM1.1 genome (assembly
accession=GCF_000306695.2); (4) African Individual BGIAF
(assembly accession=GCA_000005465.1); and (5) ASM77258v3
genome (assembly accession=GCA_000772585.3).

The initial list of genes (transcripts) was downloaded from
the UCSC data portal (RefSeq track). More details on the
datasets used and on the preprocessing phases are in section
2.2. In particular our procedure for mapping transcripts to the
target genomes in absence of a mapping provided by NCBI is
described in the Supplementary Materials (Appendix B, C in
Supplementary Material).

2.1.3. Tools for TR Detection and Choice of

Parameters
We used four software tools to compile the intermediate list
of candidate TR. The principal requirement was the availability
of a stand-alone executable capable of processing long DNA
sequences. The selected tools were TRF (tandem repeat finder)
(Benson, 1999), mreps (Kolpakov et al., 2003), TandemSWAN
(Boeva et al., 2006), and TRStalker (Pellegrini et al., 2010) (see
Supplementary Materials—Appendix D for a brief description of
each tool, and their URL).

The input sequences (obtained by merging overlapping
transcripts) were extended 1,000 nucleotides in both directions,
so that TR contiguous with the genic region could be identified.
The parameters for the four tools were selected relying on
previous studies in the literature. A dataset of 37 PTR reported
to be disease-causing was used as a benchmark to evaluate the
ability of the four tools to identify potentially relevant TR. Our
experiments have shown that the four tools were able to detect all
37 TR with high precision (with Jaccard coefficient ≥ 0.7, data
not shown).

2.1.4. Procedure for Measuring Polymorphism
The procedure for measuring polymorphism of TR in the target
genomes was based on three steps that are applied to each RefSeq
transcript in turn, and to each TR included in the transcript
under consideration. Step (1): the flanking regions of the model
TR were identified in the corresponding transcript of the target
genome. The sequence between the two flanking regions, if
uniquely placed in the target, was termed the TR target.When the
flanking sequences were not uniquely mapped, the encompassed
TR was excluded from the downstream process. Step (2): the
model TR and the target TR were tested for compatibility (e.g.,
it was tested whether one string is a substring of the other,
allowing for a certain percentage of mismatches, insertions and
deletions). Step (3): the number of repeat units was estimated.
Within each phase, several quality scores were collected, filtering
out candidates that did not pass the threshold set for each score.
This pipeline ensured that the final list of candidate PTR was
composed of high quality items.

The above pipeline can be seen as a generalization of the
method adopted by Payseur et al. (2011), where, moreover,
approximate and fuzzy TR are targeted, whereas Payseur et al.
(2011) considered only pure TR. In the landscape catalog
(Willems et al., 2014) the polymorphism was measured on a
collection of short reads using the lobSTR tool (Gymrek et al.,
2012). lobSTR was highly optimized for accepting as input short
reads, and was based on a read indexing approach, as well
as on a spectral analysis approach for identifying periodicity.
Since our inputs are assembled genomes, read size issues were
not constraining our choices and a different approach based
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FIGURE 1 | Overall computational pipeline. Green ovals represent the main input data sets, Blue rectangles computational steps, and the red rectangle a key

intermediate result. Note that the TR discovery tools are applied only to the reference genome (GRCh38) in the initial part of the pipeline. The target genomes are used

in the second part of the pipeline, as input for alignment-based procedures, to measure polymorphism of the candidate TR loci.

on general purpose alignment tools of the BLAST family was
adopted. Such BLAST tools allowed us to handle effectively
higher error rates in several of the matching steps mentioned
above.

2.1.5. GO Analysis
The GO analysis was conducted using R
environment (v3.2.5). The biomaRT package v2.26.1
(bioconductor.org/packages/3.2/bioc/html/biomaRt.html) was
exploited to retrieve the GO annotation (BP) of each gene using
the hsapiens_gene_ensembl annotation (GRCh38.p10) of the
ENSEMBL_MART_ENSEMBL database (Ensembl Genes 88).
We used the hypergeometric test to check whether any biological
function was enriched among the genes containing PTR.
Benjamini-Hochberg and Bonferroni correction procedures
were used to correct the raw p-value. Separate analyses were
performed for PTR overlapping coding regions, exons, introns,
UTR regions (5′ and 3′) and upstream (5′ and 3′), as well as the
whole genes.

2.2. Methods in Detail
2.2.1. Compilation of the List of TR From the

Reference Genome: Input Data Preparation
A TR in which a motif is repeated identically many times
(Pure TR) is easy to define and relatively easy to identify
computationally within a sequence. However, when mutations
(substitutions, insertions, deletions) are allowed between
repeating units several different mathematical and statistical

characterizations are possible, and this fact is also reflected in
the variety of software tools at our disposal to find biologically
significant repeats. In absence of a unique criterion to find and
discriminate candidate TR, four software tools were used to
compile our list of candidate TR: TRF (tandem repeat finder),
Mreps, TandemSWAN, and TRStalker (see Appendix D for
parameter details and a brief description of each tool). These
tools were applied to the GRCh38 genome (accession number
GCA_000001405.15) as a reference. Both the primary and
alternative assemblies of the reference were scanned, extracting
from them the sequences belonging to all known annotated
RefSeq genes (downloaded from the UCSC table browser).
In order to avoid multiple scanning of a sequence belonging
to diverse isoforms of the same gene, overlapping sequences
were merged prior to the tool application. However, sequences
coding on opposite strands were kept separated. This choice was
motivated from the fact that most of the TR discovery tools use
the first instance of the motif sequence as a seed for extending
the TR at a certain stage during the computation. As a result,
the output of a given tool could change when a given sequence
is scanned in the opposite direction. For example given the
sequence ATT ATT ATC ATC ATT ATT ATC, and accepting
only three mismatches from the consensus sequence, scanning
the sequence from left to right the entire string is considered as
a TR, while scanning it in the opposite direction the last unit
of repeat would not be reported. After merging overlapping
sequences, the number of input sequences was reduced from
82,960 to 28,144, without affecting the outcome and, in turn,
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a lower overall computational effort was required for the TR
detection.

2.2.2. Parameter Tuning of TR Detection Tools
Parameter tuning is a delicate step in this type of applications, as
one has to balance the resources for computation (time/storage)
with the quality of the output (it is desirable to have a large
number of high quality TR and a low number of low quality
TR). We take advantage of insight from several comparative
studies in the literature. The tool TRF has been extensively
optimized by Gelfand et al. (2014) for VNTR detection and by
Willems et al. (2014) for STR detection. We used the parameters
selected by Willems et al. (2014) for TR with short period (≤6)
(thus, within the STR range of values). In particular, this set of
parameters (Willems et al., 2014) ensure a 1% False Discovery
Rate (FDR) of the TRF tool applied to the reference genome
with respect to a randomized genome obtained from a second
order Markov chain. Gelfand et al. (2014) use a different (more
relaxed) set of parameters for detecting candidate TR using TRF
on the reference genome for motif size greater than 6 (thus,
within the VNTR range of values). For mreps, TRStalker, and
TandemSWAN, the default parameters described in the original
publications were used, since they represent a good balance
between execution time and output quality. For TRStalker
and TandemSWAN such default parameters were sufficient to
detect novel TR in comparative experiments (Boeva et al., 2006;
Pellegrini et al., 2010). As a final check, the behavior of the four
tools together with their chosen parameters was assessed on a
collection of 37 clinically relevant PTR loci (see Supplementary
Materials—Appendix A). All 37 loci were detected as TR in
the reference genome (at a Jaccard coefficient 0.7, data not
shown). Details of the parameters selected for each tool are in
the Supplementary Materials—Appendix D.

Table 1 reports the raw number of TR discovered with each
tool and the chosen parameters. These candidate TR were
passed to the next phase aiming at annotating each TR with
its polymorphism attribute (polymorphic/non polymorphic). For
subsequent analysis, identical TR in the raw output from the 4
tools were identified and removed.

