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Selective breeding for marine finfish is challenging due to difficulties in reproduction,

larval rearing, and on-growth in captive environments. The farming of Asian seabass

(Lates calcarifer) has all these problems and our knowledge of the quantitative genetic

information (heritability and correlations) of traits necessary for commercial exploitation

is poor. The present study was conducted to address this knowledge gap and to

provide information that can be applied to sea bass and other aquaculture species.

We carried out a comprehensive genetic evaluation for three traits (body weight, total

length, and survival) collected from a breeding population for Asian seabass over an

eight-year period from 2010 to 2017. Statistical analysis was carried out on 4,567 adult

fish at 105, 180, 270, 360, 450, and 570 days post-hatch (dph). The heritabilities (h2)

estimated for body weight and length using linear mixed model were moderate to high

(0.12 to 0.78 and 0.41 to 0.85, respectively) and they differed between the measurement

periods. Survival during grow-out phase was analyzed using threshold logistic and probit

models. The heritability estimates for survival rate on the underlying liability scale (h2L)

varied from 0.05 to 0.21. When the observed heritability obtained from the linear mixed

model was back-transformed to the liability scale, they were similar but not significant.

In addition, we examined effects of genotype by environment (G×E) interaction on body

traits. The genetic correlation for body weight between tank and sea cage cultures were

high (0.91–0.94) in the first and second rearing periods (180 and 270 dph) but the

correlation was decreased to 0.59 ± 0.33 at 360 dph. This suggests that the genotype

by environment interaction is important for body traits in this population. Furthermore,

the genetic correlations of body weights between different measurement periods were

moderate but different from one. This suggests that body weights measured at different

time points may be different traits and selection for improved early weight may not capture

all genetic expressions in subsequent rearing periods in Asian seabass. Selection of the

nucleus in sea cages may produce genotypes that do not perform equally well in tanks,

although this deserves further studies to determine a suitable selection environment and

optimize the breeding program. This paper discusses challenges encountered during

implementation of the selection program for L. calcarifer.
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INTRODUCTION

Aquaculture of Asian seabass or barramundi (Lates calcarifer,
Bloch) has been growing in South East Asia and Australia.
Regional production of this species in major producing countries
increased 350% from∼20,000 tons in 1998 to 90,000 tons in 2017
(FAO Statistics). Asian seabass is highly fecund, euryhaline, and
it has a rapid growth rate in both fresh and salt water. In addition,
barramundi has good market acceptance and high economic
values in many countries (Lawley, 2010; Robinson et al., 2010).
Induced spawning is known to be difficult in this species and
mass spawning (i.e., keeping broodfish in the same tank with
a mating ratio of one female to one or two males) is normally
practiced in commercial hatcheries (Evelyn et al., 2013). This
practice does not allow the retention of progeny pedigrees unless
DNA markers are used for parentage assignment and thus under
commercial settings where genetic analysis is not practiced, the
contribution made by individual broodstock to future generation
is unknown. As a consequence, genetic variation in hatchery
populations has declined and this has led to a severe loss in
genetic diversity in many cultured stocks (Frost et al., 2006;
Loughnan et al., 2015).

Selective breeding is a powerful tool to increase commercial
production, and the success of selective breeding programs
depends on a systematic approach involving several steps from
the establishment of a base population to the development of
the breeding objectives and selection strategies (Nguyen, 2016).
In aquaculture, quantitative genetics, and selective breeding are
in the early stages of development but substantial productivity
improvement has already been achieved in fish and shellfish
(Gjedrem and Rye, 2016). The principal breeding goals for
aquaculture species are growth rate, disease resistance and
product quality. The first selection experiments were conducted
as long ago as 1919 (Embody and Hayford, 1925) to increase
survival to furunculosis (due to Aeromonas salmonicida) in
brook trout (Salvelinus fontinalis). Since then, several selection
programs with the aim of improving growth rate and disease
resistance have been reported for a range of fish (Knibb et al.,
2016), crustacean (Hung et al., 2013), and mollusc (In et al.,
2017). Improvement in growth rates of 5–15% (average 10%)
per generation have been achieved—depending on species and
testing environments (Gjedrem et al., 2012). It is estimated that
in 2010 ∼8.2% of global aquaculture production was based on
genetically improved stocks. A typical example is Atlantic salmon
(Salmo salar) where 97% production in Norway has been using
improved stocks from artificial selection (Gjedrem, 2012). Hence,
there is a strong need to develop an improved genetic line for
Asian seabass in order to meet the growing demand for high
quality seeds and breeding stock in aquaculture.

In any selective breeding programme, estimation of
genetic parameters (heritability and correlations) is needed
to understand the genetic basis of quantitative traits (Falconer
and Mackay, 1996). They are also required for the evaluation
of breeding candidates in order to estimate their genetic merit.
These estimates are affected by several factors including genetic
resource, sample size, culturing conditions, and the number of
generations in experiments. The heritability has been reported

for a range of traits in commercial aquaculture species, such
as resistance to the bacterial disease columnaris in Rainbow
trout (Evenhuis et al., 2015); growth related traits in tilapia
(Charo-Karisa et al., 2006; Tro. ng et al., 2013), common carp
(Vandeputte et al., 2004), and barramundi (Wang et al., 2008b;
Domingos et al., 2013; Ye et al., 2017). To date, there has been
limited genetic parameter estimates in Asian seabass and the
published information that exists relates only to body traits
recorded in the early stage of growth development, such as at
62 dph (Domingos et al., 2013), and 90 and 270 dph (Ye et al.,
2017). Wang et al. (2008b) also analyzed the correlation of body
weights between 90 and 270 dph while Ye et al. (2017) reported
moderate heritability for growth traits at those measurement
periods. Generally, the heritability and genetic correlations for
body traits during growth trajectory from tagging to sexual
maturity (about 3 kg) are rare in the literature.

