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Pathogenic variants in known breast cancer (BC) predisposing genes explain only about

30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors

for most families remain unknown. Here, we used whole-exome sequencing (WES) to

identify genetic variants associated to HBC in 17 patients of Brazil with familial BC

and negative for causal variants in major BC risk genes (BRCA1/2, TP53, and CHEK2

c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified

two patients harboring truncating pathogenic variants in ATM and BARD1. For the

remaining 15 negative patients, we found a substantial vast number of rare genetic

variants. Thus, for selecting themost promising variants we used functional-based variant

prioritization, followed by NGS validation, analysis in a control group, cosegregation

analysis in one family and comparison with previous WES studies, shrinking our list

to 23 novel BC candidate genes, which were evaluated in an independent cohort of

42 high-risk BC patients. Rare and possibly damaging variants were identified in 12

candidate genes in this cohort, including variants in DNA repair genes (ERCC1 and SXL4)

and other cancer-related genes (NOTCH2, ERBB2, MST1R, and RAF1). Overall, this is

the first WES study applied for identifying novel genes associated to HBC in Brazilian

patients, in which we provide a set of putative BC predisposing genes. We also underpin

the value of using WES for assessing the complex landscape of HBC susceptibility,

especially in less characterized populations.
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INTRODUCTION

Hereditary breast cancer (HBC) corresponds to ∼5–10% of
all breast cancer cases (Honrado et al., 2005). The most
common breast cancer predisposing syndrome is hereditary
breast and ovarian cancer syndrome (HBOC) that is related
to pathogenic germline variants in BRCA1 (OMIM 113705)
and BRCA2 (OMIM 600185) genes (Anglian Breast Cancer
Study, 2000). These genes correspond to ∼20–25% of all HBC
(Anglian Breast Cancer Study, 2000; Kean, 2014; Silva et al.,
2014). Besides BRCA1/2 genes, pathogenic variants in other
high- and moderate-risk genes, such as TP53, CHEK2, ATM,
STK11, PALB2, among others, also lead to an increased breast
cancer (BC) risk, revealing a high complexity in breast cancer
predisposition (Elledge and Allred, 1998; Meijers-Heijboer et al.,
2002; Walsh and King, 2007).

To date, over 35 genes have been suggested to carry high
and/or moderate BC risk variants (OMIM, 20151; Shiovitz and
Korde, 2015). However, only a minority of these genes have
an established significant association demonstrated by both
stringent burden testing and statistical analyses (Easton et al.,
2015). Moreover, despite extensive sequencing efforts, variants in
known BC susceptibility genes are present in < 30% of BC cases
with positive family history or an early age of onset (Shiovitz and
Korde, 2015; Chandler et al., 2016), meaning that the underlying
genetic factors for most HBC remain unknown.

In the past few years, advances in next-generation sequencing
(NGS), specially whole-exome sequencing (WES), have led to
the identification of causative variants in several rare familial
syndromes, including hereditary cancer (Comino-Méndez et al.,
2011; Seguí et al., 2015). Up to the present time, more than 16
different WES studies (both family-based and case studies) have
been carried out for HBC, and a few novel BC susceptibility
genes were identified: XRCC2, RINT1, RECQL, and FANCM
(Chandler et al., 2016). Nevertheless, the small number of novel
major BC autosomal dominant predisposing genes disclosed
in these studies has pointed to the possible existence of very
rare, or even particular, high and moderate penetrant variants.
Conversely, other forms of inheritance, such as recessive and
oligogenic transmission of cancer predisposition, cannot be
discarded (Sokolenko et al., 2015). In this sense, further WES
investigation in different families or populations is crucial for
expanding the catalog of breast tumor predisposing genes.

In two previous studies of our group, we screened young
BC women (Carraro et al., 2013) and women with clinical
criteria of HBOC (Silva et al., 2014) for pathogenic variants in
the complete coding sequence of BRCA1, BRCA2, and TP53
genes, and for CHEK2 c.1100delC point mutation, detecting
22–26% of pathogenic variant carriers. Both studies disclosed
a large number of women negative for pathogenic variants in
the most important genes associated with BC risk, claiming for
the necessity of identifying rare and/or novel BC predisposing
genes. Thus, the aim of the current study was to investigate, by
WES, breast cancer patients with clinical criteria for HBOC and

1Online Mendelian Inheritance in Man, OMIM R©. McKusick-Nathans Institute
of Genetic Medicine, Johns Hopkins University (Baltimore, MD), 2018. Available
online at: https://omim.org/

without pathogenic variants in major breast cancer predisposing
genes, using rigorous functional criteria for selection of detected
variants, in order to identify the most promising new HBC-
causing genes.

