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Major depressive disorder (MDD) is a complex, heritable psychiatric disorder. Advanced

statistical genetics for genome-wide association studies (GWASs) have suggested

that the heritability of MDD is largely explained by common single nucleotide

polymorphisms (SNPs). However, until recently, there has been little success in

identifying MDD-associated SNPs. Here, based on an empirical Bayes estimation of a

semi-parametric hierarchical mixture model using summary statistics from GWASs, we

show that MDD has a distinctive polygenic architecture consisting of a relatively small

number of risk variants (∼17%), e.g., compared to schizophrenia (∼42%). In addition,

these risk variants were estimated to have very small effects (genotypic odds ratio≤ 1.04

under the additive model). Based on the estimated architecture, the required sample size

for detecting significant SNPs in a future GWASwas predicted to be exceptionally large. It

is noteworthy that the number of genome-wide significant MDD-associated SNPs would

rapidly increase when collecting 50,000 or more MDD-cases (and the same number

of controls); it can reach as much as 100 SNPs out of nearly independent (linkage

disequilibrium pruned) 100,000 SNPs for ∼120,000 MDD-cases.

Keywords: major depressive disorder, genome-wide association studies (GWAS), semi-parametric hierarchical

mixture model (SP-HMM), effect-size distribution, genome-wide significance, sample size

INTRODUCTION

Major depressive disorder (MDD) is a common, complex disorder with a high lifetime prevalence of
∼15% (Kessler et al., 2003) and a moderate heritability of 31–42% (Sullivan et al., 2000). Etiological
understanding of MDD is potentially of great impact on individuals and public health. Several
statistical genetics approaches have suggested that a large portion of the heritability of MDD is
explained by common single nucleotide polymorphisms (SNPs) (Lubke et al., 2012; Lee et al., 2013).
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However, no significant MDD-associated variant has been
discovered even in a large genome-wide association study
(GWAS) with around 9,500 cases by the Psychiatric Genomics
Consortium (PGC) (Major Depressive Disorder Working Group
of the Psychiatric Genomics Consortium, 2013; Levinson et al.,
2014). Most recently, two studies have respectively identified
one genome-wide significant SNP for particular subpopulations
with relatively less phenotypic heterogeneity. One used severe
Han Chinese women patients (Cai et al., 2015) and the other
reanalyzed the data collected from the PGC with stratification
by self-reported age (Power et al., 2017). In contrast, as a
GWAS analysis for a general population without restriction to
particular subpopulations, Hyde et al. (2016) used European self-
reported phenotyped data from a consumer genomics company,
23andMe, composed of a massive sample size of 75,607 cases and
231,747 controls, and identified 15 independent loci associated
with major depression. However, one possible limitation of this
study is the validity of self-reported phenotype information.
Therefore, although it provided a candidate list of disease-
associated loci for the first time, further GWASs are warranted
for discovery of new variants associated with MDD.

The power to discover new disease-associated variants
critically depends on the underlying genetic architecture,
i.e., the number of risk loci and their frequencies and effect
sizes. One possible reason for the difficulty in identifying
variants associated with MDD might relate to the disease’s
high prevalence/low heritability feature. Based on these
perspectives, Wray et al. (2012) carefully quantified that
sample sizes 4 to 5-fold greater are needed for GWASs of
MDD compared with schizophrenia (SCZ), assuming the
same number and frequency of risk variants underlying
SCZ and MDD.