The inheritance of survival characteristics during the grow-
out phase has not been documented in Asian seabass, although
it is one of the two traits (along with growth) that determines
economic return for aquaculture enterprises. In contrast,
numerous studies have showed existence of the additive genetic
components for survival in tilapia (Luan et al., 2008; Thodesen
et al., 2013; Ninh et al., 2014; Thoa et al., 2015), salmonids
(Standal and Gjerde, 1987; Rye et al., 1990; Vehviläinen et al.,
2010, 2012), shrimp (Vu et al., 2017), and molluscs (Dégremont
et al., 2005; Liu et al., 2015). The results suggest that these species
will respond positively to selection for survival. While systematic
environmental effects and management options have been
extensively investigated to improve survival rate in L. calcarifer,
there are no reports of heritability for this trait especially survival
rates during the grow-out phase in sea cages. Our study, for the
first time, reports quantitative genetic basis of survival of Asian
seabass (L. calcarifer).

Another important factor that merits a thorough evaluation
in selective breeding programmes is the relationship between
genotype and environmental interaction (G×E). The G×E effect
is important when the selection and commercial production
systems differ so as to develop a genetic line that can tolerate
a range of environmental conditions. Understanding the G×E
effect on traits of economic importance would aid in the design
and optimization of a broadly applicable selective breeding
programme for Asian seabass. It has been shown in red tilapia
that selection response of genotypes to diverse environmental
conditions can vary (Nguyen et al., 2017). Culture systems for
Asian seabass are diverse and may involve different water sources
(fresh or saline water) or different rearing systems (ponds,
tanks, and floating sea cages). Studies in other species, such
as Atlantic cod (Kolstad et al., 2006), rainbow trout (Kause
et al., 2003), European seabass (Dupont-Nivet et al., 2008, 2010),
common carp, and Pacific oysters (In et al., 2017) report low
G×E effects. In Asian seabass, Domingos et al. (2013) did not
find significant G×E interactions for early growth traits (62
dph) when comparing tank and pond or fresh and sea water
environments. However, there is a lack of information about the
G×E interactions for L. calcarifer grown in tanks and sea cages.

The current study, therefore, aimed to address two major
issues: (i) the lack of genetic parameters for body traits and

Frontiers in Genetics | www.frontiersin.org 2 May 2018 | Volume 9 | Article 191

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Khang et al. Breeding Program for Asian Seabass

survival during growth trajectory of Asian seabass and (ii) the
G×E interaction between tank and sea cage. The study used
data collected from the breeding program for L. calcarifer at
the Research Institute for Aquaculture No III (RIA 3), Vietnam
between 2010 and 2017. The founder stocks used to form
the base population for selection were collected in 2010 and
2011 from four wild and four hatcheries in the north, central
and southern Vietnam. To obtain preliminary information
about genetic diversity of these populations, seven microsatellite
markers: Lca287, Lca371, Lca154, Lca178, LcaE22, Lca234, and
Lca148 (Wang et al., 2008a) were used to analyse polymorphisms
of 329 samples including eight wild and domesticated Asian
seabass stocks (Phuong et al., 2013). Subsequent generations
were produced in 2013, 2015, and 2017. In these years, siblings
of each family were cultured in both/either sea cages and/or
tanks over a period from 105 to 570 dph. A total of 4,567 fish
from 128 full- and half-sib families were performance tested and
morphometric measurements for body weight and total length
were collected. A full pedigree traced back to the base population
was used to estimate genetic parameters for growth traits in
L. calcarifer. Our results showed that there is potential for genetic
improvement to increase both growth and survival in the present
Asian seabass population. However, there are challenges that
need to be addressed in order to improve the effectiveness of
future breeding program for this species.

MATERIALS AND METHODS

Ethical Statement
All the methods and experimental protocols of this study
were performed in accordance with guidelines and regulations
approved by the animal ethics committee of the University of the
Sunshine Coast, Australia (approval number ANE1613).

Experimental Location
The breeding program for Asian seabass, including breeding,
rearing and grow-out experiments, was conducted at the
National Mariculture Research and Development Center
(MRDC) and Center for Environment and Disease Monitoring
in Aquaculture (CEDMA), associated with the Research Institute
for Aquaculture No.3 (RIA3) in Khanh Hoa, Central Vietnam
(latitude 12.25, longitude 109.19 and it is situated at elevation 10
meters above sea level).

Origin of the Founder Stocks
The founder stock comprised four wild and four hatchery fish
populations collected from different geographical regions in
Vietnam: North (Hai Phong), Central (Khanh Hoa) and South
(Vung Tau andKienGiang) (Supplementary Table S1). They were
collected in 2010 and transferred and reared under a common
culture environment at the National Mariculture Research and
Development Center in Nha Trang.

The fish were initially cultured in 20 m3 hatchery tanks
and tagged before stocking in sea cages. Tagged fish were
assigned randomly to 24 seacages (4 × 4× 2.5m) with
equal representation of populations in each cage (20 fish per
population per cage). After 17 months of culture in seacages,
body measurements were made and the growth performance

of the eight different populations were evaluated. Regardless
of collection locations, wild populations had significant faster
growth than those from hatcheries (Supplementary Table S2).
The inferior performance of domestictaed stocks was likely
resulted from poor management practices of hatcheries that may
have caused inbreeding issues. The survival was high (85%) in
all stock. There was a significant difference in polymorphism
between the wild and domesticated populations. The allele
numbers in each locus varied from 11 to 21 alleles/locus in the
wild and from 3 to 8 alleles/locus in domesticated populations.
The observed level of heterozygosity was also greater in the
wild than hatchery sstocks (0.77–0.94 vs. 0.31–0.59). However,
there was no clear distinction among populations, Fst value
close to zero (Phuong et al., 2013). Based on these results (allele
number>6 and observed heterozygosity> 0.6) together with the
phenotypic performance, superior animals (400 fastest growth)
from the four best stocks (Wild Vung Tau, Wild Khanh Hoa,
hatchery fish and wild fish from Kien Giang) were used to form
the base population.