MATERIALS AND METHODS

Patients and Controls
WES was performed in 17 patients from A.C. Camargo Cancer
Center (15 unrelated patients and two siblings) diagnosed with
BC and fulfilling one or more of the following criteria of HBOC
syndrome: early onset BC (<36 years); bilateral BC; breast plus
another primary related tumor (ovary, fallopian tube or primary
peritoneal tumors). These patients were selected from previous
studies (Carraro et al., 2013; Silva et al., 2014) from our group
and were negative for pathogenic variants in BRCA1/2, TP53,
and CHEK2 c.1100delC. Two patients (including the two sisters)
were carriers of variants of uncertain clinical significance (VUS)
in BRCA1 gene. The detailed inclusion criteria from both studies
were described previously (Carraro et al., 2013; Silva et al.,
2014). One affected woman of one family participated in the
cosegregation study for specific candidate variants.

Five germline BRCA1-mutation carriers that were submitted
to WES in the same platform were included for variant
filtering. For validation of selected variants, target NGS validation
was applied in 25 healthy women without family history
of cancer, considered here as a control group. Additionally,
a selected number of candidate genes were screened in an
independent group of 42 patients at risk for HBC from a distinct
project, obtained from Barretos Cancer Hospital (Barretos, São
Paulo, Brazil). Figure 1 depicts the study design and workflow,
describing the projects steps and the analysis performed in each
patients and controls groups.

All participants signed an informed consent. This study was
performed in accordance with the Helsinki Declaration and was
approved by the A.C. Camargo Cancer Center (1754/13) and
Barretos Hospital (916/2015) ethics committees.

DNA Isolation
Genomic DNA was obtained from A.C. Camargo Cancer Center
Biobank. In brief, DNA was extracted from peripheral leukocytes
by Puregene R©-DNA purification Kit (Qiagen, Hilden, Germany),
according to manufacturer’s instructions. DNA concentration,
purity and integrity were assessed by spectrophotometry
(Nanodrop 2000—Thermo Fisher Scientific, Waltham, MA) and
fluorometry (Qubit—Life Technologies, Foster City, CA, USA).

Whole Exome Sequencing
For the 17 patients of the discovery set, WES was performed
using the SOLiD and/or Ion Proton platforms. For SOLiD
exomes, libraries were prepared using SOLiDTM Fragment
Library Barcoding Kit (Life Technologies) and SureSelect Human
All Exon V4 Kit 50Mb (Agilent Technologies), according
to the manufacturer’s instructions. Sequencing of paired-end
libraries (50 X 75 bp) was performed in a Solid 5500XL
System (Life Technologies). For Ion Proton exomes, libraries
were prepared using Ion XpressTM Plus Fragment Library Kit
and Ion TargetSeqTM Exome Kit (Thermo Fisher Scientific),
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FIGURE 1 | Variants selection workflow. WES data from 17 breast cancer patients were analyzed using quality, frequency, and functional based filters, resulting in 186

breast cancer predisposing candidate genes. A final 23 candidate genes were entirely investigated for LOF or possibly pathogenic variants in 42 additional BC

patients suspected of HBC and negative for mutations in the major predisposing genes, resulting in 12 final HBC candidate genes. FS, FisherStrand; QD,

QualByDepth; PPV, probably pathogenic variant; PV, pathogenic variant; HBOC, Hereditary Breast and Ovarian Cancer; LOF, loss of function; SA, segregation

analysis; WES, whole exome sequencing.

according to the manufacturer’s instructions. Each Ion Proton
exome library was sequenced on Ion Proton instrument using
Ion PI Sequencing 200 Kit v3 and Ion PI Chip v3 (Thermo
Fisher Scientific). The resulting sequences were mapped to the
reference genome (GRCh37/hg19). Base Calling and alignment
were performed by SOLiDTM BioScope 1.2TM Software (Life
Technologies) (SOLID data) and by Torrent Suite v4.2 server
(Ion Proton data). Variant calling and annotation were done by
GATK (Genome Analysis Toolkit) pipeline made available by the
Broad Institute. The data obtained in this study is available at
Sequence Read Archive (SRP120031).