2.2.3. Location of TR in the Target Genomes
The polymorphism of TR was evaluated by means of an ad-hoc
procedure: firstly, for each transcript and each TR of the list of
TR resulting from the first phase contained in the transcript,
the transcript was mapped on the target genome, and, if such
mapping was unique, the flanking regions of the TRweremapped
within this region. Then, the variability of the TR in terms of
number of copies of the consensus motif of the TR was measured
for each TR of each transcript in each target genome.

A direct search of the TR sequence in the target genome
is impractical for two main reasons: firstly TR sequences tend
to be not unique along the genome, thus producing several
equally probable locations; secondly the different number of
copies between reference and target genomes due to potential
polymorphism can produce a truncated placement (e.g., only
a fraction of the TR from the reference is located in the
target or vice versa). In order to overcome these problems,

TABLE 1 | Number of TR detected by each tool on GRCh38.

Tool Number of TR

TRF 1.056.031

TRStalker 32.947.116

TandemSWAN 23.104.829

Mreps 3.097.654

Total 51.971.716

Duplicate and quasi-duplicate removal is applied to the output list of each tools separately.

The total is obtained re-applying the duplicate and quasi-duplicate removal procedure on

the union of the four lists.

our TR location procedure is based on the alignment of the
flanking regions of a TR to the corresponding gene in the target
genome. Following the methodology of Payseur et al. (2011)
flanking regions of size 250 bps were used. Wherever available
(e.g., for Venter, YH2.0, and CHM1.1), the genic coordinates
on the target genomes were extracted using the remapping
service provided by NCBI (www.ncbi.nlm.nih.gov/genome/
tools/remap). Subsequently, the corresponding sequences in the
target genomes were extracted for further processing. Since at the
time of this work the NCBI remapping service did not provide
mapping for BGIAF and ASM77258v3, customized maps were
built (see for details Supplementary materials—Appendix B and
C). Because of a possible different rearrangement of the genes
on each target genome, a given TR belonging to more than one
gene in the reference could be mapped to multiple positions on
a target genome (see Figure 2 for an illustration). Consequently,
for each TR belonging to more than one transcript, the analysis
was repeated on each mapped target sequence.

The target genes were extended to include the upstream
and downstream regions. In addition, the boundaries of those
sequences were extended with extra 250 bps to include possible
flanking regions used to place TR located in the boundaries of
the gene sequence. Finally, possible expansions of TR in the target
genomes were taken into account. Because of a repeat expansion,
a flanking region located at the boundary of the sequence could
exceed the end of the target sequence causing the impossibility
of placing a PTR. In order to avoid this case the boundaries of
the target sequence were extended with extra 1,250 bps in each
direction.

A careful choice of the size of the flanking regions is critical
because such choice affects the identification of the TR. In
fact, the shorter are the flanking regions, the higher is the
probability of an incorrect placement. In contrast, flanking
sequences that are too long could cause the placement procedure
to fail because of local variations (such as SNP and short in/del)
independently of the presence or absence of the TR. Following
the methodology of Payseur et al. (2011), the size for the flanking
regions was set at 250 bps. During the execution, this value
ensured the placement of the large majority of the TR.

To increase the reliability of the placement procedure, the
alignment of the flanking regions was performed only on the
sequence in the target genome corresponding to the gene of
the reference genome hosting the TR. Moreover, potentially
ambiguous mappings were discarded when: 1) only one of the
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FIGURE 2 | A TR may belong to several overlapping transcripts mapped in the reference genome (top of the figure), however as transcripts may map to non

overlapping genomic locations in the target genomes (bottom of the figure), a single TR on the reference GRCh38 may be associated with several TR on each target

genome.

flanking regions aligned with sufficiently high identity score; or
2) the two flanking regions did not map in the appropriate order;
or 3) at least one flanking region had multiple possible correct
mappings.

The NCBI version of the BLAST+ software was used to
perform local alignments of the flanking regions in the target
sequences. Alignments with identity score lower than 90% were
filtered out because they could produce misleading placements.
In addition, both flanking regions considered as a whole had to
satisfy additional conditions. In particular, at least 450 out of
500 bases had to be matched in the alignment. The sequence
of each TR in each target genome was the output of this step
(identification phase).

2.2.4. Evaluation of Polymorphism
The evaluation of the polymorphism index of a TR required the
measurement of the expansion or contraction of a TR in terms of
the number of repeat units in the target genomes relative to the
reference genome.

As shown in Figure 2A TR on the reference genome can
map to different positions over any of the target genomes (this
phenomenon was due to the mapping of the RefSeq transcripts
hosting a TR). Thus, for each TR, all the possible target locations
of its RefSeq transcripts were tested and the TR was labeled
polymorphic if a different number of repeat units was found
for at least one mapped transcript. In order to provide a single
high quality measure of the polymorphism for a TR, the target
locations were first sorted according to a measure of quality
of the polymorphism and according to the decreasing absolute
difference of number of repeat units. The polymorphism value
of the TR in the top scoring target transcript according to this
ranking was returned. For further processing the number of such
transcript target locations, and the polymorphism of each TR in
them were recorded.

The measure of the polymorphism of two (source, target) TR
was computed as follows. Let S = s1s2 . . . sn be the sequence

of the TR on the reference and let T = t1t2 . . . tm be its
corresponding sequence in a target genome (e.g., the region in
the target genome between twomapped flanking sequences). The
substring si . . . sj is denoted as S(i, j) (similarly for T). Suppose
furthermore, without loss of generality, that S is shorter than
T. Let H() be the evolutionary distance (Sellers, 1974), which is
a generalization of the Hamming distance of two strings, and
can be computed with a variant of the algorithm of Needleman
and Wunsch (Gusfield, 1997). In the case of strings of unequal
size, the two strings are aligned on their leftmost symbol, and
the longest string is truncated to the size of the smallest. Our
polymorphism check is based on two tests.

Test 1: given a threshold k (specified below), it is required that
S and T(1, n) be very similar according to H(), allowing only k
mismatches. Formally, H(S,T(1, n)) ≤ k.

Test 2: given a threshold k′, it is required that S and the
residual of T, T(n+1,m) be very similar according to H(),
allowing only k′ mismatches.

Test 1 ensured that the source TR and the target TR share
the same sequence (or in other terms the shorter TR is a
prefix of the longer one). Test 2 ensured that the residue of T
had approximately the same motif of the source TR. The two
thresholds k and k′ were chosen as a small fraction of the size
of the smallest sequence. In particular the value k = ⌊0.1 · n⌋ and
k′ = ⌊0.1 ·min(n,m− n− 1)⌋ was set.

The above tests were computed by means of two ad-hoc
local alignments. BLAST+ could not be used for this task
since this software requires sequences to have a minimum
size incompatible with the small size of some TR. An ad-hoc
alignment software based on the original Needleman algorithm
was implemented (using standard weights: +1 for matches, −1
for mismatches and gaps) This software was rather memory
intensive, therefore it has been optimized to evaluate both
tests just using a single alignment matrix. Analyzing the whole
catalog of TR in the target genomes required more than 5
billion alignments (performed either with BLAST+ and our
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Needleman implementation) therefore, a distributed pipeline was
implemented to spread this computation among the CPUs of our
computing cluster. This computation took anyhow a few weeks
to be completed.

A naïve prediction of the variation of number of repeat units
of a TR could be simply based on the difference between the size
of the compared sequences. However, this approach could give
an overestimation of the polymorphism, due to overcounting of
gaps in the alignment.

The number of repeat units was computed as the (rounded)
ratio of the number of matches in the two alignments of S and T
divided by the average size of the motif of S (which was estimated
by the TR detection tools). See Figure 3 for an illustration.