Base Population
Parental fish were checked fornightly to confirm that they had
reached sexual maturation. Mature broodstock were transferred
from seacage to the breeding hatchery and were kept in 20 m3

tanks.
In 2011, a partial diallel cross involving fish from the four

populations: Vung Tau and Khanh Hoa (both originating from
the wild) and hatchery and wild fish from Kien Giang was carried
out, following a single pair mating design. Thirty families (one
male mated to one female) was produced after 15–20 days.
Parental fish were injected using LHRHa and kept in tanks to
allow natural spawning. Fish larvea were nursed until fingerling
size (28.2± 1.2 g, L= 15.3± 0.2 cm). A random sample of 30 fish
per family was tagged by using Passive Integrated Transponders
(PIT). After tagging, the fingerlings were conditioned in tanks
for another week before they were transferred into the seacage
for grow-out over a period of 17 months. At harvest, body trait
data were recorded and genetic evaluation was conducted to
estimate breeding values (EBVs) for all individual fish in the
pedigree. Based on EBV ranking and relationship of indviduals
in the pedigree, the best performing (highest EBVs) individuals
were selected to form the base population to produce subsequent
generations for selection.

Family Production in Subsequent
Generations in 2014/15 and 2017
In late 2014 and early 2015 the first generation (G1) were
produced, involving 45 males and 45 female broodstocks. Mating
was based not only on the EBVs but also the genetic relationships
with other individuals in the pedigree. Basically, the selection
and mate allocation involved three main steps: (1) We ordered
families and individuals within each family on genetic merit, (2)
Selected best male from best family and assigned to it the best
female from best family, and (3) Checked for inbreeding (F) in
potential progeny; if F = zero, proceeded to the mating, if not,
assigned to best female from second best family; checked for F,
and so on. Closely related matings, including full- and half-sibs,
were not permitted.
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The brood fish chosen for maturation assessment were healthy
and normal in body shape. When assessing a prospective female,
a catheter with diameter of 1.2mm and 30 cm long was inserted
into the genital pore about 5–10 cm and eggs were taken for
microscopic examination. Females were considered ready to
spawn when eggs showed uniform size (diameter 0.4–0.5mm),
were separated from each other, and were yellow in color. To
assess maturity of males, gentle handling of the fish and slight
pressure were applied on their abdomen near the genital pore.
This resulted in the expulsion of sperm and, if it was white and
viscous, the fish were considered to be ready for breeding. A total
of 45 single pair matings were conducted in separate 7–10m3

hatching tanks.
Spawning usually occurred about 36 h after hormone

admission. During this period, water temperature and salinity in
the spawning tanks were maintained at 28.5–30.5◦C and 32.0–
33.0 ppt, respectively. Twelve hours after spawning, the fertilized
(floating) eggs were collected and transferred to 500 L incubation
tanks for hatching (each family in a different tank). The collection
date of each egg was recorded.

Nursing, Rearing, and Grow-Out Testing
From day 2 until day 15, the larvae were fed rotifer (Brachionus
plicatilis). Artemia nauplii were introduced at day 10 and fed
until day 30. Subsequently a commerical pellet feed (composition
55% protein; 9% lipid, <9% fiber, <8% moisture) was used when
larvae was about 23–25 days. During the larval rearing water
temperature ranged from 25.2 to 29.4◦C (yearly average water
temperatures were 27.3◦C in the morning and 28.2◦C in the
afternoon). Salinity was 33.4 g L-1 (range 31.4–34.5 g L−1), pH
8.2 (range 7.9–8.4), DO >5.1 mg/L (range 4.7–5.4mg L−1), and
Secchi clarity > 1.8m. When the fish reached a weight of 28 ±
18 g (Length= 13± 2 cm), 60 indviduals per family were marked
using Passive Intergrated Transponder (PIT) tags for indvidual
identifcation. After tagging, fish of all the families were pooled
and conditioned in large size tanks for 1 week. The survival
rate from hatching to 30 days averaged 38.4%, but from day 30
to fingerling stage (about 60 days) it was high (average 91%).
Communal grow-out of all families was conducted in 24 seacages
(4 × 4 × 2.5m) with similar number of fish per family in each
cage (200 fish per cage). Once the fish were transferred to the sea
cage system, they were fed a formulated diet for 2 weeks and then
trash fish twice daily at a feeding rate of ∼10% body weight in
the first 2 months (∼200 g per fish), 5% of body weight when
fish weight ranged from 200 to 500 g and 3% of body weight
when weight exceeded 500 g per fish. In addition to sea cages,
representatives of each family were tested in 200 m3 tank (water
depth of 1.5m) at an initial stocking density of 800 fish per tank.
Only commercial pellet feed containing 45% protein and 12%
fat (Uni-President Ltd) was used in tanks. Water quality was
monitored once a week.