In this study, utilizing GWAS summary data of PGC
(Major Depressive Disorder Working Group of the Psychiatric
Genomics Consortium, 2013), we unbiasedly estimated the
proportion of disease-associated variants and their effect size
distribution with the use of our recently developed empirical
Bayes method with a semi-parametric hierarchical mixture
model (SP-HMM) (Nishino et al., 2018). Based on the estimated
genetic architectures by this method, we explain why GWASs of
MDD have failed to discover disease-associated variants, through
comparisons with other diseases, including SCZ (Ripke et al.,
2014), type 2 diabetes (T2D) (Morris et al., 2012) with similar
heritability and prevalence to MDD, and Crohn’s disease (CD)
(Liu et al., 2015), for which GWASs to date have successfully
identified disease-associated variants. We also analyzed GWAS
data for other psychiatric disorders including autism spectrum
disorders (ASDs) (Autism Spectrum Disorder Working Group
of the Psychiatry Genomics Consortium, 2015) and anorexia
nervosa (AN) (Boraska et al., 2014), which have not had
much progress in GWAS. We then predicted a curve of the
number of significant SNPs or the number of new discoveries
for various sizes of future GWASs. This prediction would be
particularly useful for designing future GWASs for complex
diseases for which limited disease-associated variants have been
identified.

RESULTS

Proportion of Disease-Associated SNPs
and Their Effect-Size Distributions
We obtained nearly independent pruned SNP sets consisting of
around m = 100,000 SNPs for the six GWASs (Table S1). The
SP-HMM was fitted to each pruned SNP set to estimate the
proportion of disease-associated SNPs, π , and their effect size
distribution, g, non-parametrically (Figure 1). The proportion
of disease-associated SNPs, π , for SCZ was estimated to be the
largest (π̂ ∼ 42.2 %), i.e., SCZ was highly polygenic, followed
by T2D and CD. ASDs was the least polygenic (π̂ ∼ 9.4 %)
among the six GWASs. MDD was the second least polygenic,
π̂ ∼ 17.0 %. For AN, π was estimated to be intermediate,
π̂ ∼ 21.3 %.

Non-parametric estimation of g flexibly characterized the
effect-size distributions for the six diseases as follows. A
noteworthy feature in the effect-size distribution of disease-
associated SNPs, g, for MDD is that there were few SNPs with
large effects; most were within |β| = 0.03 (genotypic odds ratio
= 1.03 under the additive model) and almost all SNPs were
within |β| = 0.04 (odds ratio= 1.04). For ASDs, effect sizes were
estimated to be relatively small among the six GWASs; almost
all SNPs were within |β| = 0.05. For CD, we had many disease-
associated SNPs with effect sizes near or more than |β| = 0.05 or
odds ratio= 1.05, and also peaks of effects around |β| = 0.1. The
estimated distribution of g for SCZ lay mostly within a range of
|β| ≤ 0.03, but with peaks at relatively large effects of |β| 0.05 or
larger. AN had relatively large effects, particularly in the positive
signed region. For T2D, while most disease-associated SNPs were
within |β| = 0.03, there was a small portion of disease-associated
SNPs with the effect sizes near or more than |β| = 0.05.

Prediction of the Number of Significant
SNPs
Figure 2 shows the predicted number of significant SNPs, K̂,
with the genome-wide significance level of pc = 5 × 10−8

(Figure 2A) and suggestive level of pc = 1 × 10−6 (Figure 2B)
for each disease, assuming m∗ = 100,000 independent SNPs in
a future GWAS. Also, Figure S1 shows K̂ with 95% confidence
intervals for each disease in log scale. We first confirmed that
the observed number of significant SNPs in the pruned SNP
sets in the current GWASs, shown in dots, was well-captured
by the predicted curves in all the diseases. In both levels of
the statistical significance thresholds, the number of significant
SNPs was predicted to be by far the largest for CD in all
ranges of the effective number of cases. The predicted number
of statistical significance was the second largest for SCZ. Those
for AN were next to and near those for SCZ. For detecting 1,
10, and 100 genome-wide significant SCZ-associated SNPs, 7,000,
18,000, and 51,000 effective number of cases was predicted to be
needed, respectively. We observed that, for MDD, the predicted
number of statistically significant SNPs was exceptionally small
in both levels of the statistical significance thresholds (Figure 2).
Nevertheless, the predicted number for MDD rapidly increases
when n∗e > 50,000. For detecting 1, 10, and 100 genome-wide
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FIGURE 1 | Estimated proportions of disease-associated SNPs, π̂ , and effect-size distributions for disease-associated SNPs, ĝ. π̂ corresponds to the areas under

the curves. Numbers after the plus-minus signs (“±”) are standard errors by 100 parametric bootstrap samples based on the estimated SP-HMM. Vertical allows in

the figures indicate small peaks with relatively large effects.