2.2.5. Finishing the Catalog
In this finishing phase, the measure of polymorphism computed
by performing Test 1 and Test 2 was further analyzed to attach
a quality score to such a measure (distinguishing high, medium
and low quality classes).

In the ideal case, the two alignments of Test 1 and Test 2 over
the sequence S should be highly overlapping. As illustrated in
Figure 3A the portion of the string S involved in the alignment
of Test 2 is a substring of the portion of S aligned in Test 1.
Moreover, looking at the string T, the matched bases of the two
alignments should lie adjacent to each other. This situation was
then formalized as:

Test 3: let S1 and S2 be the substrings of Smatched respectively
in the first and second alignment with T according to Tests 1
and 2. Let T1 and T2 be the corresponding substrings on T. In
order to break ambiguities in computing the substrings S1, S2, T1

and T2 the alignments having the highest matching score were
selected and, in case of tie, the leftmost one was chosen. If T1 and
T2 were adjacent and S1 and S2 were overlapping, then Test 3 was
satisfied and themeasure of polymorphismwas classified as “high
quality.”

Test 3 may fail for TR when small gaps between two
consecutive motif sequences are allowed. In this case, the
condition of Test 3 was relaxed by admitting that T1 and T2 may
be separated by small gap (see Figure 3B). For TR with small
motifs (up to 4 bps) and polymorphism expansion/contraction
less than two units (namely: the second alignment was shorter

than 8 bps), an additional property was required: the number of
matches in the second alignment had to be more than half of
the size of the shorter of the two aligned strings. TR satisfying
this relaxed variant of condition 3 were classified as “medium
quality.”

Figure 3C illustrates the case where S1 and S2 are disjoint. In
this case, as well as in those failing Test 3, the TR measurement
was classified as ’low quality’, and this measurement was not used
to compile the final catalog of PTR.

Low quality was also assigned in the following cases: PTR
including a high number of unspecified nucleotides, (a stretch
of at least 10 consecutive N); PTR derived from spurious
results returned by the discovery tools; duplicates (e.g., two PTR
predictions spanning the same nucleotides but with different
motif size and/or number of repeat units parameters); PTR with
motif size equal to 1.

Finally, PTR with a high degree of overlap were removed
with an iterative procedure by Gelfand et al. (2014). Namely the
procedure iteratively apply the following rule: if two TR overlap
by more than 50% of their size, the shorter TR or, in case of tie by
size, the TR with larger motif was removed.

2.2.6. Handling Segmental Duplications
Segmental duplications are highly homologous duplicated
sequences of the genome (of size ≥ 1Kbp) with identity above
90% (Bailey et al., 2002; Sharp et al., 2005), that overall make up
about 5% of the human genome. Segmental duplications are an
important source of ambiguity when the aim is obtaining unique
placements of sequences onto a genome. Our computational
pipeline took as input the RefSeq transcripts andmapped them to
the GRCh38 reference genome in the initial part of the pipeline.
Transcripts that did fall squarely in a region of segmental
duplication in GRCh38 were likely to have multiple placements,
therefore were discarded in this early phase. Similarly, when
transcripts were mapped to target genomes, transcripts having
multiple placements in a target genome were discarded. This
ensured uniqueness of transcript placement. Similarly, when
placing flanking regions within a mapped transcript such
placements were required to be unique (otherwise, the TR was
discarded either from the reference or the target genomes). The
only remaining possible source of multiplicity is depicted in

FIGURE 3 | Quality Assessment for the measurement of TR expansion/contraction. Sequence S denotes a model TR in the reference genome, Sequence T denotes

the corresponding TR in a target genome. Subsequence T1 matches S1 in the first alignment, subsequence T2 matches S2 in the second alignment. When S2 is a

prefix of S1, and T1 is adjacent to T2: this is a high quality match (Left drawing). When S2 is a prefix of S1, and there is a small gap between T1 and T2: this is a

medium quality match (Middle drawing). When there is a gap between S1 and S2, and there is a gap between T1 and T2: this is a low quality match (Right drawing).
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Figure 2, where uniquely mapped overlapping transcripts in the
reference genome do not overlap in the target genomes. This
might be due to genomic rearrangements between individual
genomes, or to different assembly policies. Note, however, that
the number of such multiple images was limited (at most, one per
transcript per TR) and it was computationally feasible to analyze
each one for measuring a possible polymorphism.

3. RESULTS

3.1. Validation by Cross-Referencing With
Existing Catalogs
In order to validate the final polymorphism prediction, the
census was compared with data from two large population studies
profiled with lobSTR (Gymrek et al., 2012), on the set of disease-
related loci. Results on the application of lobSTR to data from the
1000 Genomes Project (phase 1) (Willems et al., 2014) and from
the Simons Genome Diversity Project (SGDP) (Mallick et al.,
2016) were used (downloaded from http://strcat.teamerlich.org/
download). The two collections contain the genotype of 1009
individuals sampled form 26 diverse populations (1KGP-phase
1) and 300 individuals sampled form 142 diverse populations
(SGDP). Note that a direct application of our pipeline to such
data was not possible, since its content is made up of unassembled
(paired) short reads. Thus, our validation strategy was based on
assessing whether the polymorphism measured in 5 assembled
genomes was present also in some samples of the two collections.
This methodology implies reliance on lobSTR as a correct tool to
profile STR from reads. In support of this assumption, Mallick
et al. (2016) reported a good concordance (r2 = 0.92) between
capillary sequencing calls and lobSTR calls for 127 loci.

Table 2 reports, for 22 diseases (23 loci), 45 polymorphisms
measured in the census data, distinguishing expansion (positive)
of contractions (negative) in bp, relative to the reference genome.
The column ’data’ reports whether the data set used for the
comparison (1KGP or SGDP) is informative on each locus. A
data set is not informative if it has no measurement for the locus,
or if measurements were reported only for less than 5% of the
sampled population. The column ’in range’ reports whether the
predicted polymorphic size in the census is within the interval of
values present in either of the data sets (1KGP or SGDP). The
column “samples” reports, for loci sufficiently informative and
within range, the number of samples that exhibit the same value
as measured in the census in at least one of the two alleles. Raw
data at individual level are provided as Supplementary Table.

For 3 cases (related to Schizophrenia, SCA12 and ALS-FTD2)
a polymorphism measured in the census was beyond the range
of valid values of the lobSTR tool (for reads of size 100 bps, the
largest detectable STR for lobSTR was of size 80 bps). For 13 cases
neither the 1KGP nor the SGDP data set were informative. Thus,
these 16 cases were excluded from further comparisons. For the
remaining 29 cases, in 26 it was verified the presence of samples
in the SGDP or 1KGP data sets with an identical polymorphism,
in at least one of the two alleles. For two of the remaining
3 cases the predicted polymorphism size was within 1bp of a
polymorphism in the SGDP or 1KGP data sets. For one case

the measured polymorphism was within the interval between
the smallest and the largest expansion/contraction present in the
SGDP or 1KGP data sets. Overall, in 28 cases out of 29 the
measured polymorphism is highly (or moderately) compatible
with 1KGP and SGDP data (96.5%). For one case (3.5%) the
measured polymorphism was not incompatible with 1KGP and
SGDP data. In all other cases (16) the comparison was not
possible.

3.2. Contribution of Tools and Genomes to
the PTR Catalog
Each PTR in the final catalogue can be traced back to a TR (of
the reference genome) discovered by one or more TR discovery
tools, and also to a polymorphism detected on one or more
target genomes. Note that a PTR may be associated with a TR
detected by more than one tool and can be polymorphic in more
than one target genome. The first basic statistics reports the
separate impact of each tool and each target genome in the final
listing of PTR. Figure 4A reports for each discovery tool the raw
number of PTR that are associated with TR discovered by that
tool. TRStalker ranks first in the number of PTR associated with
a TR, followed by TRF, mreps, and TandemSWAN. Figure 4B
reports for each target genome, the raw number of PTR that are
associated with a polymorphism detected in that target genome.
Three genomes (huref, YH2, and ASM77258v3) contribute an
equal number of PTR (about 160,000) followed by CHM1.1
(about 100,000) and BGIAF (about 60,000).