During the grow-out period of 17–18 months, fish were
measured six times (one measurement every 3–4 months). One
to 2 days prior to the measurements, the fish were conditioned
in cages without food. Three main traits were recorded: growth
related characteristics (body weight, total length), survival, and
sexual maturity. A detailed description of the measurement

methods is given in sections Family Production in Subsequent
Generations in 2014/15 and 2017 and Other Measurements. The
individual tag number, deformity and health conditions were also
recorded. Digital scale and ruler were used for measuring weight
and length. Survival was recoded as a binary trait and coded as
1 if the fish were still alive as 0 if the fish were absent at the
final measurement and this trait was also expressed as percent
difference in the number of fish at stocking and final harvest
(570 dph).

Other Measurements
Maturity
Maturity of females was determined by biopsy as described
above (section Family Production in Subsequent Generations in
2014/15 and 2017). The maturity of males was determined by
stripping method. They were recorded in the form of presence
and absence (coded as 1 and 0, respectively).

Deformity
Morphological deformity included a range of measures, namely
lower jaw, nasal erosion, abnormal skeleton and deformed
operculum (Nguyen et al., 2016, 2018a).

Food Conversion Ratio (FCR)
Total amount of feed provided in each net cage consumed by the
fish was recorded to calculate FCR. This trait was not included
in analysis because it was not possible to collect the amount of
uneaten feed in sea cages.

Traits Used for Genetic Analysis
Due to the limited data records and details for sexual maturity,
deformity and health condition, they were not included in our
genetic analysis. This study focussed on three main traits: body
weight, total length and survival. Body weight and length were
measured at six different time points: 105, 180, 270, 360, 450,
and 570 dph. These body traits showed continuous variation and
were analyzed using linear mixed model. However, survival data
was treated as a binary trait and analyzed using generalizedmixed
model as below (section Statistical Analysis).

Statistical Analysis
Linear Mixed Model
Heritability (the observed/measurable variations that are due to
genetic inheritance) for traits showing continuous expressions
(body weight and length) was estimated using Restricted
Maximum Likelihood Method (REML) in a uni- or multi-variate
mixed model (Henderson, 1975). Numerator relationship matrix
was calculated from the pedigree that included both full- and
half-sib families. The number of half-sib families in generations
2015 and 2017 was 12 and 22, respectively. In mathematical
notation, the mixed model is written as:

yijklm = µ + Yi + Ej + sk + dl + eijklm (1)

where yijklm is the vector of observations for traits studied, Yi is
the systematic fixed effect of spawning year (2011, 2013, 2015,
and 2017), and Ej is the fixed effect of testing environments.
The non-significant effect of sex (P > 005) was omitted from
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the final model. The random factors in the model were sire
(sk) and dam (dl). The dam component (σ 2

D) is most likely a
combination of maternal and common environmental effects
(thus,σ 2

D = σ
2
M+CE , referred to as σ

2
C) caused by the separate

rearing of full-sib families until individuals reached a suitable size
for physical tagging. The log likelihood ratio test (LTR) showed
that the common full-sib effect was significant (P < 0.05). The
term eijklm signifies residual errors.

Heritabilities for body traits were estimated from a univariate
model (Equation 1). The genetic variance (σ 2

A) was calculated as
4×σ

2
S where σ

2
S is sire variance (Falconer andMackay, 1996). The

dam variance component (σ 2
D), in this case, was a combination of

the maternal, dominant and common environmental effects, also
named as common full-sib effects (σ 2

D = σ
2
C). The “and(dam)”

option used in ASReml assumed equal sire and dam variances
(σ 2

S = σ
2
D)(Ninh et al., 2014). The phenotypic variance (σ 2

P ) was
calculated as the sum of the additive genetic sire variance

(σ 2
S ), the dam variance (σ 2

D), the common full-sib (σ 2
C) and

the residual variance (σ 2
e ), as σ

2
P = σ

2
S + σ

2
D + σ

2
C + σ

2
e or

σ
2
P = 2σ 2

S + σ
2
C + σ

2
e . The heritability was calculated as h2 = σ

2
A

σ
2
P

and the common environmental effect was calculated as c2 =
σ
2
C

σ
2
P

. Genetic and phenotypic correlations were estimated from

a two-trait sire and dam model with the same fixed effects as
shown in Equation (1). The correlations were calculated as the
covariance divided by the product of the standard deviations of
traits: r = σ12√

σ
2
1

√
σ
2
2

where σ12 was the estimated additive genetic

or phenotypic covariance between the two traits, and σ
2
1 and σ

2
2

are the additive genetic or phenotypic variances of traits 1 and 2,
respectively.

To examine the interaction between genotype and
environment (G×E), the expressions in tank and cage were
treated as different traits. A multi-trait model was applied
to estimate the between-environment genetic correlations
through a numerator relationship matrix obtained from
the pedigree. In this analysis, Model 1 was used and
all the effects were the same as shown in Equation (1),
except that the effect of environment was excluded. Due
to differences in standard deviations between the two
culture systems, body weight, and length were square
root transformed to estimate the between-environment
genetic correlations. As the phenotypes were measured on
different animals in tank and pond, there is no phenotypic
correlation between trait expressions between the two
environments.

Generalised Threshold Model
In this study, survival was treated as a binary character
(0 = dead/or missing and 1 = alive). In addition to the linear
mixed model (1), this trait was also analyzed using a threshold
sire and dam model. The threshold models assume that the data
follow a binominal distribution and logit (model 2) and probit
(model 3) functions were used.

