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Body weight (BW) is one of the most important economic traits for animal production
and breeding, and it has been studied extensively for its phenotype–genotype
associations. While mapping studies have mostly aimed at finding as many loci as
possible that contributed to the variation in BW, the role of other factors in its genetic
architecture, including their frequencies in the population and their interactions, have
been largely overlooked. To comprehensively characterized the genetic architecture of
BW, we performed a genome-wide association study (GWAS) both at the single-marker
and haplotype level on birds from four indigenous Chinese chicken breeds (Chahua,
Silkie, Langshan, and Beard), rather than studying crosses between two founder lines.
Additionally, samples from two more breeds (Red Junglefowl and Recessive White) were
included to better reflect variable genetic characteristics across populations. Six loci
were mapped in this study, revealing the polygenic basis underlying BW. Moreover,
by further examining the frequencies of the significantly associated haplotypes in
each subpopulation and their effect sizes, most of the loci were found to affect BW
in the Beard chicken breed alone. Two loci in GGA9 and GGA27, however, had a
common effect on BW across subpopulations, showing that different underlying genetic
mechanisms contribute to the phenotypic variability. These findings, particularly the
variable genetic architectures found in different loci, improve our understanding of the
overall genetic contributions to the large variability in BW among Chinese indigenous
chicken breeds. These findings thus will have important implications for future chicken
breeding.

Keywords: genome-wide association study, haplotype-based association study, genetic architecture, body
weight, polygenic basis, Chinese indigenous chicken
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INTRODUCTION

As a well-studied quantitative trait in chickens, body weight
(BW) is not only a major breed characteristic but also a trait of
economic importance. One of the most used study approaches is
gene mapping. Phenotype to genotype associations have revealed
substantial information regarding the polygenic basis of chicken
BW. To date, several hundred quantitative trait loci (QTLs)
affecting BW at different stages have been listed in chickenQTLdb
(Hu et al., 2016). As sequencing has become a more routine study
tool, comparative population genomics have further advanced
our understanding from an evolutionary prospective (Rubin
et al., 2010; Elferink et al., 2012; Qanbari et al., 2015). Although
one earlier study found that the body composition of mice
was determined by a very large number of loci, each with
an infinitesimally small effect (Martinez et al., 2000), recent
studies showed that some genes could still have more important
roles than others in contributing to the phenotypic variability.
Regardless, only a handful of genes have been found to be
candidates with relatively large effects on BW in chickens (Rubin
et al., 2010; Gu et al., 2011; Tang et al., 2011; Xie et al., 2012;
Jia et al., 2016; Wang et al., 2016). One reason underlying this
dilemma is likely the highly variable genetic architecture. Apart
from the number of genetic variants affecting a trait, other
factors, such as the frequencies in the population, the magnitude
of the effect sizes and their interactions with each other,
and the environment, are also important to a comprehensive
understanding of the complex genetic architecture (Timpson
et al., 2018).

The classical experimental design in mapping studies involves
crosses between two founder lines, one of which is often a
commercial line with limited genetic diversity. The abundant
indigenous chicken breeds in China, which have a wide
geographical distribution across the country and thus show
remarkable differences in morphology, production and BW
growth (Zhang et al., 2011), are valuable genetic resources to
study polygenic basis and elucidate variable genetic architecture
of the BW traits. Many QTLs have been repeatedly detected
in several Chinese indigenous chicken breeds (Hu et al., 2016),
which indicates a shared genetic basis. In contrast, due to the
complex origin and demographic history of adaptation of the
native birds (Miao et al., 2013), a few identified genes have
common influences in several native breeds. One recent finding
of a bone morphogenetic protein 10 (BMP10) mutation in
Yuanbao chickens, which significantly decreases body length,
reinforces this impression (Wang et al., 2016).

The aim of this study was to comprehensively characterize
the genetic architecture affecting BW in Chinese chickens. We
sampled birds from four Chinese indigenous breeds and recorded
their BW from birth to 15 weeks of age. By performing a
genome-wide association (GWA) study on both single-markers
and haplotypes, we identified six loci contributing to the variation
of BW in different breeds and characterized their frequencies
across the subpopulations as well as the corresponding effect
sizes. Epistatic scans further uncovered several pairs of interactive
loci. These findings reveal that the complexity of BW not only
originates from multiple loci contributing to the same trait but

also the underlying variable genetic architectures. These will
aid in the experimental design of future studies to provide a
comprehensive understanding of the genetic contributions to
phenotypic variance.