significant MDD-associated SNPs, 34,000, 61,000, and 118,000
effective number of cases was predicted to be needed, respectively
(Figure S2). For detecting 1, 10, and 100 genome-wide significant
SCZ-associated SNPs, 7,000, 18,000, and 51,000 effective number
of cases was predicted to be needed (Figure S2), which was
4.9, 3.4, and 2.3 times larger than those for SCZ, respectively.
Those numbers were 4.9, 3.4, and 2.3 times larger than those for
SCZ, respectively. For ASDs, the predicted curves of the number
of disease-associated SNPs with significance in both levels of
statistical significance thresholds lay in the middle of those for
SCZ and MDD (Figure 2). For T2D, in case of n∗e < 2,000, the
number of detected SNPs was predicted to be close to those
for SCZ and AN. However, as the sample size increased, the
predicted detections for T2D with the genome-wide significance
and suggestive level became smaller than those for ASDs, or even
for MDD.

DISCUSSION

Although GWASs have played a critical role in discovering
disease-associated variants for many complex diseases, this
approach has not necessarily worked well for some diseases,

including psychiatric disorders such as MDD. In this paper, we
have attempted to explain the reason for the failure in GWASs for
such diseases, through estimating the genetic architecture based
on an empirical Bayes estimation of a flexible, semi-parametric
hierarchical mixture model (Nishino et al., 2018) using summary
data from the existing GWASs (Figure 1).

For the six diseases examined, we commonly observed that

the genetic basis consisted of enormous variants, ranging from
π̂ ∼ 9.4 to 42.2% in the nearly independent 100,000 genome-

wide SNPs, with small effects (majority of genotypic odds ratio
for risk alleles are within 1.05 under the additive model). In

regard to MDD, the SP-HMM clarified the distinctive feature
of polygenicity; the proportion of MDD-associated SNPs was
relatively small, π̂ ∼ 17.0 % compared with other diseases
(SCZ, T2D, CD, ASDs, and AN), and the absolute effect sizes for
almost all of the non-null SNPs were very small, |β| ≤ 0.04, in
the pruned GWAS data from PGC (Major Depressive Disorder
Working Group of the Psychiatric Genomics Consortium, 2013)
(Figure 1).

However, this difficulty in discovering MDD-associated
variants can be addressed with increased sample sizes. A
prediction on the number of discoveries in a future GWAS based
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FIGURE 2 | Predicted number of significant SNPs, K̂, under the estimated SP-HMM. Predicted number of significant SNPs, K̂, was calculated assuming

m* = 100,000 independent SNPs in the “future” GWASs. Dots show observed values in the pruned SNP sets of current GWAS data. (A) Genome-wide significance

level: pc = 5 × 10−8. (B) Genome-wide suggestive level: pc = 10−6.

on the estimated genetic architecture indicated that the number
of significant SNPs can substantially increase when collecting
50,000 ormoreMDD-cases (and the same number of controls). It
can reach as much as 100 SNPs out of 100,000 independent SNPs
for∼120,000 MDD-cases (Figure 2 and Figure S2). Note that the
results cannot rule out the importance of taking into account rare
variants, environment-gene interaction (Caspi et al., 2010), and
heterogeneity possibly resolved by stratified analysis (Power et al.,
2017).