With the threshold logistic sire (sm) and dam model (2),
heritability for survival was calculated using the variance of the
logit link function, which implies a correction of the residual

variance by factor π
2/3.

h2 =
4σ 2

s

σ 2
s + σ

2
d
+ σ 2

e
π2

3

where σ
2
s is sire variance, σ 2

d
is dam variance, and σ

2
e = 1

Under model 3 (probit threshold model), the heritability for
survival was calculated as:

h2 =
4σ 2

s

σ 2
s + σ

2
d
+ σ 2

e

where σ
2
s is sire variance, σ 2

d
is dam variance, and σ

2
e = 1

For binomial observations, estimates of h2 on the observed
scale (0/1) were transformed to the liability scales (logit and
probit) using the formula of Robertson and Lerner (1949):

h2L =
h2Op(1− p)

z2

where h2O is the heritability on the observed (0/1) scale, h2L is the
estimated heritability on the liability (logit or probit) scale, p is
a proportion of a given survival rate in the data, and z is the
height of the ordinate of normal distribution corresponding to
a truncation point applied to p proportion of survival.

The REML and mixed model approach have been
implemented in ASReml version 4.0 (Gilmour et al., 2009).
ASReml provides flexibility to specify different co-variance
structures or different fixed and random effects to avoid any
possible bias associated with the genetic parameter estimates.

RESULTS

Basic Statistics and Characteristics of the
Data
The body weight and length measured six times during the grow-
out phase from 105 to 570 days post-hatch (dph) are given in
Table 1. The weight and length of the fish increased steadily until
270 dph after which there was a rapid increase in growth rate
until the final harvest. At 570 days, the mean body weight was
2.3 kg and mean length was 53.9 cm. The coefficients of variation
for body traits were greater in the earlier (105, 180, and 270 dph)
than later phase of growth development (360, 450, and 570 dph).
The growth curve of the experimental fish at six different grow-
out periods is presented in Supplementary Figure 1. Pedigree
structure of the data is shown in Table 2.

Survival trait during grow-out phase (105 to 360 days) ranged
from 30 to 100% among 30 families produced in 2013 and
40 families in 2015 (averaging 48.1%). Significant (P < 0.05)
differences in the survival rates among the families in 2015 is
presented in Figure 1.

Effects of Culture Environments
A prevailing commercial production system for Asian seabass
is sea cage, but tank culture is also increasingly practiced.
In this study, growth traits were investigated in two different
culture systems: tanks and sea cages. The fish grew significantly
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TABLE 1 | Number of observations (n), mean, standard deviation (SD), coefficient

of variation (CV, %), minimum, and maximum values for body weight and length

during the growth trajectory.

Trait Unit n Mean SD CV Min Max

W1 g 3,810 28.5 18.0 63.1 7.8 100

W2 g 3,488 211.0 86.7 41.3 15 600

W3 g 2,042 492.8 150.9 30.6 150 1,315

W4 g 2,537 1,073.0 131.3 12.2 570 1,725

W5 g 529 1,624.2 83.5 21.0 780 2,020

W6 g 1,151 2,247.8 196.2 8.7 1,580 3,500

L1 cm 3,815 13.2 2.0 15.4 7.4 25

L2 cm 3,477 24.8 5.2 21.1 16 100

L3 cm 2,042 32.5 3.3 10.2 21 42

L4 cm 2,535 43.1 1.8 4.8 34 49

L5 cm 5,29 49.6 1.5 8.7 48 57

L6 cm 1,151 53.9 1.7 3.1 48 63

Survival % 2,649 48.1 49.9 103.8 0 1

W1, W2, W3, W4, W5 and W6 = Body weight at 105, 180, 270, 360, 450 and 570 days

post-hatch (dph). L1, L2, L3, L4, L5 and L6 = Total length at 105, 180, 270, 360, 450,

and 570 days post-hatch, respectively.

TABLE 2 | Number of progeny, sire, and dam in spawning years.

Year Population Progeny Sire Dam

2011 Founder 369 – –

2013 Base population 900 30 30

2015 Breeding 1380 41 43

2017 Breeding 1918 55 55

Total 4567 126 128

2015: 160 individuals from 16 full-sib families (15 sires and 16 dams) reared in tank

2017: 611 individuals from 55 full-sib families reared in tank.

faster (P < 0.001) in sea cages than in tanks (Figure 2).
After 270 days, average weight of fish stocked in sea cages
was 698.5 g (373mm length) and in tanks 231.6 g (291mm
length). The differences in weight and length between the
two environments varied during the growing period and
were significantly (p < 0.001) greater after 270 dph than
during the early phase of growth (66% for W3 vs. 21% for
W1).

Sex Differences in Growth Traits
Between-sex differences in growth was examined in parental
candidates prior to breeding. In this population of Asian
seabass, the females had significantly (P < 0.001) greater
body weight than the males (4.2 vs. 3.4 kg; Figure 3). The
sexual differences in body weight were not significant during
the grow-out phase either in tanks or cages. However, the
between-sex differences in growth-related traits are widely
observed in aquaculture, such as tilapia and prawn (Hung et al.,
2014).

Heritability and Common Full-Sib Effects
for Growth Traits
The estimated heritabilities (h2) for body weight and length at
different times of measurement were moderate to high (Table 3).
The heritability estimates ranged from 0.12 to 0.78 for body
weight and 0.41–0.85 for total length. Except for W5 (h2 = 0.12)
that was likely due to measurement errors, the heritability for
both traits was higher at 105 to 450 dph of on-grown than at other
measurement periods. Across all measurements, the heritability
estimates for weight and length were significant.

The common full-sib (c2) effects accounted from 2 to 22% of
the total variation for weight and length. The c2 effects were larger
for W1-W3 than those obtained for W4-W6 (16–22% vs. 2–10%
for body weight).