MATERIALS AND METHODS

Animal Experimental Ethics
All animals used in the current study were cared for and used
according to the guidances (HZAUMU2013-0005) approved by
the Ethics Committee of Huazhong Agricultural University.

Experimental Animals
The samples of our studies were collected from the National
Chickens Genetic Resources (NCGR, Jiangsu Province)1, which
is the off-site conservation base for 29 Chinese indigenous
chicken breeds. In the NCGR, approximately 60 families are
maintained for each generation of a single breed. Within each
family, the mating ratio is 1–12. In this study, four indigenous
breeds consisting of two typical low-body-weight breeds [Chahua
chicken (C) and Silkie (S)] and two intermediate and high-
body-weight breeds [Beard chicken (B) and Langshan chicken
(L)], were included. Rather than directly sampling from the
conserved population, birds were specifically bred for our study
by performing artificial insemination on hens with sperm pools;
in this way, birds used in this study were randomly selected from
the original covserved population. After hatching these fertilized
eggs to chicks, approximately 100 birds with approximately equal
numbers of cocks and hens were phenotyped from each breed
(Supplementary Table S1). Additionally, 4 Red Junglefowls (RJ)
[data from (Elferink et al., 2012)] and 99 Recessive White
chickens (RW) were used in the haplotype-based analyses.

Phenotyping
Live BW was measured at hatch and every week until 15 weeks of
age, after which all chickens were euthanized. For each BW trait
of a single breed, boxplots were generated by R (3.3.0)2 (R Core
Team, 2017) to screen for outliers. Records that were more than
1.5 times the interquartile range away from the lower or upper
quartile of the boxplots were marked for further examinations.
Such outliers were maintained only when they were consistently
high across the growth phase; otherwise, the data points were
eliminated from further analysis. The phenotypic records of
eight individuals (2C, 4L, and 2B) were removed, as more than
one-third of their data points failed the quality control.

Genotyping
Blood samples were collected at 15 weeks of age. Genomic
DNA was then extracted by the phenol-chloroform method and
diluted to 50 ng/ml. Genotyping was performed using Illumina
60K Chicken SNP BeadChips (Groenen et al., 2011). Quality
control was conducted on all 394 birds (after quality control
of their phenotypic records) across four breeds by customized

1http://www.genebank.org.cn/read.asp?id=1
2https://www.r-project.org/
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scripts in R (3.3.0) (R Core Team, 2017) using the following
criteria: individual samples were excluded with call rates < 0.9;
single-nucleotide polymorphisms (SNPs) were removed as a
result of call rates < 0.9, minor allele frequency (MAF) < 0.05,
or undetermined positions on the chromosome. For the Z
chromosome, 1611 markers were excluded since they were falsely
genotyped as heterozygous in female individuals.

After imposing the above constraints, 388
individuals (Supplementary Table S1) and 46211 SNP
markers (Supplementary Table S2) were used for the next-step
analyses.

Genetic Diversity and Population
Structure Analysis
PLINK (1.9) (Purcell et al., 2007) was used to evaluate the genetic
diversity within each subpopulation. Firstly, we calculated the
allele frequencies of both alleles at each locus using the command
“--freq” and then obtained the proportion of polymorphic loci
(Ppoly), whose MAF > 0.05, across all 46211 SNPs. Next, the
pairwise linkage disequilibrium values (r2) from the command
“--ld-window” were used to select the independent SNP sets
of each subpopulation and to plot the pattern of linkage
disequilibrium (LD) decay. Markers were determined to be
“independent” when the r2 value between them was below 0.2.
The expected heterozygosity values (He) were derived at each
of the independent SNP loci using the command “--hardy”; the
Hardy–Weinberg equilibrium exact test p-values were acquired
from the same command. Finally, we assessed the population
structure by principal component analysis using TASSEL (5.2.30)
(Bradbury et al., 2007).

Statistical Analysis
Consequently, in addition to the two non-genetic factors “sex”
and “birth-weight,” “breed” was included as the third fixed
effect in the following models. To further correct for population
stratifications, the polygenic effect as a random effect was also
included. Therefore, the three fixed effects and the polygenic
effect constituted the basic model for all of the following analyses
done by the R package – GenABEL (Aulchenko et al., 2007b)
throughout this study. (All scripts are available from the authors
on request).