One reviewer of this article kindly informed us that the MDD-

PGC group identified 44 independent significant SNPs using
the seven cohorts (130,664 cases and 330,470 controls in total)

including PGC data with 16,823 cases and 25,632 controls (Wray
et al., 2018). One part of the results of that study seems to

be consistent with our estimate that the effect sizes of MDD-

associated SNPs were very small, i.e., |β| ≤ 0.04 (Figure 1);
the crude odds ratio estimates of 41 SNPs of 44 significant

SNPs in the PGC (2017) were 0.96, 0.97, 1.03, or 1.04, that

is
∣

∣

∣
β̂

∣

∣

∣
≤ 0.04 (Table 1 in Wray et al., 2018). Note that the

true effect sizes of the 44 SNPs would be generally smaller
than those of estimates, as the crude estimate is subject to the

“winners curse.” On the other hand, by the present method,

the number of significant SNPs assuming 100,000 independent
SNPs was predicted as 355.1 (95% confidence interval 239.7–

683.3) using the sample with 130,664 cases and 330,470 controls,
which largely exceeded the observed number, 44 (Figure S1).

(Note that our estimation targeting 100,000 independent SNPs
is supposed to underestimate the number of significant SNPs
seen in practical situations, where SNPs with higher association
(e.g., lower P-value) are preferentially selected among “all SNPs”
so that linkage disequilibrium (LD) among selected SNPs are

nearly independent). The discrepancy between our prediction
and the observation could be due to the difference between the
PGC cohort data and data from the other six cohorts, especially,
self-reported data from 23andMe with 130,664 cases and 330,470
controls, which accounted for the large proportion of the total
cohorts. In fact, the SNP heritability estimates in observed scales
were much smaller for 23andMe data (0.038) than for PGC data
(0.128) (Hyde et al., 2016). Our over prediction suggests that for
MDD, possibly for other diseases, phenotyping methods have
great impact on the number of significant SNPs. Despite the
reduced power, self-reported data from a consumer genomics
company, e.g., 23andMe, would increase in importance due to
its utility. It is our intention to clarify the difference in effect-
size of disease-associated variants between self-reported data and
established phenotyped data.

In addition to MDD, the prediction analysis can be used
for comparing the number of discoveries among diseases. For
example, the number of future discoveries for AN is expected to
be of the same extent as for SCZ, while the number for ASDs is
predicted to be intermediate between those for SCZ and MDD.

Using a method similar to the present study, Park et al.
(2010) investigated the relationship between sample size and
the number of significant disease-associated SNPs based on the
estimated effect size distribution of disease-associated SNPs.
This method, however, is limited to relatively large effect sizes
in the effect-size estimation due to the need to use SNPs
with some significant level, and requires adjustment for the
winner’s curse (selection bias in using top significant SNPs)
in the estimation. Stahl et al. (2012) proposed a method to
estimate the proportion of disease-associated SNPs and the
effect-size distribution using an approximate Bayesian polygenic
analysis (ABPA). The application to evaluate the relationship
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between sample size and the number of significant disease-
associated SNPs has been limited to few studies because of
technical complexity and excess computational burden with
many simulations (to our knowledge, Ripke et al., 2013 applied
the ABPA method). There are also several “Gaussian mixture
models” to estimate the underlying effect sizes using the z-scores
for SNPs as the inputs (Thompson et al., 2015; Holland et al.,
2016). These models are applicable to investigate the relationship
between sample size and the number of significant disease-
associated SNPs, although the authors did not directly study
this problem. Note that the definitions of effect sizes in the
above existing methods are different from that of the SP-HMM,

e.g., 2f
(

1− f
)

β2for Park et al. (2010), and
√

2f
(

1− f
)