Variants Selection and Prioritization
For variant filtering, identified variants were annotated with
VarSeq (Golden Helix) against reference databases (RefSeq,
1000Genomes, ESP6500, ExAC, dbSNP, and ClinVar). First, for
quality filtering, we selected variants with QD > 2 (QD= variant
call confidence normalized by depth of sample reads supporting
a variant), FS < 6 (FS = strand bias estimated by GATK using
Fisher’s Exact Test), base coverage≥ 10x, variant allele frequency
(VAF)> 0.25. For four patients with data from both Solid and Ion
Proton, only variants detected in both platforms were selected.
For one patient with data exclusively from Ion Proton, variants
occurring in regions of homopolymer > 4 bases were excluded.

Qualified variants were excluded if present in five BRCA1-
mutation carriers patients analyzed by WES in Solid 5500, and
variants present in population databases with frequency > 1%
(minor allele frequency [MAF]> 0.01), as well as variants present
in more than three unrelated patients. Finally, a recently public
available Brazilian database of WES from 609 healthy individuals
(Abraom—Brazilian genomic variants; http://abraom.ib.usp.br/)
was also used formanually excluding population-specific variants
(MAF > 0.01).

Next, for a function-based prioritization, we selected variants
leading to loss of function in any gene (frameshift indels,
stop codon, and canonical splice site variants) and missense
or in-frame indels variants in 832 genes of interest. These
genes were selected from commercial panels targeting somatic
and germline cancer mutated genes, consensus cancer genes
previously described (Futreal et al., 2004) and genes from
DNA repair pathways (from KEGG and Putnam et al., 2016)
(Supplementary Table 1). For the two related patients, any
shared missense or in-frame indels variants in these 832 genes
were selected. For the 15 unrelated patients, we selected only
variants predicted to be damaging in at least four out of
six variant effect prediction software. For these analyses, the
results from the following tools were obtained using VarSeq:
SIFT, Polyphen v2, Functional Analysis through Hidden Markov
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Models (FATHAMM and FATHAMM-MKL), MutationAssessor
and MutationTaster. Additionally, we analyzed the potential
effect on splicing of the selected LOF and missense variants using
dbscSNV annotations (cut-off > 0.6 in ADA and/or RF scores).

Sanger Validation
Two pathogenic variants (PV) or probably pathogenic variants
(PPV) in BARD1 and ATM were validated by Sanger sequencing.
Briefly, 50 ng of leukocyte DNAwas submitted to PCR performed
with GoTaq GreenMaster Mix (Promega), cleaned with ExoSAP-
IT (USB Corporation) and sequenced in both directions with
BigDye Terminator v3.1 (Life Technologies) using an ABI 3130xl
DNA sequencer (Life Technologies), according to manufacturer’s
instructions. The sequencing results were aligned using CLCBio
Genomics Workbench Software (CLCBio, Qiagen). Primer
sequences are available under request.

Targeted NGS Validation
A subset of 139 variants (Supplementary Table 2) selected from
exome data were validated by multiplex targeted NGS using a
custom Ion AmpliSeq panel. Primers were designed using Ion
AmpliSeq Designer v3.0.1 (Life Technologies). Libraries were
prepared with 20 ng of DNA from each patient using Ion
AmpliSeqTM Library Kit 2.0 (Life Technologies). Sequencing
was performed using either Ion PGM or Ion Proton platforms,
according to the manufacturer’s instructions. Sequencing reads
mapped to the human genome reference (hg19) using Torrent
Suite Browser 4.0.1. On average 166,697 mapped reads were
obtained per sample, yielding a mean targeted base coverage of
156X (ranging from 54 to 450). Variants were identified using
the VariantCaller v4.0.r73742 plugin and confirmed using CLC
Genomics Workbench software (Qiagen). The identified variants
were considered if base coverage was ≥10x and VAF > 25%.