A two-step score test using mixed model and regression
(GRAMMAR) (Aulchenko et al., 2007a) was adopted in
GenABEL. Briefly, by implementing the kinship matrix from
“ibs” into the function “polygenic” in GenABEL, we obtained
the residuals from the model, which accounted for all the fixed
effects, the polygenic effect, and covariates, if they were present.
Then, these residuals were used as the dependent traits in a simple
linear regression for single-marker, haplotype-based association,
or epistatic scans.

Single-Marker Association Analysis
For the single-marker association study, the linear mixed model
was constructed as follows:

y = µ+ Fβ+ XSaS + G+ ε (1)

Here, y is the phenotypic value, µ is the overall mean, β is the
fixed effects, F is the design matrix of all three fixed effects, aS is
the marker genotype effect, and XS is the vector of genotypes at
the tested SNP, G is the random polygenic effect; its variance is
defined as ∅σ2

G, where ∅ is the kinship matrix from the whole-
genome SNPs and σ2

G is the additive genetic variance due to the
polygenes. In addition, the residual effects ε ∼

(
0, Iσ2

ε

)
.

In GenABEL, the first step is to build a kinship matrix φ with
the whole-genome SNPs using the function “ibs,” then, by using
“polygenic” and “mmscore,” we further estimated the genetic
effects of each SNP.

Meanwhile, a second R package, FarmCPU (Liu et al., 2016),
was also used here. In FarmCPU, rather than using the whole-
genome SNPs, the kinship matrix ∅ was defined by a selected
set of “pseudo quantitative trait nucleotides (QTNs).” Briefly,
to remove the confounding between the tested SNP and both
population structure and kinship, one fixed model and one
random model were iteratively tested. The random model was
used to select and evaluate the set of “pseudo QTNs” for every
tested SNP, and the fixed model then fitted these “QTNs” to
control false positives. Estimated genetic effects of the tested SNP
were obtained, when a stage of convergence of the two models
was reached after the iterative process.

The genomic inflation factor λ of both methods was further
examined. Values of λ below 1.1 were considered acceptable,
and the test statistics were further divided by λ to ensure that
there were no indications of population stratification or cryptic
relatedness in the final corrected dataset.

When multiple SNPs on the same chromosome were found
to be significantly associated with the same trait, tests for
their independence were performed. We first included the most
significant SNP as an additional covariate in the model, and
then we tested the remaining SNP(s) individually. If there were
tested SNP(s) still showing significant association with the traits,
the most significant SNP from this round of testing was also
included as one covariate; the model then contained two SNPs as
covariates. The testing continued until no significantly associated
SNP was found [see model (2) below]. Last, we defined those
remaining significant SNPs as independent signals, which led to
our final result set.

y = µ+ Fβ+
∑N

i=1
Ciγi + Xsas + G+ ε (2)

Here, y,µ, β, F, as, Xs, G, and ε are the same as described in model
1; N is the number of covariates included in the model, γi is the
effect of the ith SNP as the covariate, and Ci is the vector of the
corresponding covariate.

The genome-wide significance thresholds were defined using a
randomization test based on 1,000 permuted datasets (Churchill
and Doerge, 1994). Afterward, 1 and 5% significance thresholds
of each trait were used to screen for significantly associated SNPs.

The proportion of the phenotypic variance explained by each
of the significant SNPs was calculated as follows:

Var% =
2pqa2

Vary
∗100%
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Where p and q are the frequencies of the two alleles at the tested
locus. As all of the final SNPs were associated with BW at multiple
weeks of age, we used the phenotype that had the most significant
association with the SNPs. Thus, a is the marker genotype effect
estimated from the selected BW trait and Vary is the variance of
the selected BW trait.

Haplotype-Based Association Analysis
To further explore the effects of haplotypes harboring the
identified significant SNPs, the corresponding blocks were first
defined. By employing Haploview 4.2 (Barrett et al., 2005), pair-
wise LD r2 values were evaluated for each breed separately.
Haplotype blocks were either defined directly by the default
settings implemented in Haploview or defined as the clusters of
SNPs that had r2 > 0.2 between its adjacent SNPs. Within these
selected regions, SNPs were phased using fastPHASE 1.2 (Scheet
and Stephens, 2006) and then the frequencies of all identified
haplotypes were calculated. We retained those haplotypes that
had frequencies ≥ 5% in at least one of the subpopulations for
further association analyses.