A more refined analysis discriminates PTR that are traced
back to a TR detected by a single discovery software, and
those that are associated with a TR discovered by two or
more such tools. The implication is that a PTR associated with
a TR discovered by a single software would be missed in a
computational setting in which such tool is not applied. This
analysis in retrospect validates the design decision of using
multiple TR detection tools. This analysis is based on a notion
of matching applied to the PTR annotated with their detection
information collected along the computational pipeline. For this
task the Jaccard coefficient applied to the genomic coordinates of
the PTR (on GRCh38) was used1. Two TR from different tools
were considered identical if their Jaccard coefficient exceeded the
threshold value j. In Figure 5A is given the result of this analysis
for j = 0.7. For this value, about 28% of the catalog can be
traced back to TR detected by more than one tool. Using higher
thresholds values (j = 0.9, 1.0) the fraction of PTR associated
with TR that are matched shrinks to 10 and 3%, respectively,
while using lower threshold (j = 0.5), this percentage increases
to 41%. The complementary percentage of PTR associated with a
TR detected by only one of the four tools ranges from 97 to 59%,
depending on the threshold j (data not shown).

Similarly, for the target genomes Figure 5B gives the number
of PTR associated with polymorphisms detected in multiple
target genomes and those associated with polymorphisms
detected a single genome among the five considered in this study,
when the Jaccard threshold is set to 0.7. In this case, varying
the Jaccard threshold from 1.0 to 0.5 has minimal influence

1See definition in the Supplementary Materials—Appendix E
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TABLE 2 | Cross-referencing of measured polymorphism at disease loci for the census data.

Census 1KGP SGDP

No. Disease pos. poly (bp) Data In range Samples Data In range Samples

1 Schizophrenia chr1 +12 Y Y 6 Y Y 20

2 +5 Y Y (#)0 Y Y (#)0

3 (**)+45 Y N − Y N −

4 DM2/PROMM chr3 −18 Y Y 0 Y Y 2

5 −28 Y Y 0 Y N −

6 Huntington (HD) chr4 −3 N − − Y Y 3

7 +12 N − − Y Y 2

8 SCA12 chr5 (**)(*) +79 Y N − Y N −

9 SCA1 chr6 +12 N − − N − −

10 +13 N − − N − −

11 SCA17 chr6 −6 N − − N − −

12 +3 N − − N − −

13 ALS−FTD 2 chr9 +6 N − − Y Y 1

14 −3 N − − Y Y 1

15 (**)+47 N − − Y N −

16 Friedreich Ataxia chr9 +5 N − − Y Y 4

17 +6 N − − Y Y 21

18 +11 N − − Y Y 20

19 DRPLA chr12 −2 Y Y (#)0 Y Y (#)0

20 −15 Y Y 57 Y Y 58

21 +3 Y Y 13 Y Y 33

22 CCHS chr12 +3 N − − Y Y 11

23 SCA2 chr12 −3 N − − Y Y 33

24 SCA8 chr13 −6 N − − Y Y 41

25 holomprosencephaly chr13 −20 N − − N − −

26 SCA3 chr14 +30 Y Y 5 Y N −

27 +27 Y Y 24 Y N −

28 Huntington 2 (HDL2) chr16 +6 Y Y 16 Y Y 94

29 +9 Y Y 3 Y Y 9

30 Fuchs Corneal Dystrophy chr18 +9 N − − N − −

31 +12 N − − N − −

32 −20 N − − N − −

33 −39 N − − N − −

34 −27 N − − N − −

35 SCA6 chr19 −6 Y Y 14 Y Y 96

36 −18 Y Y 8 Y Y 45

36 miotonic dystrophy chr19 −27 Y Y 30 Y Y 6

38 −45 Y Y 228 Y N −

39 SCA36 chr20 +6 N − − Y Y 15

40 +12 N − − Y Y 101

41 SCA10 chr 22 +5 Y Y 5 Y Y 33

42 +10 Y Y 2 Y Y 4

43 SBMA (Kennedy) chrX −9 N − − N − −

44 −45 N − − N − −

45 fragile X chrX +30 N − − N − −

For 22 diseases (23 loci), the measured polymorphism (+, expansion, −, contraction) in bp are compared with genotypes in the 1000 Genomes Project (1KGP) and in the Simon

Genome Diversity project (SGDP) obtained by lobSTR. The column “data” (Y/N) reports whether the data set (1KGP or SGDP) is informative on each locus. The column “in range” (Y/N)

reports whether the census prediction is within the interval of values present in the data set (1KGP or SGDP). In column “samples,” for loci sufficiently informative, it is reported the

number of samples that exhibit the same value as measured in the census (1009 samples for 1KGP 300 for SGDP). (*) for the SCA12 locus the expansion is given by a stretch of N thus

it is annotated as “low quality’. (**) for the Schizophrenia, the SCA12 and the ALS-FTD2 polymorphism the total size of the expanded TR is above the limit of lobSTR detection (which is

80 bps, for reads of 100s bps). (#) for Shizoprenia and DRPLA there are alleles in the 1KGP and SGDP data within 1bp of the measured census polymorphism.
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FIGURE 4 | Distribution of PTR in the census relative to the computational pipeline. In the discovery pipeline the initial part of the pipeline produces a list of candidate

TR by using four TR discovery tools. In the second part these candidates are classified as polymorphic (thus included in the output PTR listing) or not polymorphic by

using five target genomes. (A) Numbers obtained by tracing back each PTR locus to the tool (o tools) that discovered the associated TR candidate. (B) Numbers

obtained by tracing back each PTR locus to the target genome (or genomes) giving evidence that led to to classifying it as polymorphic. Note that each PTR may be

counted in more than one column of subfigures (A,B).

FIGURE 5 | Distribution of PTR in the census relative to the computational pipeline. In the discovery pipeline the initial part of the pipeline produces a list of candidate

TR by using four TR discovery tools. In the second part these candidates are classified as polymorphic (thus included in the PTR listing) or not polymorphic by using

five target genomes. (A) Numbers obtained by tracing back each PTR locus to the single tool that discovered the associated TR candidate, or to multiple tools. (B)

Numbers obtained by tracing back each PTR locus to the single target genome giving evidence that led to to classifying it as polymorphic or to multiple genomes. The

identification of two TR is done with Jaccard coefficient threshold j = 0.7. Note that in the pie charts (A,B) each PTR is counted in one and only one category.

on this distribution. About 50% of the loci are polymorphic
in at least two target genome assemblies. Also, interestingly,
the BGIAF target genome, which contributes the least in total
number of PTR (see Figure 4), has the second largest number of
PTR whose polymorphism is measured only in the BGIAF target
genome.

3.3. Distribution of PTR in the Census:
Basic Statistics
The mean number of PTR per Mbp of genic regions analyzed in
each chromosome (such regions include exons, introns, UTR and
upstream, downstream sub-regions) was computed, in order to
assess the uniformity of PTR detection over the gene regions in
human chromosomes. The results for individual chromosomes

are shown in Figure 6A. The mean PTR density per Mbp was
271.15 (std. dev. 28.9), with a maximum of 352 (chr 19) and a
minimum of 224 (chr X). Thus, the mean density of PTR loci
in genic regions in each chromosome had values within a rather
narrow range (with about 10% standard deviation).

The distribution of PTR by their number of repeat units in
the reference genome is reported in Figure 6B. Data on single
values in the range from 2 to 10 showed a steady decrease, with
two notable drops for values 4 and 6. For the next two intervals of
size 5 (from 11 to 15, and from 16 to 20) there was also a decrease
(in aggregation), as well as in two size 10 intervals (form 21 to 30
and from 31 to 40).