To filter out genetic variants common in Brazilian population,
the validated variants were evaluated in control group of 25
healthy women by using the same panel. For that, pools of five
equimolar genomic DNA samples were prepared by containing 4
ng of each patient (five patients per pool). Libraries preparation,
sequencing and mapping were performed as described above. On
average 928,194 mapped reads were obtained per pool (mean
targeted base coverage 1114X; ranging from 990 to 1,314).
Variant calls were obtained using the VariantCaller v4.0.r73742
plugin applying the following filter parameters: VAF > 2%;
variant coverage ≥10X.

Cosegregation Analysis
For one family in which a segregation analysis was feasible,
DNA from one additional affected individual was obtained. The
cosegregation study of specific variants was performed using the
same custom gene panel and protocol described previously or
with amplicon based library construction and sequencing in Ion
Proton platform.

Independent Cohort Validation
For screening the HBC predisposing candidate genes selected in
this study an independent cohort comprised of 42 breast cancer
patients at risk for HBC from Barretos Cancer Hospital was used.

These samples were analyzed through WES in a parallel study
using Nextera Rapid Capture Expanded Exome and NextSeq 500
System (Illumina, San Diego, CA). In these data, we assessed the
entire coding regions of the 23 genes disclosed in this study for
the presence of rare and possibly pathogenic variants, using the
same criteria as in our discovery cohort.

RESULTS

In this study we used WES to disclose variants contributing to
BC increased risk in patients fulfilling stringent clinical criteria
indicating a genetic predisposition to BC and that were negative
for pathogenic variants in four major BC genes (BRCA1/2,
TP53, and CHEK2 1100delC). The clinical features and family
history of cancer for the 17 selected patients are described in
Supplementary Table 3.

For the WES, an average of 46,307,427 sequence reads was
obtained for each patient and 75.7% (average) of the target bases
were covered by 10 or more reads (Supplementary Table 4).
More than 200,000 variants were identified in these patients.
To prioritize the identified variants, we applied several filters
focusing on quality, frequency and function of the identified
alterations. The workflow of the variant prioritization is depicted
in Figure 1 and the details of used filters are described in the
Materials and Methods section.

Regarding frequency filters, we excluded variants with aminor
allele frequency (MAF) >1% in public databases or those present
in five germline BRCA1-mutation carriers sequenced in our
facility, assuming that these variants represent benign or low-
penetrance variants. Following these initial data filtering, 25,412
were identified.

Variants in Moderated and High
Penetrance Breast Cancer Genes
Initially, we used WES data to search for rare variants in 27
well-established and emerging HBC predisposing genes (the
four previously evaluated genes (BRCA1/2, TP53, and CHEK2
c.1100delC) and 23 additional genes): ATM, BARD1, BLM,
BRCA1, BRCA2, BRIP1, CDH1, CHEK2, FANCC, FANCM,
MLH1, MSH2, MUTYH, NBN, NF1, PALB2, PMS2, PTEN,
RAD51C, RAD51D, STK11, TP53, FAM175A, MRE11, RAD51B,
RECQL, and RINT1 (Nielsen et al., 2016). In this analysis,
we identified two patients harboring frameshift indel variants
(one in ATM and one in BARD1) and five patients (including
the two sisters) with variants of uncertain clinical significance
(VUS) (Table 1). In three patients (MJ2037 and MJ2007/2012)
we confirmed the BRCA1 VUS previously detected by Sanger
sequencing. All variants detected in these genes were classified
according to the ACMG guidelines (Richards et al., 2015).

The ATM p.(Tyr2334Glnfs∗4) variant is described as
pathogenic in ClinVar database. The BARD1 p.(Tyr739Leufs∗2)
is not described in any database and was classified as probably
pathogenic, since it is a rare truncating variant leading to partial
loss of the second BRCT domain and the phosphobinding
region. These two variants were confirmed by Sanger sequencing
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TABLE 1 | Pathogenic and VUS detected in 27 known HBC genes.