The haplotype effects were evaluated at two levels based on
model 3.

y = µ+ Fβ+ Xhah + G+ ε (3)

Here, y, µ, β, F, G, and ε are the same as described in model 1.
First, we tested the haplotypes separately to obtain the

individual effects. For example, there were six haplotypes defined
for BW_Q2 (Supplementary Table S3). When the effect of
haplotype “CGAG” was to be estimated, two “alleles” were
defined accordingly, one was this “CGAG” and all remaining
haplotypes were defined as the other “allele.” Therefore, its effect
could be evaluated as the allele substitution effect. In addition,
ah is the estimate of the tested haplotype, while Xh is a column
vector filled with the counts of the selected haplotype (0, 1, or 2).
Bonferroni correction was used to obtain the threshold and the
total test number was the sum of the tested haplotypes across the
six loci.

Second, the effects of those significantly associated haplotypes
were further estimated in their diploid form. Using haplotype
“CGAG” in BW_Q2 as an example, the estimates of homozygotes
“CGAG/CGAG” were evaluated in this step. Here, the coefficient
vector Xh consists of values inferring the corresponding
genotypes of each sample (e.g., coefficient “66” means the
corresponding individual had haplotype “CGAG” on both
chromosomes, and there were tens of different genotypes for one
locus); ah is the estimates of the two combined haplotypes. Again,
Bonferroni correction was used. The total test number was the
number of tested loci, which equaled six.

Epistatic Analysis
To perform the variance-heterogeneity genome-wide association
study (vGWAS), we transformed the phenotypes following an
inverse-normal transformation (customized R scripts can be
found in Supplementary Data Sheet S1). Then, the values were
squared before we used them in the standard single-maker GWA
analyses by GenABEL, as model 1 [details can be found in Yang
et al. (2012), Shen et al. (2014)].

Significant results from the vGWAS together with selected
SNPs from the GWA analyses (a total of 10 SNPs) were further
examined individually against the whole-genome SNP set, based
on a two-locus model, to scan for the potential G× G pairs.

y = µ+ Fβ+ G+ X1a1 + X2a2 + ε (4)

y = µ+ Fβ+ G+ X1a1 + X2a2 + Ea1×2 + ε (5)

Here, y, µ, β, F, G, and ε are the same as model 1. The null
model (model 4) included the marker genotype effects of two loci,
where X1 and X2 are the coefficient vectors of additive effects,
and a1 and a2 are the effect estimates of the two tested SNPs,
respectively. The full model (model 5) fitted an extra interactive
term with E, the design matrix for the interactive effect between
the two loci, and a1 × 2, the estimated epistatic genetic effect. By
comparing the residuals from these two models, F statistics were
calculated to evaluate the significance of the effects. Accordingly,
permutation tests based on 1000 randomized datasets were
performed to empirically derive the significance for each of the 10
targeted SNPs.

Candidate Gene Search and Gene
Ontology (GO) Analysis
Based on the pairwise r2 values calculated in the earlier steps, the
average lengths between two markers, when their r2 dropped to
0.2, were obtained (Table 1). Given that r2 descreased over the
longest distance (72 Kb) in Silkie chicken, the candidate regions
were thus determined to 72 Kb upstream and downstream of
the significant SNPs. Therefore, candidate genes were searched
within these defined regions using ENSEMBL biomart3 (Kinsella
et al., 2011). GO enrichment analysis on the identified candidate
genes was further carried out using DAVID4.

RESULTS

Genetic Diversity of Beard Chickens Is
Different From That of Other
Subpopulations
As a result of random sampling from the original conserved
populations, the observed genotypes at approximately 99%
of SNP loci conformed to Hardy–Weinberg expectations in
each subpopulation (Table 1). The distributions of MAF and
He estimated from the whole-genome SNP set in the four
subpopulations are presented in Figures 1A,B. While Chahua,
Silkie, and Langshan breeds show similar distributions of these
two parameters, Beard displays a rather different pattern. We
observed a decreased proportion of MAF and He between 0 to 0.1
in Beard chickens, which revealed that a relatively smaller part of
Beard’s genome has low levels of heterozygosity. The LD-decay
pattern (Table 1 and Figure 1C) also shows that r2 decreases
over shorter distances (an average of 3.5 Kb) in Beard than in the
other three subpopulations. Overall, there was a clear difference

3http://www.ensembl.org/biomart
4https://david.ncifcrf.gov/
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TABLE 1 | Estimates of genetic diversity within each subpopulation.