The distribution of PTR by total size in bp is shown in
Figure 6C (in logarithmic scale). The vast majority of PTR (order

Frontiers in Genetics | www.frontiersin.org 10 May 2018 | Volume 9 | Article 155

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Genovese et al. Human Polymorphic Tandem Repeat Catalog

FIGURE 6 | (A) Average number of PTR per Mbp of genic regions (merging of gene transcripts) in each chromosome. Autosomal chromosomes are numbered from 1

to 22, sexual chromosomes X and Y. Chromosomes are sorted in decreasing PTR density values. (B) Distribution of PTR per number of repeating units (in the

reference genome). (C) Distribution of PTR per total size of the PTR loci (in the reference genome), in logarithmic scale. (D) Classification of 37 clinically relevant loci as

PTR in the census and landscape catalogs.

of 105) is in the range of size less than 50 bps. There is then an
exponential decrease in the next two intervals (for a size in the
range of 50–100 bps, the count is of the order of 104, while for the
range from 100 to 150 bps, it is of the order of 103). For intervals
of 50 bp from 150 to 350 bps, the count is of the order of 103 per
interval. The long tail of≥ 350 bps overall counts about 104 PTR.
This size stratification is important since populating the catalog
with PTR of large size was one of the aims guiding the design
of the computational pipeline. Moreover, one can assess directly
from this distribution the fraction of the PTR in the catalog
that can be captured in an individual when a specific sequencing
technology is employed, based on read length and on the possible
size of the PTR expansions.

Of the 37 clinically relevant loci (Supplementary Materials—
Appendix E) 23 are classified in the census data as polymorphic
(62%) (see Figure 6D). The landscape catalog (Willems et al.,
2014) classifies 29 loci of the 37 clinically relevant loci (78%)
as polymorphic. Comparing the single loci of the census and
the landscape catalogs, 18 loci are common to both lists, 5 loci
present in the census are not detected in the landscape, while
11 loci in the landscape are not detected in the census data.
The union of the two catalogs classifies correctly 34 over 37
clinically relevant loci (92%) as PTR. Figure 6D summarizes

the classification of clinically relevant loci in the census and
landscape catalogs.

3.4. Distribution of PTR/TR Ratio by Motif
Size and Number of Repeat Units
Payseur et al. (2011) note a strong positive dependence of the
proportion of variable STR loci (over the total number of loci),
with the number of repeating units (in the reference genome),
and notice a steep increase in variability in the range of repeating
units from 5 to 12, and a plateau for higher values (Payseur et al.,
2011, Figure 1). The influence of the size of the repeating motif
is also analyzed by Payseur et al., noticing that tetranucleotide
motifs were the most variable, while trinucleotide motifs were the
least variable. This analysis has been replicated in the STR size
range on the census data in order to assess whether the new data
would change or confirm these findings.

Figure 7 represents the ratio of the number of PTR over
the number of TR as a function of the number of repeat units
in the reference genome. Different colors correspond to motif
sizes from 2 to 6 (STR range). The ratio PTR/TR appears to be
influenced by the motif size and the number of repeat units. For
motif size 2 (purple) and 4 (light-blue) in Figure 7 there is a
increase of the PTR/TR ratio in the range of number of repeat
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FIGURE 7 | Ratio of the number of PTR over the number of candidate TR (PTR/TR ratio), subdivided in classes characterized by the size of the motif in the range 2–6

(color) and by the number of repeating units in the reference genome (abscisa). For each point in the graph the corresponding 95% Confidence Interval (CI) is given as

a vertical bar.

units from 5 to about 20, followed by a plateau in the range from
about 20–60 (light blue) and 120 (purple). For motif 3 (green)
and 6 (yellow) there is increase up to 20 units, followed by a fuzzy
plateau up to 50 units (green) and 25 units (yellow). Formotif size
5, there is a steady increase in the number of repeat units range
up to 30. Each data point in the plots of Figure 7 reports also the
95% Confidence Interval estimated by bootstrapping. Also the
higher variability of tetranucleotide motifs, and lower variability
of trinucleotide motifs is confirmed. This trend characterized
by a increase and then a leveling off is qualitatively similar to
that reported by Payseur et al. (2011; Figure 1) and confirms
the assertion that the higher number of repeat units in a STR
correlates with a higher likelihood of observing a PTR.

As the census contains a significant fraction of PTR in the
range of VNTR, the influence of the size of the repeating unit and
of the number of repeating units on the variable loci has been
investigated for this sub-class. In Figure 8 the ratio PTR/TR as a
function of motif size larger than 6, and of the number of repeats
in the reference larger than or equal to 3 is plotted.

3.5. PTR/TR Ratio in Functional Genomic
Locations
Evolutionary constraints may shape TR variations differently
in functionally different parts of the genome. Payseur et al.
(2011; Figure 1) analyze the ratio of the number of variable
microsatellites over the total number of microsatellites for the
following functional regions: intergenic regions (0.028), introns
(0.026), upstream from TSS (0.025), 3′-UTR, 5′-UTR (0.017)
and coding exons (0.002). Our collection of PTR (and TR) has
been analyzed similarly and Figure 9A reports the PTR/TR ratio
for the census data: introns (0.007), 5′-upstream (0.007), 3′-
upstream (0.007), 3′-UTR (0.004), 5′-UTR (0.004), and coding

exons (0.003). Confidence intervals are of the order of 10−5. The
ranking of values is in line with the fact that coding regions
are overall less variable than regulatory regions and these, in
turn, less variable than intronic and intragenic regions. For the
coding regions our ratio is remarkably close to that in Payseur
et al. (2011), while for the other regions the ratio is lower.
This can be restated as the fact that increasing the number TR
candidates does not result in a proportional increase in PTR in
less conserved functional regions.

A second functional classification is composed of genes
(0.0071), pseudogenes (0.0070), lncRNA (0.0072), lincRNA
(0.0073), and miRNA (0.0085) (Figure 9B). While for the first
four classes the ratio is just above 0.007, thus equivalent to that
of intronic regions, it is interesting that miRNA regions have a
higher ratio at 0.0085. This may point to a diffuse phenomenon
of microRNA regulation mediated by TR polymorphism, such as
that reported by Bandres et al. (2009). Also in this case confidence
intervals are of the order of 10−5 and do not influence the relative
ranking of the functional regions.

3.6. Distribution of Differences in PTR Loci
Figure 10 reports the distribution of the differences (in terms
of motif units) between the reference and the detected
polymorphism. The plot has a characteristic bell shape, with most
differences concentrated in the range (−3,+3).

3.7. Correlations of PTR and SNP Density
A question raised by Payseur et al. (2011) is whether regions
with an abundant number of SNP contain also more variable
microsatellite repeats. It is reported (Payseur et al., 2011) that
there is a weak correlation between the two density measures
(Spearman’s ρ ranging from 0.06 and 0.04, with p-value less than
10−15, depending on the window size). In order to explore this
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FIGURE 8 | Ratio of the number of PTR over the number of candidate TR (PTR/TR ratio), subdivided in classes characterized by the size of the motif in the range

above 7 (included). The vertical dimension reports the PTR/TR ratio. The width corresponds to the motif size class. The depth corresponds to the number of repeating

units.