Heritability Estimates for Survival Using
Different Statistical Models
Three models were used to estimate heritability for survival. The
heritability estimate from linear mixed model (model 1) was
h2o = 0.05. Threshold probit model (model 3) gave the highest
value at h2L = 0.21, whereas the estimate obtained from threshold
logistic model (model 2) was intermediate (h2L = 0.19). When
the observed heritability obtained from the linear mixed model
(1) was back-transformed to the underlying liability scale, the
estimates were generally similar between the linear and threshold
models (2 and 3). However, across the three statistical models
used, the heritabilities for survival on both observed scale (model
1) and underlying liability (models 2 and 3) were not different
from zero due to their high standard errors (Table 3). The
common full-sib effect on survival was low (8%).

Phenotypic and Genetic Correlations
Phenotypic and genetic correlation of body weight between
different times points are presented inTable 4. In general, genetic
correlation of weight traits estimated for fourmeasurements were
all positive (0.31 to 0.62) and significantly differed from one. The
genetic correlation (rg) between weight and length at the same
age was high (0.95 to 0.99), except for the moderate estimate
between W2 and L2 (rg = 0.38). However, the rg values between
weight and length at different ages were low or moderate, of
which two estimates between W1 and L4 or between W4 and L2
were not different from zero, due to their high standard errors.
Overall, the genetic correlations of traits between successive
rearing periods were stronger than those that are further apart.
The phenotypic correlations were all positive and significant.

Genotype by Environment (G×E)
Interaction
Table 5 shows the between-environment genetic correlations (rg)
for weight traits. Due to the limited data records at 450 and
570 dph in both cages and tanks, the between-environment
genetic correlations were estimated for body weights at three
ages: 180 (W2), 270 (W3), and 360 dph (W4). The genetic
correlation between tank and cage culture was high (0.91–0.94)
for W2 and W3. The genetic correlation estimate (0.84 ± 0.12)
was similar for total length. However, the between-environment

Frontiers in Genetics | www.frontiersin.org 6 May 2018 | Volume 9 | Article 191

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Khang et al. Breeding Program for Asian Seabass

FIGURE 1 | Variation in survival rate among 40 families produced in 2015 (P < 0.001).

FIGURE 2 | Fish body weight in cage (n = 2058) and tank (n = 576) over

different measurement periods at 105, 220, and 270 days post-hatch

(P < 0.001).

genetic correlation decreased as growth progressed (rg =0.59 ±
0.33 for W4, 360 dph). Our results suggest that the effect of G×E
interaction is potentially important for growth traits measured in
later stages of development in Asian seabass. This is particularly
significant when the commercial production system (e.g., tank) is
incompatible with a controlled maintenance of broodstock in the
selection nucleus (e.g., cage).

FIGURE 3 | Body weight (g) and length (cm × 100) of female and male

barramundi (P < 0.001).

DISCUSSION

Heritability for Survival
The heritability estimate for survival during the grow out phase
from 105 days post-hatch (dph) to 570 dph was low (<12%)
in this study. This is as expected for binary characters that
often require a larger sample size to obtain reliable heritability
estimates (Davies et al., 2015; Nguyen et al., 2018b). Further,
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survival as well as fitness-related traits are known to be influenced
by many environmental factors, such as nutrition, feeding
regimes, stocking density, or social competition (Thoa et al.,
2016). This is also because fitness-related traits exhibit small
additive genetic components and thus, heritabilities are low for
these characters. Despite the low and non-significance of the
heritability estimates, our study showed that there are heritable
genetic components determining survival during grow-out. This
is supported by the highly significant differences in survival rate
among families studied (Figure 1). Our results are consistent
with observations in other aquaculture species which show that
the heritability for survival traits during grow-out phase was low
(0.05–0.17), such as tilapia (Hamzah et al., 2017a), common carp
(Dong et al., 2015), rainbow trout (Vehviläinen et al., 2012) and
giant freshwater prawn (Vu et al., 2017). Some other studies,
however, reported moderate to high heritability (h2 = 0.53) for
the survival trait (Ninh et al., 2014). A meta-analysis of 31 studies

TABLE 3 | Heritability (h2) and common full-sibs (c2) for traits studied.

Traits h2 c2

W1 0.78 ± 0.12 0.22 ± 0.04

W2 0.43 ± 0.12 0.19 ± 0.04

W3 0.48 ± 0.14 0.12 ± 0.04

W4 0.61 ± 0.13 0.07 ± 0.03

W5 0.12 ± 0.13 0.08 ± 0.04

W6 0.75 ± 0.21 0.03 ± 0.05

L1 0.70 ± 0.11 0.18 ± 0.04

L2 0.45 ± 0.09 0.05 ± 0.02

L3 0.62 ± 0.15 0.15 ± 0.05

L4 0.65 ± 0.14 0.10 ± 0.04

L5 0.85 ± 0.18 0.02 ± 0.03

L6 0.41 ± 0.28 0.05 ± 0.07

Survival1 0.16 ± 0.04

Survival2 0.19 ± 0.18 0.08 ± 0.05

Survival3 0.21 ± 0.19 0.08 ± 0.05

Survival1 = Linear mixed, Survival2 = Threshold logistic model and Survival3 =Threshold
probit model

across aquaculture species (Nguyen, submitted) showed that the
weighted mean heritability for survival rate was 0.14 ± 0.03,
suggesting that improving this character by selection, although
possible, may be slow due to environmental factors.