Breeds Nsamples Estimated on all markers Estimated on independent markers

Nall_M
1 Ppoly

2 PH−W
3 Nindep_M

4 Lr2 = 0.2
5 He

6

Chahua 97 46211 84.66% 99.27% 5980 7.5 0.299

Silkie 100 80.31% 99.45% 4726 72 0.333

Langshan 96 84.08% 99.36% 4926 62.5 0.309

Beard 95 94.82% 99.27% 13225 3.5 0.362

1Nall_M indicates means the number of all markers after quality control.
2Ppoly indicates the percentage of polymorphic loci, with minor allele frequencies more than 0.05.
3PH-W indicates the percentage of SNP loci conformed to Hardy–Weinberg expectations.
4Nindep_M indicates the number of independent markers in each subpopulation.
5Lr2 = 0.2 indicates the average physical distance (Kb) between two adjacent markers when their r2 drop to 0.2.
6He indicates the average expected heterozygosity.

FIGURE 1 | Genetic diversity of four subpopulations estimated by MAF, He, and LD decay. (A) Distributions of minor allele frequency (MAF) estimated from the
whole-genome single-nucleotide polymorphism (SNP) set in each subpopulation. Rectangles of different colors indicate different clusters of MAF, while rectangles of
different lengths indicate the proportions of markers within different clusters. (B) Distributions of expected heterozygosity (He) estimated from the derived
independent SNP set in each subpopulation. Rectangles of different colors indicate different clusters of He, while rectangles of different lengths indicate the
proportins of markers within different clusters. (C) Decay of linkage disequilibrium (LD) of the four subpopulations across the genome. The pairwise linkage
disequilibrium (r2) is plotted against the corresponding physical distances. When r2 drops to 0.2, the longest interval between two SNPs is the 72 Kb observed in
Silkie (shown with dotted lines on graph).

in the level of genetic diversity between Beard and the other three
subpopulations.

Large BW Variations Were Observed
Among These Indigenous Breeds
After quality control, 388 birds from four Chinese native
chicken breeds were included in this study and their live BW
measurements were recorded from birth to 15 weeks of age.

The descriptive statistics of the phenotypic measurements of each
subpopulation are given in Supplementary Table S4 and their
growth curves are presented in Figure 2. In agreement with their
adult weight [mean values of BW at 300 days of age recorded
in Animal Genetic Resources in China-Poultry (Zhang et al.,
2011)], the 15-week BWs of Beard and Langshan chickens were
significantly heavier than those of Chahua and Silkie (p < 0.01,
t-test). While no significant differences were found between
Chahua and Silkie throughout all examined weeks, there were
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FIGURE 2 | Growth curves of the four studied subpopulations from birth to 15 weeks of age. X-axis of the main plot shows chickens at different weeks of age, while
y-axis presents their mean body weights. The inset map of China at the left side is marked with different colors to show the geographical origins of the four
subpopulations. Boxplot insets, as two examples, show the mean differences of four subpopulations at 8 and 15 weeks of age. Letters a–d in the boxplots indicate
the statistical differences between subpopulations. Subpopulations with different letters have significantly different means (p < 0.05). For example, at 8 weeks of age,
the mean body weights between Chahua and Silkie are not significantly different, as they both are labeled with the letter “a.” On the contrary, the mean body weight
of Langshan is significantly different from that of Beard, as they are labeled with different letters.

differences between Beard and Langshan chickens from weeks 3
to 14. Therefore, these large variations in BW provided the basis
for our next-step analysis.

Six Loci Were Found to Be Significantly
Associated With BW Across Different
Growth Stages in This Population
The principal component analysis of our dataset using the first
two components showed that these four subpopulations had
distinct genetic backgrounds (Figure 3A). Based on thresholds
determined by permutation tests, significantly associated SNPs
found by R package GenABEL were clustered into 13 QTLs
(Supplementary Table S5). Of these 13 QTLs, five were found to
be associated with more than one BW trait and thus were retained
for further testing. Moreover, a second R package, FarmCPU
was employed to perform a parallel GWA analysis. Three
significant signals co-localized with QTLs detected by GenABEL,
which were also included in the final result set (Supplementary
Table S5). After testing for their independence, a total of 8
SNPs clustered into six independent QTLs on six chromosomes
were identified at two significance levels in our single-marker
association analysis (Table 2 and Figure 3B). These loci were
named as a combination of BW_Q (QTLs associated with BW)
and the chromosome number where the QTL was located.
Moreover, when multiple independent QTLs co-localized on the
same chromosome, ordered letters in the alphabet were added

at the end to indicate their sequential position along the same
chromosome.