FIGURE 9 | (A) Ratio of the number of PTR over the number of candidate (PTR/TR ratio) per genomic location among the following genomic annotations:

5′-upstream, 5′-UTR, coding, introns, 3′-UTR, 3′-upstream. (B) Ratio of the number of PTR over the number of candidate (PTR/TR ratio) per genomic location among

the following genomic annotations: genes, pseudogenes, miRNA, lncRNA, and lincRNA. The figure shows as vertical bars also the 95% Confidence Interval estimated

by bootstrapping.

issue in the context of our collection of PTR, a comprehensive list
of human SNP (dbSNP release 146 from https://www.ncbi.nlm.
nih.gov/projects/SNP/) was retrieved. Following a methodology
described by Payseur et al. (2011) the correlation between
properties of PTR and SNP density within a partition of the
genome in windows of increasing size (from size 5 to 50 K bps)
were analyzed by using Spearman’s ρ correlation factor. Also in
our data set a weak but statistically significant positive correlation
(with ρ > 0.08) was measured between the number of repeat
units of PTR (measured on the reference) and the SNP density.
The analysis was done separately for the different sub-regions
(3′-utr, 3′-upstream, 5′-utr, 5′-upstream, pseudogenes, introns,

lncRNA, lincRNA) and the values of ρ and the p-values are listed
inTable 3. Window size has almost no effect on the value of ρ and
on the p-value, except for the class of PTR in long intergenic RNA
where for window size 20K and 50K there is a drop to ρ = 0.078,
p = 1.9E− 9.

3.8. Comparing the Census and the
Landscape
In this section our catalog (aka “census”) is compared with the
database compiled by Willems et al. (2014) (aka “landscape”) as a
whole (differently form Sections 3.1 and 3.3 were just the clinical
relevant loci were analyzed). The main differences among the
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FIGURE 10 | Number of detected TR polymorphisms classified as expansions (abscissa positive range) or contractions (abscissa negative range) and per difference

in repeating units with respect to the same locus in the reference genome.

two approaches were those arising from the number of genomes
used to assess the polymorphic nature of a TR: 5 assembled
genomes (census) vs. raw reads from the 1000 Genomes Project
(landscape); and from the variety of TR detection methods
used: four methods (census) vs. one (landscape). The phase
of TR candidate detection and the phase of polymorphism
measurement were analyzed separately.

The landscape reports on TR and PTR over the whole
genome (including intergenic regions), while the census focuses
on regions of interest around each gene (genic regions). In order
to have a meaningful comparison, the landscape items were
restricted to those that intersect genic regions.

Since the same TRmay not have the exact same representation
in both catalogs, some slackness was allowed in the identification
procedure. A TR was represented by the set of base positions
it covers, and two TR were considered to be matching when
their Jaccard coefficient was above a threshold value j, for j =

1.0, 0.9, 0.7 and 0.5 (j = 1.0 corresponds to perfect identity).
Since a TR in one catalog could match zero, one or more TR in
the other catalog, the number of TR in one catalog with zero (no
overlap), ormore than zero (overlap)matches in the other catalog
was considered, alternating census and landscape as source and
target collection.

3.8.1. TR Detection Phase
The initial listing of TR is derived for both catalogs from
the reference genome (GRCh38 for the census, hg19 for the
landscape converted via liftOver mapping) by applying TRF
(landscape), or TRF with 3 other methods (census). See the
Supplementary Materials—Appendix D for details on parameter
setting and output merge operations. Thus, we expect that
(almost) all TR in the landscape match a TR in the census,
within the genic regions. This was indeed verified in our data (see

TABLE 3 | Correlation analysis of PTR number of repeat units and SNP density.

Region Spearman’s ρ p-value

3′-utr 0.104 4.56E-10

3′-upstream 0.104 3.34E-16

5′-utr 0.088 4.74E-06

5′-dowstream 0.106 2.50E-20

Pseudogenes 0.095 1.28E-16

Intronic 0.094 <1.00E-63

lncRNA 0.087 1.22E-47

Long intergenic RNA 0.123 9.53E-26

Figure 11D), where for j = 0.7 about 99.5% of the landscape TR
are also in the census. Figures 11B,C are almost identical. This
indicates, as it was expected, that the TR in the landscape with a
matching in the census are those found by applying TRF (in the
census).

The census list of TR is obtained using three additional tools
besides TRF, thus it was expected that many TR in the census
are not present in the landscape (which has an emphasis on
STR), where this difference may be attributed to our multi-tool
approach, and to the lack of restriction in motif size. Indeed,
Figure 11A shows that even with the slackness parameter j = 0.5
the vast majority of the TR in the census is not represented in the
landscape.

If the effect of the additional 3 tools was remove and the
class of TR found by only TRF (with similar parameters) was
considered in both catalogs, the only remaining difference was in
the motif size restriction, since the landscape focusses on the class
of STR, while the census removes any size restriction. Figure 11C
shows that (for slackness j = 0.5) there are many more items
(almost double) in the census not reported in the landscape.
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FIGURE 11 | Differences in detecting candidate TR between census and landscape. In abscissa: different thresholds for the Jaccard matching formula. (A) All TR —

Detection method for census: All Algorithms. Overlap = census items present in the landscape . No Overlap = census items not present in the landscape. (B) All TR

— Detection method for census: All Algorithms — Overlap = landscape items present in census, No Overlap = landscape items not present in census. (C) All TR —

Detection method for census: TRF Only — Overlap = census items present in the landscape , No Overlap = census items not present in the landscape. (D) All TR —

Detection method for census: TRF only — Overlap = landscape items present in census, No Overlap = landscape items not present in census.

3.8.2. Polymorphism Measurement Phase
For measuring polymorphism, the census and the landscape
use two different methods: an ad hoc procedure (see section
Methods) and lobSTR; but, even more importantly, they differ in
the data used as basis for the measurement. The landscape uses
raw reads data from phase 1 of the 1000 Genomes Project, thus
it is able to measure not only presence/absence of polymorphism
but also to give an estimate of the distribution of the TR size for
each locus. However, since the raw data are made of relatively
short reads (76–100 bps) there are limitations on the TR that can
be analyzed in terms of motif size and total size.

When the comparison was limited to those TR detected by
TRF in the census and in the landscape, Figure 12C shows
that (for slackness 0.9) the number of new polymorphic sites
discovered in the census is about 55,000 while the number of
polymorphic sites that were already certified as such in the
landscape catalog is about 60,000. The additional number of
55,000 items can be attributed the extension in the range of
accepted motif size.

The effect due to the larger pool of genomes from the 1000
Genomes Project (restricting to the TRF tool), was measured

in Figure 12D where a ratio of 5:1 was found in favor of the
landscape. Since the ratio of genomes is about 200 to 1 (1,009
vs. 5) the reduction in measurement power suffered by the
census was less severe than what one could expect just based on
proportions.

When also the TR found by the additional tools were
considered within the census framework, Figure 12A shows that
the ratio of new PTR (not registered in the landscape) to those
that are confirmed polymorphic also in the landscape data is
about 2.5 to 1. In particular (at threshold j = 0.5) about 250,000
new PTR were listed in the census. Figure 12B shows that (at
threshold j = 0.5) about 250,000 were also missed in the census
(due to the smaller number of genomes used).

3.9. Enrichment Analysis of Gene Ontology
Classes
An enrichment analysis of the ratio of the number of
PTR over the number of all TR for each of the GO
categories has been done. The aim was to identify those GO
categories with a statistically relevant association to a higher
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FIGURE 12 | Differences in detecting PTR between census and landscape. In abscissa: different thresholds for the Jaccard matching formula. (A) PTR — Detection

method for census: All Algorithms — Overlap = census items present in the landscape , No Overlap = census items not present in the landscape. (B) PTR —

Detection method for census: All Algorithms — Overlap = landscape items present in census, No Overlap = landscape items not present in census . (C) PTR —

Detection method for census: TRF Only — Overlap = census items present in the landscape , No Overlap = census items not present in the landscape. (D) PTR —

Detection method for census: TRF only — Overlap = landscape items present in census, No Overlap = landscape items not present in census.

rate of TR polymorphism (see Supplementary Tables). By
direct inspection of the top 10 positions by the Benjamini-
Hochberg BH ranking, six proteins were identified, for which
PTR have functional implications, or whose association to
phenotypes is statistically significant, as reported in previous
studies.