Patient Gene HGVS

nomenclature

N of 6

Damaging

dbSNP MAF (ExAC/

Abraom)

Clinical significance

(ClinVar)

Clinical significance

(ACMG)

SM001.049 ATM c.7000_7003delTACA;

p.(Tyr2334Glnfs*4)

– rs786203421 ND/ND Pathogenic Pathogenic

MJ1007 BARD1 c.2215dupT;

p.(Tyr739Leufs*2)

– ND ND/ND ND Probably Pathogenic

MJ2003 RINT1 c.961T>A;

p.(Phe321Ile)

5 of 6 ND ND/ND ND VUS

MJ2001 RAD51B c.728A>G;

p.(Lys243Arg)

4 of 6 rs34594234 0.007/0.005 ND VUS

MJ2037 BRCA1 c.5006C>T

p.(Ala1669Val)

5 of 6 ND ND/ND ND VUS

MJ2007/2012# BRCA1 c.4963T>C;

p.(Ser1655Pro)

6 of 6 ND ND/ND ND VUS

#Sisters; N of 6 Damaging: predictions considered as damaging in 6 pathogenicity predicting software; MAF, minor allele frequency; ND, not described; VUS, variant of unknown clinical

significance. RefSeq reference number of transcripts are described at Supplementary Table 2.

in the proband and, for ATM, also in one affected relative
(Supplementary Figure 1).

Four rare missense variants identified in our patients were
classified as probably damaging by at least four prediction
software, and three of them are not described in any population
database. Three of them are located in recognized functional
domains of the affected proteins: BRCA1 p.Ala1699Val and
p.Ser1655Pro are located at the C-terminal BRCT domain,
responsible for BRCA1 interaction with others DNA repair
proteins and RINT1 p.Phe321Ile is located at the functional
TIP20 domain.

Candidate Selection for Novel Breast
Cancer Predisposing Genes
Next, for the 15 patients without any probable pathogenic variant
(excluding ATM and BARD1 mutated patients) we applied
a functional-based variant prioritization. Candidate variants
were selected according to the predicted impact in the protein
function and affected gene, including all loss-of-function variants
(nonsense, frameshift indels, and splice site) as well as missense
and in-frame indels occurring in a list of 832 cancer-related genes
(DNA repair and cancer related genes—Supplementary Table 1).
For the two sisters (MJ2007 and MJ2012), all variants shared
between the two were selected as candidates. For the 13 unrelated
patients, we selected missense variants predicted to be damaging
by at least 4 out of 6 prediction software.

After filtering, we obtained a total of 208 variants, including
125 LOF and 83 missenses (Supplementary Table 2). In order to
technically validate our variant selection workflow, a subset of
these 208 variants (133 out of 208) was submitted for technical
validation by targeted NGS in the same WES samples and, of
these, 126 were validated (95%) (Supplementary Table 4). Using
this same custom panel, we evaluated 25 control samples of
healthy Brazilian women without cancer for filtering common
polymorphisms in our population. Eight variants were detected
in at least one control sample and where then excluded from our

candidates list, resulting in 193 candidate variants (118 validated
and 75 not evaluated).

For the family of the two affected sisters, one additional
affected aunt diagnosed with ovarian cancer at age 45 was
available for segregation analysis (Figure 2). We analyzed 17
variants that were shared between the two sisters and 8 variants
were also present in the aunt, including the VUS variant in
BRCA1 (Table 2).

Then, the remaining 186 genes prioritized in our study were
compared to candidate genes reported in eight previous WES
studies of HBC (Snape et al., 2012; Thompson et al., 2012; Gracia-
Aznarez et al., 2013; Hilbers et al., 2013; Kiiski et al., 2014; Wen
et al., 2014; Noh et al., 2015; Kim et al., 2017) and 12 common
genes were identified, 9 of them presenting LOFs variants in at
least one study (Table 3). For two genes the same LOF variants
were identified in our and at a second study (PZP p.Arg680∗ and
KRT76 p.Glu276∗).

Thus, from the 193 final candidate variants, we selected
23 candidate genes of BC predisposition: 7 novel candidate
genes segregating in the 3 members of the MJ2007/2012 family
(SLC22A16, ROS1, IL33, PTPRD, ARHGEF12, ERBB2, POLA1),
five cancer-related genes harboring LOF variants (GALNT3,
RAF1, PICALM, KL, ERCC1) and 12 genes overlapping with
candidate genes identified in other studies (CAPN9, KRT76, PZP,
DNAH7, MST1R, LAMB4, NIN, MSH3, SLX4, DDX1, NOTCH2,
and ROS1—ROS1 was also selected in the segregating genes list).
The entire coding region of the 23 genes were evaluated in an
independent Brazilian cohort.