All six QTLs were found to be associated with BW at several
weeks of age. Especially, two QTLs, BW_Q9 and BW_Q27, were
comprised of two correlated SNPs that were only tens of Kbs
apart. In addition, more QTLs, with larger average effects, were
found for growth at intermediate and late growth phases than
for growth at early phases. Each QTL explained only a small
proportion of the phenotypic variances, which further revealed
the highly polygenic nature of the BW trait.

Haplotypes Within the Six QTLs Revealed
Both Unique and Shared Genetic Basis
Underlying the Large Variations in BW
Among the Four Subpopulations
Next, we examined the identified loci based on haplotypes around
the significant SNPs (i.e., core SNPs) listed in Table 2. The effects
of all six QTLs were confirmed to be significant in the haplotype-
based association (Figure 4). To further clarify the patterns of
haplotype frequencies across different subpopulations, additional
data from 4 RJ and 99 RW chickens were used.

In general, the identified haplotypes were associated with BW
traits for a longer period of time than those found in the single-
marker association analysis. In concordance with this result, the
estimated effects of these haplotypes were larger than those of
the corresponding significant SNPs. For each locus, multiple
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FIGURE 3 | Quantitative trait loci (QTL) profile of the six identified loci across the genome. (A) Mapping samples to the space of the first two Principle Components
(PCs1 vs. PCs2) resulting from analysis of genomic kinship. Dots in different colors represent samples from different subpopulations. (B) Schematic of the results
from the single-marker association study based on GenABEL and FarmCPU methods. The dashed lines in black, and green denote the 5 and 1% genome-wide
significance, respectively, based on package GenABEL. The red line shows the 1% genome-wide significance based on package FarmCPU. Dots represent the
results from GenABEL, while triangles represent the results from FarmCPU.

haplotypes were defined across 2–6 SNPs. Nevertheless, except
for BW_Q9, there was only one haplotype that was found to be
significantly associated with the BW traits in the other five QTLs.
In addition, the phenotypic values of individuals, which were
homozygous for the identified haplotype, significantly deviated
from the mean values.

Compared with other haplotypes within BW_Q2, the
identified haplotype in this locus (hereafter called BW_H2,
similar to the rules used in naming QTLs) had a positive
additive effect on BW throughout 10 weeks of growth (Table 3).
However, rather than being the major haplotype in the two high
BW subpopulations, BW_H2 was uniquely found in the Beard
chickens. Additionally, while the core SNP was polymorphic in
both RJ and RW samples, no birds in RJ and only a few in RW had
this haplotype (Supplementary Table S3). Therefore, we infer
that this haplotype is newly evolved in Beard chickens, which
shows its unique potential in the genetic improvement of BW.

It is interesting that half of the QTLs had haplotypes (BW_H3,
BW_H5 and BW_H20) that were found to significantly decrease
the BW (Table 3). More notably, apart from BW_H20 that also
represented a small proportion in Langshan (5%), the haplotypes
were again represented by one major haplotype (>20%), which

was uniquely found in Beard chickens. In four RJ samples, the
core SNPs were all fixed for the allele other than those in the
identified haplotypes. Consequently, none of these haplotypes
were found in RJ. However, unlike BW_Q2, they are quite
common in RW (Supplementary Table S3). This might indicate
that, regardless of its decreased effects on BW in Beard and RW
chickens, it is still preferable in selection due to its association
with other traits.

The remaining loci were those containing two core SNPs.
The identified haplotype, BW_H27, had a significantly positive
effect on BW, compared with that of other haplotypes in locus
BW_Q27 (Figure 5D). As expected, BW_H27 shared much
higher frequencies in Langshan (23%), Beard (29%), and RW
(44%) than it did in Chahua (4%), Silkie (0%), and RJ (not
found) (Figure 5B). This observation suggested that this locus
is a common contributor to BW in these four indigenous breeds
(Chahua, Silkie, Langshan, and Beard). Unlike any loci described
above, we found two haplotypes that were significantly associated
with BW traits in BW_Q9 (Figure 5A). Moreover, the effects of
these two haplotypes, BW_H9a and BW_H9b, were of different
directions. BW_H9a had a negative additive effect, and was found
to be associated with BW traits for five consecutive weeks during
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TABLE 2 | Significant QTLs affecting body weight traits in this study.