MUC4 (GO:0030197, extracellular matrix constituent,
lubricant activity) p-val: 4.86135E-24, BH = 2.00287E-21 , Bonf.
= 2.00287E-21 , fold change = 5.56. The gene MUC4 (Human
mucin) was reported to be highly polymorphic, harboring
numerous TR and presenting a VNTR polymorphism (Nollet
et al., 1998), which might contribute to the tumorigenicity in
pancreatic cancer cells (Moniaux et al., 2007).

SERPINE1 (GO:0035491, positive regulation of leukotriene
production involved in inflammatory response) p-val =

5.98569E-17, BH = 8.22034E-15, Bonf. = 2.4661E-14, fold
change = 9.27. The gene SERPINE1 has been investigated
by Ju et al. (2010) to determine whether SERPINE1 intron
polymorphism could affect gene expression and could be
associated with diffuse-type gastric cancer susceptibility. One of
the polymorphism analyzed was a VNTR and it was found to
affect the gene expression levels, though it did not contribute to
susceptibility.

TERT (GO:0032774, RNA biosynthetic process) p-val =

8.36294E-12, BH = 2.29702E-10, Bonf. = 3.44553E-09, fold
change = 4.55. Concetti et al. (2013) reported that a functional
VNTR of the Telomerase (TERT) gene was associated with
human longevity in a population of 1,072 unrelated healthy
individuals from Central Italy (18–106 years old). Jin et al.
(2011) studied the impact of a functional minisatellite (MNS16A)
polymorphism in the telomerase reverse transcriptase (TERT)
gene on the risk of lung cancer, and on survival of patients with
non-small-cell lung cancer (NSCLC), in a case/control study that
consisted of 937 lung cancer patients and 943 healthy controls.
This study suggested that the MNS16A VNTR polymorphism in
the TERT gene has dual, conflicting, roles in lung carcinogenesis.
This polymorphism might increase the risk of lung cancer
development, and might also improve survival in lung cancer
patients.

FAM20C (GO:0036179, osteoclast maturation ) p-val =

9.22663E-10, BH = 2.2361E-08, Bonf. = 3.80137E-07, fold
change = 3.57. Simpson et al. (2007) studied the association
of lethal osteosclerotic bone dysplasia (Raine syndrome) with
polymorphisms of FAM20C. A VNTR spanning an intron-
exon junction of FAM20C was indicated as affecting alternative
splicing.
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ZP3 (GO:0001809 positive regulation of type IV
hypersensitivity) p-val = 5.59237E-09, BH = 1.09717E-07,
Bonf. = 2.30406E-06, fold change = 3.84. Chimerism analysis
after allogeneic bone marrow transplantation (alloBMT) allows
detection of early marrow engraftment, disease relapse, and graft
rejection (Sreenan et al., 1997). Amongst other, the VNTR loci of
ZP3 have been used as biomarkers of chimerism (Kletzel et al.,
2013).

CD4 (GO:0006948 , induction by virus of host cell-cell fusion)
p-value = 8.49649E-09, BH = 1.53019E-07, Bonf. = 3.50055E-
06, Fold change = 4.08. Salmon et al. (1993) found evidence
for linkage and association between a CD4 promoter VNTR
polymorphism and Type 1 diabetes mellitus (T1DM) in Danish
T1DM families.

4. DISCUSSION

The study of PTR (including STR and VNTR) in the human
genome is gaining popularity because of several converging
trends. On the one hand, more and more PTR are discovered
to be associated (even causatively) with diseases (e.g., the
class of repeat expansion diseases) including cancer. On the
other hand, high throughput sequencing technologies are
becoming instrumental in the task of measuring accurately
PTR in individuals and populations, with steady technological
improvements. In this context, well designed and robust catalogs
of human PTR are facilitators of future disease association studies
and may give insight to the global space of PTR in the human
genome.

Our approach uses as input human genome assemblies and
thus can be considered as a natural extension of the approach
proposed by Payseur et al. (2011), that uses only one TR detection
tool on the reference genome and one additional assembled
genome to measure TR expansion/contraction, after positioning
of the flanking regions. In the first part of the pipeline, we use
four tools to uncover candidate TR in the reference genome
(GRCh38), and wemerge their outcome to produce an integrated
candidate TR list. The use of multiple tools is novel as previous
methods use only one method (mostly TRF) (Payseur et al.,
2011; Gelfand et al., 2014; Willems et al., 2014). While it is
not one of the purposes of our study to determine whether
any single method is globally or locally superior to another,
we rely on several comparative studies in the literature (e.g.,
Boeva et al., 2006; Leclercq et al., 2007; Pellegrini et al., 2010)
showing, through in silico experimental evidence, that different
tools uncover different TR loci, even when the comparison takes
parameter setting and partial TR overlap into consideration. The
second part of the pipeline is based on applications of (variants
of) the classical Needleman–Wunsch alignment algorithm to
measure polymorphism in five target assembled genomes after
flanking region placement. This second part of the pipeline also
acts as a quality filter for the list of TR, independently of the
discovery tool, since a locus cannot be labeled as a high (or
medium) quality PTR unless the corresponding candidate TR is
also of high (medium) quality to start with (in this context, we
assess alignment-based quality).

In the second part of the pipeline we identify all the TR lying
on a RefSeq transcript onto five target genomes. Matching the
GRCh38 transcript and the corresponding one in a target genome
is done either using the NCBI remapping service (if available) or
leveraging on a blast-like tool that aligns the GRCh38 sequence
on the target genome. Subsequently, the flanking regions of
TR are located by means of blast+ software and the sequence
between them is indicated as the target TR.

A local alignment-based approach is used to assess the real
presence of the TR between the flanking regions and its possible
expansion/contraction.

Despite conceptually similar to that in Payseur et al. (2011),
extending the above procedure to five genomes (instead of one)
contributes significantly to the identification of polymorphism.

As a first release, we limited our census to the genic regions
enlarged with fixed size upstream and downstream extensions
since they are known to have functional roles that are likely
influenced by variations in the PTR loci.

The catalog of Willems et al. (2014) is aimed at STR by
using TRF on GRCh38 to define a list of candidate TR, and
by applying lobSTR to the 1000 Genomes Project read data
(Illumina technology), to determine polymorphism. The method
of Gelfand et al. (2014) aims at discovering VNTR by applying
TRF to the reference genome to define a list of candidate TR, and
by applying VNTRseek to collections of reads [two trios from the
1000 Genomes Project read data (Illumina) and the Watson and
Khoisan data (Roche 454 technology)], although a final catalog of
VNTR is not produced. Our approach bypasses limitations due to
the constraint of NGS technologies read length, and covers both
STR and VNTR at the same time, by using assembled genomes
as main input. The main limitation of our approach is due to
the fact that there are relatively few assembled genomes in the
public domain (but numbers are slowly increasing) compared
to individuals sequenced with NGS. In this paper we describe a
methodology and we present the final result: a catalog of 373,173
PTR in genic regions of the human genome.

As our method accepts assembled genomes as input, while
lobSTR takes as input collections of reads, a validation by
direct comparison of the output of the two methods on the
same (digital) input is, methodologically, not well grounded.
Thus we resorted to a validation via an indirect approach,
cross-referencing our census with existing catalogs. We checked
whether any individual sequenced in the 1000 Genome Project
and in the Simon Genome Diversity Project exhibit the same
polymorphism that is present in the five assembled genome
we employed. We focus our analysis on the disease-oriented
loci, since their polymorphic nature has been independently
confirmed in literature. Sufficient comparative data were present
for 26 pairs locus/polymorphism and for each such pair we could
find one or more individuals in the 1KGP data set or in the SGDP
data set holding the same polymorphic expansion/contraction as
the one measured in the census, or within 1bp difference. Overall
this test confirms the consistency of the output of our method, at
a population level.