Assessing 23 Candidate Genes in an
Independent Cohort of Patients at Risk for
HBC
To select the most promising candidate genes, we analyzed the
23 candidate genes disclosed in our study in an independent
cohort of 42 Brazilian women at risk for HBC. These patients
were all negative for pathogenic variants in BRCA1/2, TP53, and
ATM genes. In these data, we assessed the entire coding regions
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FIGURE 2 | Pedigree of family MJ2007/MJ20012. Two breast cancer affected sisters (indicated with the plus sign) were analyzed using WES. Variants shared between

the sisters were screened in one affected paternal aunt (indicated with an asterisk). Filled-in symbols indicate individuals affected by cancer. Cancer type, cancer age

of onset or age appear underneath each individual. Numbers inside the symbols indicate the number of unaffected siblings not shown individually in the pedigree.

of the selected genes for the presence of rare (MAF < 1%)
and possibly pathogenic variants, selecting all LOF variants and
missense variants predicted to be pathogenic in at least 3 out of 6
algorithms.

In this cohort, we detected 16 variants in 12 of the 23 candidate
genes (Table 4). NOTCH2 gene was the one with more variants,
harboring three missense; ERBB2 and DNAH7 harbored two
missenses each. Only one LOF variant was detected, affecting
ERCC1 gene, which was the same variant detected in our
discovery cohort (c.875G>A; p.Trp292∗). The remaining genes
presented one rare missense variant each.

DISCUSSION

Recently, the use of WES in clinical genetics has been proven
to be an effective alternative for establishing the genetic basis of
Mendelian diseases, particularly in diseases where multiple genes
can be affected (Trujillano et al., 2016). Moreover, in both clinical
and research settings, WES has been applied to elucidate the
genetic cause of cancer predisposition. In this sense, WES offers
the opportunity to concomitantly investigate several known
cancer risk genes as well as to identify novel cancer predisposing
genes. Thus, in this study we used WES to disclose variants
contributing to BC increased risk in patients that were negative
for pathogenic variants in three major BC genes—BRCA1/2 and
TP53 genes—and the most common point mutation in CHEK2

gene (c.1100delC). For this, we used stringent clinical criteria for
selecting patients with strong indicative of harboring a genetic
predisposition to BC, such as early onset BC (<36 years); bilateral
BC; or the presence of a second primary related tumor.

First, by evaluating known BC predisposing genes, we could
establish the causative variants in two probands. One of them
harbored an ATM truncating pathogenic variant and the other
a novel BARD1 truncating variant, considered as probably
pathogenic. The BARD1 p.(Tyr739Leufs∗2) variant is predicted
to cause partial loss of the second functional BRCT domain and
the phosphobinding region. Several studies suggest that both
BRCT repeats are necessary for BARD1 normal function (Birrane
et al., 2007; Irminger-Finger et al., 2016) and truncating variants
in this region have been previously reported in association
with HBC (De Brakeleer et al., 2010). Additionally, compatible
with the probable pathogenic role of this variant, our proband
presented triple negative BC and BARD1 pathogenic variants
were recently described to be related to this molecular subtype
(De Brakeleer et al., 2016).

Besides these LOF variants, we identified four rare missense
VUS in three HBC genes (BRCA1, RINT1, and RAD51B). The
identification of VUS in genetic testing represent a challenging
concern for genetic counselors due to uncertainty in clinical
decision making, which can lead to more intensive management
than necessary in most of the times or, more rarely, in
inappropriate prevention measures (Plon et al., 2011). The
recently introduction of NGS gene panels in genetic testing
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TABLE 2 | Cosegregation analysis of variants detected in the sisters MJ2007 and MJ2012.