Name SNP Chromosome Position (bp)1 Trait2 Var%3

BW_Q2 rs15896134 2 14068213 BW4G 1.0

BW6G 1.3

BW_Q3 rs14332618 3 28927355 BW9G 1.5

BW10∗G 1.8

BW11G 1.6

BW12G 1.7

BW_Q5 rs14545931 5 49062749 BW8G 1.1

BW10∗G 1.2

BW11G 1.1

BW12∗G 1.3

BW12∗F 1.0

BW_Q9 rs313615987 9 18601322 BW15∗G 1.3

BW15∗F 1.0

rs14678295 9 18643628 BW14G 1.4

BW_Q20 rs315743526 20 1301395 BW12G 1.0

BW13G 1.2

BW15G 1.0

BW_Q27 rs16719177 27 3326082 BW14∗F 1.5

BW15∗F 1.0

rs16040772 27 3335587 BW7G 1.0

1Position from the assembly of Gallus gallus 5.0.
2“∗” denotes 1% genome-wide significance, while the remaining loci were the 5%
genome-wide significance.; G denotes results obtained from GenABEL, F denotes
results from FarmCPU.
3The percentage of phenotypic variation explained by the detected SNP.

the late growth phase. However, at 14 weeks of age, when both
BW_H9a and BW_H9b were significantly associated with the
BW, the effect size of BW_H9b was larger than that of BW_H9a

(Figure 5C). Additionally, haplotype BW_H9b was only found
in Langshan and RW. Therefore, locus BW_Q9 contributes to
decrease BW in Chuahua, Silkie, and Beard, while it is more
likely to increase BW in Langshan. Therefore, although BW_Q27
and BW_Q9 both had effects on all four indigenous breeds, their
underlying genetic architectures are not the same.

Detected Significant Interactive Pairs
Infer a Role of Epistasis in the Genetic
Basis of BW
First, we screened for vGWAS signals, which suggest loci that are
under the genetic control of plasticity through G × G or G × E
interactions. Six loci were detected, two of which overlapped
with the core SNPs found in BW_Q5 and BW_Q9 (Table 4).
Then, together with six core SNPs found in the single-marker
association analysis, a total of 10 SNPs (4 from vGWAS results)
were utilized in the two-locus epistatic model. An exhaustive
two-locus interaction scan was performed between the targeted
SNPs (individually) and the remainder of the full SNP dataset.
Based on permutation tests, interactive pairs, including three
loci that originated from the vGWAS scan, were detected at a
10% genome-wide suggestive significance level (Supplementary
Table S6). Moreover, 6 SNPs from 5 loci were found to
significantly interact with the core SNP, rs15896134 in BW_Q2
(5% genome-wide significance). The combinations of genotypes
between the detected two loci as well as their corresponding
phenotypes are presented as boxplots in Supplementary
Figure S1. This finding might imply a role of epistasis in driving
haplotypes uniquely evolved in one of our subpopulations, such
as BW_H2 in Beard chickens. However, we do advise caution
in interpreting these results, as the significance of epistatic

FIGURE 4 | Significant haplotype profile across the genome. The physical position of each QTL is shown at the top; below is the corresponding significant haplotype
within each locus. Core SNPs are marked with the underscores. Red letters mean that the corresponding haplotypes increase body weight, while blue letters denote
an effect of decreasing the body weight. Their manifested body weight traits at different weeks of age are plotted below, where black and green diamonds denote
the 5 and 1% genome-wide significance, respectively.
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TABLE 3 | Estimated effects of the significant haplotypes and their corresponding homozygotes within six identified QTLs.