Heritability for Growth Traits
There is limited information regarding the additive genetic
variability for growth trajectory in Asian seabass. In this study,
we report, for the first time, the heritability for growth traits at
six different time points (105–570 dph) in a selected population
of Asian seabass. The moderate to high heritabilities obtained
for body weight and length across six growth stages indicate
that there is substantial genetic variation in growth related traits
(weight and length). This suggests that selection for growth
should be effective in this population. By contrast, previous
research reported heritability for juvenile fish 90 dph (≈18 g
or ≈10 cm in length). The published h2 estimates ranged from
0.12 to 0.24 for weight, length and condition factors (Wang
et al., 2008b) or 0.15 to 0.22 in 62 dph fish (Domingos et al.,
2013). These h2 estimates generally had high standard errors
(0.09 to 0.22) and may have been overestimated because the
common full-sib effects were not accounted for in statistical
models. The significant heritability values obtained from our
study indicate that selection to improve body traits should be
effective in this population. The heritability reported for growth
traits were moderate to high in other species, such as kingfish
(Premachandra et al., 2017), salmon or giant freshwater prawn
(Hung and Nguyen, 2014).

Common Full-Sib Effects
The common full-sib effects (c2) observed in the present study
was due to separate rearing of each family in different tanks
before tagging. The c2 effect accounted for between 3 and 22%
of the total variation for weight and length. Our c2 estimate is

TABLE 5 | Effect of genotype by environment (G × E) interaction.

Traits Between-environment genetic correlation

W2 0.91 ± 0.10

W3 0.94 ± 0.12

W4 0.59 ± 0.33

TABLE 4 | Phenotypic (above) and genetic (below the diagonal) correlations.

Traits W1 W2 W3 W4 L1 L2 L3 L4

W1 0.47 ± 0.03 0.40 ± 0.03 0.25 ± 0.03 0.87 ± 0.01 0.29 ± 0.03 0.39 ± 0.05 0.38 ± 0.05

W2 0.47 ± 0.08 0.63 ± 0.02 0.47 ± 0.02 0.50 ± 0.03 0.44 ± 0.02 0.65 ± 0.02 0.49 ± 0.03

W3 0.56 ± 0.07 0.62 ± 0.07 0.43 ± 0.03 0.39 ± 0.04 0.35 ± 0.03 0.90 ± 0.01 0.46 ± 0.04

W4 0.31 ± 0.09 0.49 ± 0.08 0.44 ± 0.11 0.42 ± 0.04 0.19 ± 0.03 0.38 ± 0.04 0.84 ± 0.01

L1 0.96 ± 0.01 0.78 ± 0.09 0.63 ± 0.14 0.84 ± 0.07 0.16 ± 0.03 0.40 ± 0.03 0.27 ± 0.03

L2 0.41 ± 0.15 0.38 ± 0.16 0.28 ± 0.17 −0.11 ± 0.19 0.30 ± 0.10 0.33 ± 0.02 0.19 ± 0.03

L3 0.55 ± 0.15 0.69 ± 0.13 0.99 ± 0.01 0.19 ± 0.22 0.50 ± 0.08 0.56 ± 0.09 0.42 ± 0.04

L4 0.06 ± 0.12 0.42 ± 0.17 0.11 ± 0.23 0.95 ± 0.02 0.41 ± 0.09 0.26 ± 0.10 0.33 ± 0.12
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in good agreement with those reported in other marine (Falica
et al., 2017) and freshwater (Hamzah et al., 2017b) fish species.
The magnitude of the c2 effect generally diminished with the
growth time (Table 3) and the c2 estimate was significantly larger
for growth traits during the early phase of growth development
than those at harvest (Oliveira et al., 2016). Strategies to reduce
the c2 effect in selective breeding programs can include: (i)
shortening the spawning and nursing time for full- and half-
sib families; (ii) physical tagging of the fingerlings at an early
age as possible; or (iii) early communal rearing after birth using
molecular techniques for parentage assignment. In breeding
programs where these factors can be well managed, the c2 effects
were small and there may be little improvement by including
them in the evaluation of breeders (Winkelman and Peterson,
1994; Martinez et al., 1999; Pante et al., 2002; Gjerde et al., 2004;
Kjøglum et al., 2005). For this barramundi population, inclusion
of the c2 effect in statistical models is deemed essential in order
to minimize possible biases in genetic parameter estimates and
predicted breeding values that may lead to reductions in selection
accuracy and hence, a reduction in genetic gain.

Correlations at Different Measurements
Genetic correlations of body weight between different time points
are all positive. However, the estimates differed significantly from
one, suggesting that body traits at different growth phases in
this population are genetically different. Hence, selection in the
early stage of growth development may not capture all genetic
expression at later stages of growth or at the time of commercial
harvest. This contrasts with results reported in other aquaculture
species. For instance, Ninh et al. (2013) showed high genetic
correlations (0.85–0.99) for body weight at 3, 7, and 12 months
of age in common carp. A similar correlation was also found in
giant freshwater prawn (Hung et al., 2014).

Consistent with the results reported for other species, the
genetic correlations between weight and length measured at
the same time/age were high (0.88–0.99) in this population of
barramundi. The genetic correlation between weight and length
in our study were close to one as were those reported in Atlantic
salmon and rainbow trout (Gjerde and Gjedrem, 1984), tilapia
(Nguyen et al., 2010), carp (Ninh et al., 2011), or shrimp (Nguyen
et al., 2014). This suggests that these growth traits are under
control by a similar or same set of genes. Our results indicate that
either body weight or length can be used as selection criterion in
aquaculture species. However, measurement of length at an early
age may not be a good predictor of body weight at other growth
periods because in our research the genetic correlations between
these traits differed significantly from one.