Shared variants of MJ2017 and MJ2012 Cosegregation

Chr:Pos Ref/Alt Gene names Type HGVS

nomenclature

N of 6

Damaging

dbSNP MAF (ExAC*/

Abraom)

Present in affected

aunt (OV)

1:3328745 G/A PRDM16 Missense c.1984G>A; p.(Val662Met) 1 of 6 ND ND/0.001 No

1:116670844 G/T MAB21L3 Stop gained c.739G>T; p.(Glu247*) 2 of 6 rs149122915 0.0002/ND No

3:48716158 G/A NCKIPSD Missense c.1804C>T; p.(Arg602Cys) 2 of 6 ND 0.000008/0.001 No

5:149514363 A/G PDGFRB Missense c.581T>C; p.(Ile194Thr) 5 of 6 rs2229560 0.001/0.002 No

6:117622137 C/T ROS1 Missense c.6733G>A; p.(Gly2245Ser) 2 of 6 rs142264513 0.0008/0.002 No

7:116380062 A/G MET Missense c.1451A>G; p.(His484Arg) 2 of 6 ND 0.00005/ND No

8:17815082 T/G PCM1 Missense c.1838T>G; p.(Ile613Ser) 0 of 6 rs181777656 0.003 (OT 0.01)/

0.002

No

14:55467701 T/C WDHD1 Missense c.703A>G; p.(Ile235Val) 1 of 6 rs139440460 0.004/0.004 No

15:40897315 A/G KNL1 Missense c.43A>G; p.(Ile15Val) 0 of 6 ND 0.00003/ND No

6:110778048 C/- SLC22A16 Frameshift c.226delG; p.(Ala76fs*66) – ND ND/ND Yes

6:117715381 A/G ROS1 Missense c.1108T>C; p.(Ser370Pro) 2 of 6 rs56274823 0.002/ND Yes

9:6255967 G/C IL33 Splice acceptor c.613-1G>C; p.(spl?) – rs146597587 0.002/0.001 Yes

9:8501026 G/A PTPRD Missense c.1856C>T; p.(Thr619Ile) 2 of 6 ND ND/0.001 Yes

11:120298916 C/T ARHGEF12 Missense c.545C>T; p.(Ser182Phe) 3 of 6 rs147982337 0.002/0.002 Yes

17:37865694 G/A ERBB2 Missense c.563G>A; p.(Arg188His) 3 of 6 ND 0.00002/0.002 Yes

17:41222968 A/G BRCA1 Missense c.4963T>C; p.(Ser1655Pro) 6 of 6 ND ND/ND Yes

X:24861673 T/C POLA1 Missense c.3908T>C; p.(Met1303Thr) 2 of 6 ND ND/ND Yes

Chr, chromosome; Pos, position; Ref, reference allele; Alt, alternate allele; N of 6 Damaging, predictions considered as damaging in 6 pathogenicity predicting software; ND, not

described; MAF, minor allele frequency; OV, ovary cancer; OT, others. *Variants in ExAc that had a MAF >1% in any ethnic group are underlined and the highest ExAc population MAF

is shown inside parenthesis. RefSeq reference number of transcripts are described at Supplementary Table 2.

have increased the number of patients diagnosed with VUS,
emphasizing the urgent need for better pathogenicity predictions
models and collaborative efforts to increase observational
data that can aid a posteriori classification to variants, such
as cosegregation analysis, personal and family history, co-
occurrence with pathogenic variants, and histological and
molecular features of tumors (Spurdle et al., 2012).

In the 15 patients without known pathogenic variants, we
could identify more than 25,000 novel or rare variants (MAF
< 1%), thus several filtering strategies were applied to prioritize
those more likely to be related to HBC. Since the majority of
hereditary cancer predisposing genes harbor an excess of loss-of
function variants, we focused on this type of overtly deleterious
variants, regardless of the affected gene. Furthermore, most BC
risk genes are involved in DNA repair and genomic integrity
pathways (Shiovitz and Korde, 2015; Nielsen et al., 2016), and
prioritizing variants in these genes is a rational approach that
have been used successfully in previous studies (Mantere et al.,
2016). As so, we have also focused on missense variants in a
defined set of cancer-related and DNA repair genes. By doing
that, we were able to reduce our candidate genes list to a few
hundreds.