β for

Thompson et al. (2015), where f is the allele frequency.
The features of the SP-HMM make it quick and easy to

compute the number of significant disease-associated SNPs given
sample sizes understanding the estimated proportion of the

disease-associated SNPs and effect-size distribution where the

effect size is easy to understand, defined as the genotype log-
odds ratio under the additive model, β . In making inference

about a SNP regarding its null/non-null association with disease

status, the number of components, in principle, is two (i.e.,
null and non-null components). In modeling the non-null

component (effect size distribution), the parametric approach,
e.g., finite normal mixture models with several components,

is a popular choice. Unlike such a parametric model, we

assume a non-parametric distribution as a “single” non-null
component to cover all such non-null components. This is the
interpretation for the modeling formula given in the subsection
“Semi-parametric Hierarchical Mixture Model (SP-HMM)” in
the Materials and Methods section. Meanwhile, in estimation
using the expectation–maximization (EM) algorithm we can
see our model as that with “so many” non-null components
(the number of components = B, described in the subsection
“Semi-parametric Hierarchical Mixture Model (SP-HMM)” in
the discretized effect size distribution used in the estimation
algorithm). We have shown that with 3–5,000 or more cases
(and the same number of controls), the estimates of π and g
are fairly accurate, leading to reliable estimates of the number of
significant disease-associated SNPs (Nishino et al., 2018). Note
that our prediction of the number of significant SNPs targets
“the LD-pruned SNP set” in the future GWAS data, where
SNPs would be randomly selected so that LDs among SNPs
should be r2 < 0.1. This limitation regarding the target SNPs
(i.e., the LD-pruned SNP set) will be addressed in future work.
Although we assumed 100,000 SNPs in the LD-pruned set from
the observations in Table S1, a different number of SNPs in the
LD-pruned set would be considered in the proposed approach.
This is because the number should depend on the effective size
of study population, as is the case for “the effective number of
chromosome segments” (Me; the key determinant of the accuracy
of genomic prediction) does, i.e., Me = 2.938 N0.965

e under 30
Morgan in total, where Ne is the effective population size (Lee
et al., 2017).

In conclusion, our prediction analysis is generally useful
for designing future GWASs for complex diseases, through

estimating additional number of cases (and controls) needed
to be collected in a single cohort study, or additional cohorts
(sample sets) needed to be included in a meta-analysis, and for
discovering a given number of new disease-associated variants.

MATERIALS AND METHODS

Semi-Parametric Hierarchical Mixture
Model (SP-HMM)
To estimate polygenic architectures of the six diseases, we used
the SP-HMM (Nishino et al., 2018). The SP-HMM estimates
the proportion of disease-associated SNPs, π , and their effect
size distribution, g, non-parametrically, using GWAS summary
statistics on effect sizes (genotype log-odds ratios) which often are
available through Web sites. The “non-parametric estimation of
g” enables us to flexibly characterize the effect-size distributions
without any assumptions for forms of the distribution. The SP-
HMM assumes independence among SNPs, as was justified by
pruning SNP described below. The SP-HMM has been validated
through various types of polygenic scenarios and the required
sample size was confirmed to be around 3–5,000 or more (see
Nishino et al., 2018 for more details about the SP-HMM). The
SP-HMM is briefly described in the following.

Letting a and A be the derived and ancestral alleles status,
respectively. The genotypes AA, Aa, and aa in each SNP assumed
to have dosages xj = 0, 1, and 2, respectively. Under the additive
allele dosage model, we defined the effect size, βj, as the genotype
log-odds ratio for the j-th SNP of the total m SNPs. The estimate
of βj was denoted by Yj = β̂j. For Yj’s, a two-component mixture
model with null and non-null SNPs components is assumed:

fj
(

yj
)

= (1− π)f0j
(

yj
)

+ π f1j
(

yj
)

,

where f0j and f1j are the probability densities for null and non-
null SNPs, respectively, and π is the probability of being non-
null. Let V̂

β̂j
be an empirical variance estimate of β̂j. Asymptotic

distribution of β̂j were assumed. For null SNPs, we specified

yj ∼ f0j
(

yj
)

= N
(

0, V̂
β̂j

)

. For non-null SNPs, we assumed

the hierarchical structure: yj|βj ∼ f1j
(

yj|βj

)