We considered several distributions of features of PTR in our
catalog following the schemata of similar measures presented
in the work of Payseur et al. (2011). The main purpose of
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these measurements is to assess whether the use of five target
genomes (vs. one), the use of four tools used for candidate TR
detection, and the removal of unit size restrictions (vs. focus on
microsatellites) alter or confirm previous (qualitative) properties
of the genomic portrait of TR variations. Overall these measures
confirm previous findings, and do not reveal any odd bias in our
data set.

The mean number of PTR detected per Mbp is rather uniform
across the chromosomes, as it was expected. Short PTR are more
abundant than long PTR, and that PTR with short repeating unit
size are more abundant than those with long repeating unit size
(with the notable exception of size 4 bps that is more abundant
than size 3 bps).

We replicate a data analysis of Payseur et al. (2011) on the
relationship between variability of loci, motif size, and number
of repeating units (in the reference genome). Our analysis was
performed in comparison with Payseur et al. (2011) with two
objectives. This first one was to assess whether the loci reported in
the census would suffer any bias, or inconsistency at a statistical
level, due to the application of a novel construction pipeline. The
second aim was to assess whether the trends reported by Payseur
et al. for STR (Payseur et al., 2011), would be confirmed also for
the class of VNTR present in the census. Although generally we
measured a lower proportion of variable loci in each category,
due to the abundance of candidates, the shape of our distributions
are very similar to those in Payseur et al. (2011) and the same
observations reported in Payseur et al. (2011) can be drawn from
our data. Also, the distributions of the ratio PTR/TR are very
smooth and do not present evident outliers, thus supporting
our claim of robustness of the computational pipeline. Further
analyses are also possible, for example Payseur et al. (2011)
consider also the relative frequency of specific motif strings (of
size from 2 to 6). In our case there are technical difficulties that
make such analysis less cogent. As fuzzier PTR and motif of
bigger size are considered, the very notion of a consensus motif
become problematic (for example, a consensus string may be
completely absent from the actual genomic sequence), moreover,
as the number of possible strings increases exponentially with the
motif size, for most classes the associated frequency quickly drops
below the limit of statistical significance.

We analyze the differences in the ratio of the number of
PTR over the number of candidate TR in sub-regions. Though
qualitatively the relative ranking of the functional regions is
similar to that noticed in Payseur et al. (2011; Figure 2), only
for coding regions the value of the ratio is also roughly equal.
In general in our data the ratio PTR/TR is lower than the
corresponding ratio measured in Payseur et al. (2011). This
is probably due to the fact that the larger pool of fuzzy TR
candidates comes with diminishing returns (a smaller fraction
of these candidates do result in a polymorphic behavior). This
fact has been observed also by Willems et al. (2014) in the
context of STR (“Shorter repeat motif, longer major allele, higher
purity of the repeat motif, and residing outside of a coding
region are all associated with an increase in STR variability”). We
show the distribution of variations (in terms of the difference in
the number of repeating units): this result is qualitatively very
consistent with that reported by Payseur et al. (2011; Figure 3)

and by (Willems et al., 2014, Figure 5A). The reported values
of Spearman’s ρ correlation coefficient between SNP and PTR
density is in the range roughly from 0.08 to 0.10, with p-values
less than 10−10. Thus overall the census has properties, in relation
to SNP, in line with those observed in Payseur et al. (2011).

The Gene Ontology Consortium (www.geneontology.org)
provides an extensive curated database of associations between
genes and functional classes, for example via the “Biological
Process” ontology. Thus a natural question to ask is whether a
functional class (or a gene within a given functional annotation)
that has a statistical significant larger ratio PTR/TR harbors
abnormal expansion/contractions of TR having functional
implications. This information might be used for example in
order to prioritize list of genes for which further tests are
scheduled when there is a hint that a malfunction may be linked
to a TR expansion/contractions. For a significant threshold of
0.01 we have found 412 significant GO-classes according to the
Benjamini-Hochberg corrected FDR (76 with the more stringent
Bonferroni correction). We have ranked such functional classes
by FDR value, and we have tested the top 10 genes contributing
to the top classes in the ranking. Interestingly for six of these ten
genes we could find results in literature confirming the presence
of at least one PTRwith a functional implication (in a wide sense).
This analysis confirms on the other hand that the statistical
enrichment of the ratio PTR/TR may be a sensible strategy for
giving a priority to candidate genes in the context of detecting
and validating PTR in functional studies.

Using as benchmark the list of 37 disease-related PTR, 18 loci
are present in both the landscape and the census, 11 loci are
reported only in the landscape, and 5 are listed only in the census.
Uniting the two catalogs 34 (out of 37) loci are represented. An
in-depth analysis of the 5 loci represented only in the census
shows that these TR are often polymorphic in the SGDP data.
Since the computational pipeline used in the landscape is the
same of that applied to SGDP, such different behavior may be
due to a the fact that SGDP data is derived from higher coverage
NGS sequencing (raw data is provided in the Supplementary
Materials).

Overall, fixing a Jaccard threshold to 0.5, about 100,000 PTR
are present in both catalogs, about 250,000 PTR are reported
only in the landscape, and about 250,000 PTR are listed only in
the census. This final outcome is certainly due to several factors
(number of genomes used, quality of the input data, limitations
either intrinsic or imposed on the TR detection tools). From a
more general point of view, both catalogs are equivalent in terms
of raw numbers, when restricted to genic regions. Neither of them
is complete over the whole range of PTR (including STR as well
as VNTR).

One limitation of focussing on genic regions w.r.t genome-
wise catalogs is that we may not report interesting PTR in inter-
genic regions, having an influence on yet unknown lncRNA
genes hidden in such inter-genic sequences. An extensions of
our approach to handling the whole genome is planned as future
research. For an exploratory applications that operates on the
full spectrum of PTR, a union of the census and the landscape
catalogs gives the largest set of PTR loci within human genic
regions, up to date.

Frontiers in Genetics | www.frontiersin.org 18 May 2018 | Volume 9 | Article 155

www.geneontology.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Genovese et al. Human Polymorphic Tandem Repeat Catalog

Although, by construction, the census is rich in long PTR of
size above 100 bps (in GRCh38), it is not clear that these loci
can be analyzed (e.g., by lobSTR or other similar tools) when
the DNA samples are sequenced with standard Illumina NGS
technology, that is characterized by a read size of a few hundred
bps. The importance of the long PTR listed in the census over a
longer time-frame rests on the fact that new technologies such
as PacBio (Rhoads and Au, 2015), Nanopore (Magi et al., 2016)
and other recently developed Single Molecule Real Time (SMRT)
technologies have been found to be reliable for hard-to-sequence
TR (Loomis et al., 2013; Carlson et al., 2015; McFarland et al.,
2015; Liu et al., 2017) and produce much longer reads than
standard NGS sequencing technologies.

Catalogs of human PTR (in particular the class of STR) are
routinely used as supporting data by tools (such as lobSTR,
VTNRseek, Revister) discovering PTR in collection of reads from
NGS sequencing. Thus having at disposal a pool of PTR catalogs
with different characteristics is a key step toward more successful
exploratory association studies. Our census catalog is a valuable
addition to the existing ones and is available in the public domain
for the research community.

To summarize, the strong features of our catalog are: (a)
inclusion of fuzzy and long PTR, with motif size beyond the size
range of STR, (b) focus on gene regions, where PTR are more
likely to have functional implications, and (c) about 250,000 new
PTR not present in previous catalogs.

AVAILABILITY OF DATA AND MATERIAL

The catalog, auxiliary data, and code are available at: http://
bioalgo.iit.cnr.it/census. The catalog is given as a collection of tab
separated text files (suitable for uploading and manipulations in
standard sw pipelines). A file format description is provided at
the above web site. The catalog data is also available as a UCSC
Genome Browser Custom Track Annotation (https://genome.
ucsc.edu/).
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