Genotype by Environment (G×E)
Interaction
Multi-variate assessment of genotype by environment (G×E)
interaction suggests that the G×E effect was not important in
the first year of on-growth; however, it had significant impact
on body traits in adult fish. The longer the fish were grown, the
stronger the G×E effects had on body traits. Thus, selection of
breeding candidates in sea cages may not be effective when the
fish are cultured in tanks. However, in a study with barramundi,

Domingos et al. (2013) reported close to one genetic correlations
(0.87–0.99) for homologous body traits between fresh and sea
water (62 dph) and between tank (343 dph) and pond (469
dph) environments. G×E interactions between tank and cage
have not been reported for traits of economic importance in
adult barramundi and no comparison is possible with the results
obtained from the present study. During sea cage culture, a range
of environmental factors may be influential including: ambient
temperature, water parameters, feeds and feeding, culture system,
and management and husbandry practices. For example, Asian
seabass brooders raised in a sea cage net had better growth
performance than those raised in tanks (Wang et al., 2008b)
and those reared in intensive tanks outperformed their family
counterparts in a semi-intensive pond (Domingos et al., 2013).
Our results also showed that the fish grew faster in sea cages than
in tanks.

The G×E interaction effects have been examined in many
aquaculture species (Nguyen, 2016; Sae-Lim et al., 2016) and have
shown that, when the environments are “similar” (e.g., freshwater
pond vs. freshwater cage), the G×E effects may not be important
for growth traits. However, when the selection and production
environments differed greatly (e.g., sea cages vs. freshwater tanks)
the G×E is of biological significance. G×E effects resulted in a
reduced genetic gain and lowered genetic parameter estimates
in red tilapia (Nguyen et al., 2017). In these cases, the G×E
interaction effects must be accounted for in genetic improvement
programs or, when the economic losses are greater than the
cost of running a new breeding program, separate genetic lines
should be developed for each culture environment. Continuing
accumulation of the growth data in future generations would
enable the better assessment of the G×E effects in this population
of barramundi.

Experience and Challenges
Despite some initial achievements in this study (including
a new set of genetic parameters and identifying the G×E
interaction effects for growth traits), practical implementation
of the breeding program for Asian seabass is faced with several
challenges. The biggest problem is achieving synchronized
spawning of mating pairs in order to produce many families
within a reasonable time interval (2–3 weeks). In the population
we studied, the fish generally reached maturity after two years
of age although at this stage the sex ratio was uneven with a
much larger proportion of males (43.1%) than females (8.2%).
The proportion of fish whose sex was not identified was 48.7%.
Furthermore, females after harvest (average 2.3 kg) were not
ready to spawn and the breeding failure rate was high. In
the base population (G0), parental fish were injected using
LHRHa and kept in tanks to allow natural spawning. With this
method, the spawning rate was only 66%. Since G1, artificial
insemination (i.e., stripping of eggs and collection of sperm after
HCG admission) increased spawning success to 78% although
fertilization and hatching rates were low (53%) compared with
natural spawning in tanks (66%). Due to these problems,
selection had to be made by using lower EBV candidates and
thus, affecting genetic parameters and genetic progress achieved

Frontiers in Genetics | www.frontiersin.org 9 May 2018 | Volume 9 | Article 191

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Khang et al. Breeding Program for Asian Seabass

for growth traits in this population. In addition, larval and post-
larval rearing showed unwanted cannibalism. To overcome this
problem, “shooters”/or cannibals (unusual large size fish) were
removed from rearing tanks twice a week. Grading was not
used to minimize possible bias in genetic parameter estimates.
As a result, fingerling weight/size varied greatly among families
studied and affected growth performance in both tanks and
sea cages. The common full-sib effects were also important
for body traits (2–22% of total variance) in this population.
Changing environments in some years had noticeable negative
impacts on the growth and health of the breeding population
as a result of parasitic and bacterial diseases. Main diseases
included the protozoal disease Trichodiniasis, fish louse due
to a parasitic crustacean, and a bacterial disease Vibrosis and
generally caused reductions in growth and maturation rates
in on-grow fish and breeding candidates. In 2013, significant
loss (70% of parental candidates) occurred when the water
temperature dropped below 15◦C during the season before
winter. Further, operculum deformity (opaque eyes) due to
parasites or environmental factors occurred in 60% of the on-
grow fish even though a freshwater bath using KMnO4 was
applied once a week. Obviously, morphological deformity and
parasite diseases (e.g., skin fluke) are crucial to Asian seabass and
should be recorded and included in genetic analyses. A fourth
problem was that in the first 2 years of the breeding program
there were not enough spawning/rearing tanks to accommodate
all the families produced for subsequent performance testing in
sea cages and tanks. Small size of sea cages also affected growth
rate of the experimental fish. Finally, live foods, such as scad
or other trash fish, were not always available and this affected
the spawning rate and reproductive performance of brood fish.
Alternative diets are sought to overcome these problems. As a
consequence, the number of families expected to produce in
each generation (at least 60) was not always achieved. Mass
spawning together with parentage assignment techniques using
DNA markers to enable early communal rearing of all families
soon after birth may be an option to be considered in the future
breeding program for Asian seabass.

CONCLUSIONS

There are heritable genetic variations for growth traits that
can be exploited by genetic selection in selective breeding

programs for barramundi. However, selection for growth
in the early stages (e.g., 105, 180, or 270 dph) may not
capture all the genetic variation necessary in later rearing
periods. This is because genetic correlations of body weight
at different ages, although positive and moderate, differed
significantly from one. The genetic correlation for body weight
expressions between tank and sea cage culture decreased as
growth progressed especially after 360 dph, suggesting that the
relationship between genotype and environment is important
for body traits including weight and length in this population
of Asian seabass. In conclusion, selection for growth traits
should be made at (or close to) harvest to maximize commercial
production. Continuing collection of growth data in different
environments is needed to ascertain the G×E interaction
effect and if it is significant there may be a call to have
separate breeding programs for tank and cage environments.
Expansion of the breeding objectives by including new traits,
namely improved disease resistance and reduced cannibalism
would maximize productivity and revenue for Asian seabass
aquaculture.
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