= N
(

βj, V̂β̂j

)

and

βj ∼ g, where the effect-size distribution g is unspecified. We
regard this model as a semi-parametric model, as the standard
asymptotic normality is assumed for β̂j at the individual SNP
level, while its true effect size βj follows a non-parametric
prior distribution g. The assumption of independence among
yj’s would be reasonable for a set of LD-pruned SNPs (for the
details about pruning see the subsection of “GWAS Data”). We
estimated the priors, π and g, based on the data by applying
an expectation–maximization (EM) algorithm, that is, empirical
Bayes estimation. The non-parametric estimate of g was discrete
with mass points p= (p1, p2, ..., pB) at a series of nonzero points b
= (b1, b2, ..., bB) (b1 < b2 < ··· < bB). We set b1 =−0.3 and bB =
0.3 (0.74 and 1.35 in odds ratio). The number grid point B= 120
was used, such that b = (−0.300, −0.295, . . . , −0.005, 0.005, . . . ,
0.295, 0.300). The initial value of π and the initial distribution
of g were important and determined by a careful procedure (for
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details, see Nishino et al., 2018). To estimate standard errors of
π̂ and 95% confidence interval of K̂, the parametric bootstrap
method based on the estimated SP-HMM was used. The validity
of the estimation using the SP-HMM has been demonstrated via
an extensive simulation experiment under various scenarios in
terms of sample size, π , g, and possible correlations among SNP
(Nishino et al., 2018).

Prediction of the Number of Significant
SNPs
For the j-th SNP, the power to detect an association with effect
size βj, Powerj(βj), is given by

Powerj(βj) = Φ
βj/

√

V̂
β̂j
,1
(−zc)+ (1− Φ

βj/

√

V̂
β̂j
,1
(zc)),

where Φµ,1(·) denotes the cumulative distribution function of
the normal distribution with mean µ and unit variance, and
zc denotes the rejection threshold determined by a significance
level, pc, satisfying zc = Φ−1

0,1 (1 − pc/2). In this study, pc = 5

× 10−8 (the genome-wide “significant” threshold) and pc = 1 ×
10−6 (the genome-wide “suggestive” threshold) were used. Under
the SP-HMM, the rejection probability, i.e., the probability that
the j-th SNP is significant, is given by

Pj = (1− π)Powerj (0) + π

∫ ∞

−∞

Powerj
(

βj

)

g
(

βj

)

dβj. (1)

Let nr and ns be the sample sizes for cases and controls,
respectively, in an existing GWAS from which we can estimate
the SP-HMM. In addition, we envisage a “future” GWAS with n∗r
cases and n∗s controls. Based on the formula (1), the probability of
significance for the j-th SNP in the future GWAS can be obtained
through replacing V̂

β̂j
with V̂

β̂j
×1/(1/nr + 1/ns)×(1/n∗r + 1/n∗s ),

since the empirical variance of β̂j is approximately proportional
to the sum of inverses of case and control sample sizes. This
approximation has been used in the GWASmeta-analysis (Willer
et al., 2010). The derivation in the logistic regression for “large
sample and small effect-size” limit was done elsewhere (e.g., by
Lin and Sullivan, 2009). The number of significant SNPs, K, in
the future data set consisting ofm∗ SNPs is then predicted as

K̂ = m∗ × P. (2)

where P is the average rejection probability over all SNPs in the
SNP set, P =

∑m
j=1 Pj/m, replacing V̂

β̂j
with V̂

β̂j
×1/(1/nr +

1/ns) ×(1/n∗r + 1/n∗s ), π with π̂ and g with ĝ, respectively, in the
formula (1). We set m∗ =100,000 for targeting 100,000 pruned
SNPs. Since the term (1/n∗r + 1/n∗s ) determines the predicted

number of significant SNPs, K̂, we define the “effective number
of cases” as n∗e = 2/(1/n∗r +1/n∗s ). As such, we can obtain a

curve of the number of significant SNPs in a future GWAS, K̂, as
a function of its sample size, n∗e , based on the estimated SP-HMM
using the existing GWAS data.