Importantly, for one family with two sisters affected by BC
at young ages (29 years), we could improve the selection by
retaining only shared variants and also perform segregation
analysis of the candidate variants in an aunt affected by ovarian
cancer. From this analysis, eight cosegregating variants emerged,
including a BRCA1 VUS. Besides BRCA1 gene, only ERBB2
has been previously implicated in BC predisposition, although

with conflicting data about the increased risk conferred by some
alleles (Breyer et al., 2009; Wang et al., 2013). Regarding the two
LOF variants found to be cosegregating in this family (genes
SLC22A16 and IL33), no relation between both genes and BC
could be recognized in the literature.

One possible explanation for the results observed in this
family and that could also be responsible for the cancer
predisposition in other patients of our study is the polygenic
model. In this model, which has been suggested and reviewed
by different authors (Oldenburg et al., 2007; Shiovitz and
Korde, 2015), moderate and low penetrance alleles would act
in synergy and play a predominant role. Additionally, the high
number of affected relatives with different tumor types in both
maternal and paternal sides of this family can be a confounding
factor for understanding the phenotypes and cosegregation
results. Unfortunately, most affected family members of this
family were deceased, limiting additional investigations and the
interpretation of our findings.

To gain further insight on the relevance of our identified
candidate genes, we evaluated the most promising ones in
an independent cohort comprising 42 Brazilian HBC women.
Several rare and possibly damaging variants were identified in
this cohort, providing additional evidence of the potential role in
BC predisposition of some new genes. Of those, we highlight four
genes related to cancer development and progression (NOTCH2,
ERBB2, MST1R, and RAF1) and two DNA repair genes (ERCC1
and SLX4). Interestingly, ERCC1 and SLX4 are partners that act
in the repair of interstrand cross-links and are also required
for homology-directed repair of DNA double-strand breaks.
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Additionally, ERCC1 is also involved in the nucleotide excision
repair pathway (McNeil andMelton, 2012). Both genes have been
investigated regarding BC susceptibility, with some common
ERCC1 variants being identified as risk alleles in Chinese
population (Yang et al., 2013) and rare truncating and possibly
damaging variants in SLX4 being described in some high
risk HBOC patients (Bakker et al., 2013; Shah et al., 2013).
Remarkably, in the ERCC1 gene we identified the same nonsense
variant in both discovery and validation cohorts (p.Trp292∗),
while in SLX4 one of the rare missense identified in our cohorts
(p.Ser1123Tyr) was previously described in one HBC patient
(Shah et al., 2013).

Some limitations of our study are inherent to WES method
since predisposition variants can be located in non-coding
or not captured regions of the genome, such as promoter
or deep intronic pathogenic variants. Moreover, although
the strategic filtering applied here is necessary to reduce
the number of proposed candidates, it can result in the
omission of the causative variant (for example, by excluding
protein-impacting synonymous variants). Additionally,
large genomic rearrangements have been implicated in
HBC, and even though specific bioinformatics pipelines
can be applied in WES data to extract these results, these
analyses were not performed in our study. Finally, when it
comes to interpreting the potential effect of our candidate
variants in splicing, both coding as well as splice site
variants can cause splicing alterations that lead to in-frame
functional proteins instead of frameshift truncated ones, and
functional assays would be necessary to validate bioinformatics
predictions.

Considering the evidence presented here, we can neither
conclude that these variants identified in the 15 patients negative
for known pathogenic variant are the definitive cause of BC
predisposition nor determine the magnitude of the risk that
these genes could present. Nevertheless, our results provide
a set of novel putative BC predisposing genes and reinforce
WES as useful tool for assessing the complex landscape of
HBC predisposition. Importantly, this represents the first WES
data of a HBC cohort from South America and the analysis
of an admixed population such as the Brazilian can reveal
unique features compared to other Western populations. In this
sense, the WES data generated in our study, as well as other

previous and future studies, can be reanalyzed in the future and
possibly identify genetic overlaps between families, aiding to gene
discoveries (Chandler et al., 2016). Finally, the assignment of a
novel gene or specific variant as a true BC predisposition factor
requires solid phenotypic evidence from cosegregation analysis,
in vitro and in vivo functional assays and genotyping large series
of case and controls from distinct populations. The efforts for
discovery and validation of novel HBC genes will continue to
provide insights into disease mechanisms, eventually leading
to the development of more effective therapies and improved
management of affected families.
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