GWAS Data
The six sets of GWAS summary statistics for MDD (Major
Depressive Disorder Working Group of the Psychiatric
Genomics Consortium, 2013), SCZ (Ripke et al., 2014), T2D
(Morris et al., 2012), CD (Liu et al., 2015), ASDs (Autism
Spectrum Disorder Working Group of the Psychiatry Genomics
Consortium), and AN (Boraska et al., 2014) were used, which
are all available online (MDD, SCZ, ASDs and AN, www.med.
unc.edu/pgc/downloads; T2D, http://www.diagram-consortium.
org/; IBD, http://www.ibdgenetics.org/downloads.html; see Table
S1 for sample size). To restrict analysis to well-imputed, high-
quality variants, we used only SNPs that existed on the HapMap
3 reference panel (International HapMap 3 Consortium.,
2010). For the pruned SNP sets, we included SNPs randomly,
irrespective of degrees of association such that no SNPs in the
set were in r2 > 0.1, as done in the previous work (Nishino et al.,
2018). We selected one SNP randomly from all the SNP data
and SNPs in LD (r2 > 0.1) with the selected SNP removed. This
was repeated until no SNPs remained. LD information(r2) was
extracted from the HapMap database (HapMap phases I+II+III,
release 27) (International HapMap 3 Consortium., 2010). With
this pruning process, we could interpret the significant SNPs
as SNPs linked to independent causal variants. Meanwhile, the
SP-HMM analysis evaluates the marginal effect of the pruned
SNPs and underestimates the effects of causal variants; estimated
effect-size distributions should be smaller than those of causal
variants, and the estimates π̂ × (the number of SNPs in the
SNP sets) would give conservative estimates of the number of
causal variants. Nevertheless, the SP-HMM estimation reflects
the effects of the causal variants for each disease through
linkage disequilibrium. LD information was retrieved from the
HapMap (International HapMap 3 Consortium., 2010) data base
(HapMap phases I+II+III, release 27). The ancestral/derived
alleles for each SNP were determined from dbSNP (Nishino
et al., 2018). We calculated the estimate of log-odds ratio
for the j-th SNP, β̂j, and its variance, V̂

β̂j
for applying the

SP-HMM to the pruned SNP sets and predicting of number of
significant SNPs.

Empirical Validation for Prediction of the
Number of Significant SNPs
We validated our approach for predicting the number of
significant SNPs using hypothetical “current” and “future”
GWAS data; we fitted the SP-HMM to the “current” GWAS data
with smaller sample size to predict the number of significant
SNPs in the “future” GWAS data with larger sample size, and we
compared the predicted value with the observed one. The three
pairs of GWAS summary statistics for SCZ (for “current” data,
Cross-Disorder Group of the Psychiatric Genomics Consortium,
2013; for “future” data, Major Depressive Disorder Working
Group of the Psychiatric GWAS Consortium, 2013), bipolar
disorder (for ’current’ data, Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013; for ’future’ data, Ripke
et al., 2014), and coronary artery disease (for “current” data, The
Coronary Artery Disease (C4D) Genetics Consortium, 2011; for
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“future” data, Schunkert et al., 2011) are all available online (SCZ,
bipolar disorder, www.med.unc.edu/pgc/downloads; coronary
artery disease, www.cardiogramplusc4d.org/data-downloads/).
The quality control and pruning for the SNP data were done as
described in the previous subsection, “GWAS Data.” For SCZ,
bipolar disorder, and coronary artery disease, there were 101314,
96681, and 79512 SNPs in the pruned sets, respectively. Those
values were set asm∗ in the formula (2). The number of SNPs was
smaller for coronary artery disease (79512), as the original GWAS
summary data have been imputed using HapMap data. Table S2
shows the validation results. The observed number of significant
SNPs for each disease was well-predicted by our approach.
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