Name Haplotype1 Trait EffectH ± SD2 P-value3 EffectD ± SD4 P-value3

BW_H2 CGAG BW4 16.3 ± 3.9 3.9E-5∗ 41.8 ± 11.3 2.4E-4∗

BW5 20.4 ± 5.4 1.9E-4∗ 51.2 ± 15.7 1.2E-3∗

BW6 31.1 ± 7.2 2.2E-5∗ 91.8 ± 20.7 1.2E-5∗

BW7 36.3 ± 9.6 1.9E-4∗ 104.4 ± 27.1 1.4E-4∗

BW8 47.1 ± 11.2 3.3E-5∗ 137.8 ± 32.1 2.3E-5∗

BW9 46.2 ± 13.3 5.8E-4 133.4 ± 38.6 6.1E-4∗

BW10 62.2 ± 15.4 6.6E-5∗ 182 ± 44.6 5.5E-5∗

BW11 61.1 ± 16.9 3.4E-4 176.1 ± 48.7 3.4E-4∗

BW12 71.4 ± 19.4 2.7E-4∗ 170.2 ± 56.5 2.8E-3

BW13 72.6 ± 20.7 4.9E-4 172.2 ± 60.4 4.6E-3

BW_H3 AGG BW3 / / −15 ± 5.1 3.3E-3

BW5 / / −28.6 ± 10.6 7.4E-3

BW8 / / −72.8 ± 22.2 1.1E-3∗

BW9 / / −92.8 ± 26.2 4.5E-4∗

BW10 −38.7 ± 12.1 1.5E-3 −107.8 ± 30.7 5E-4∗

BW11 / / −112.1 ± 33.5 9E-4∗

BW12 / / −127.7 ± 38.3 9.3E-4∗

BW13 / / −136.6 ± 40.7 8.7E-4∗

BW14 / / −137.5 ± 43.9 1.8E-3

BW15 / / −152.3 ± 46.8 1.2E-3∗

BW_H5 GAC BW6 / / −58 ± 19.6 3.3E-3

BW7 / / −69.2 ± 26 8.2E-3

BW8 / / −91.1 ± 30.1 2.6E-3

BW9 / / −105 ± 35.5 3.3E-3

BW10 / / −133.8 ± 41.5 1.3E-3∗

BW11 / / −158 ± 45.2 5.2E-4∗

BW12 −70.1 ± 18.8 2.1E-4∗ −186.2 ± 51.9 3.7E-4∗

BW13 −65.3 ± 20.1 1.2E-3 −189.4 ± 55.3 6.7E-4∗

BW14 / / −213.2 ± 59 3.48E-4∗

BW15 / / −240.1 ± 62.8 1.5E-4∗

BW_H9a AGGA BW11 −35.7 ± 10.2 5.5E-4 82.2 ± 27.4ab 2.9E-3

BW12 −43.7 ± 11.8 2.3E-4∗ 111.1 ± 31.3ab 4.3E-4∗

BW13 −46.6 ± 12.5 2.3E-5∗ 104.6 ± 33.2ab 1.7E-3

BW14 −54.5 ± 13.3 5.3E-5∗ 141.5 ± 35.1ab 6.8E-5∗

BW15 −55.8 ± 14.3 1.1E-4∗ 149.4 ± 37.7B 9E-5∗

BW_H9b GAGC BW13 / / 310.5 ± 109.8 5E-3

BW14 90.3 ± 27.5 1.1E-3 385.9 ± 115.9 1E-3∗

BW15 / / 386.1 ± 124.6 2.1E-3

BW_H20 GG BW8 −27.6 ± 8.6 1.4E-3 / /

BW11 −68.4 ± 15.5 1.4E-5∗ −94.2 ± 31.7 3.2E-3

BW12 −74.1 ± 17.8 3.9E-5∗ −130 ± 36.5 4.2E-4∗

BW13 −59.1 ± 14.7 6.8E-5∗ −138.7 ± 38.6 3.8E-4∗

BW14 −64.7 ± 16.7 1.3E-4∗ −135.6 ± 41.6 1.2E-3∗

BW15 −49 ± 12.8 1.5E-4∗ −146.5 ± 44.3 1E-3∗

BW_H27 AGG BW4 / / 21.8 ± 8 7E-3

BW5 / / 31.9 ± 11.1 4.2E-3

BW6 17.8 ± 5.4 1.1.E-3 45 ± 14.7 2.4E-3

BW7 28.6 ± 7.2 8.2E-5∗ 72.4 ± 19.2 1.9E-4∗

BW8 29.1 ± 8.4 5.9E-4 69.6 ± 22.5 2.2E-3

BW9 34.1 ± 9.9 6.8E-4 / /

1Shows significant haplotype detected within each QTL, core SNPs are marked in bold and with the underscores.
2Presents estimates of the effects of haplotypes.
3“∗” denotes 1% test-wide significance, while the remaining loci were the 5% test-wide significance.
4Presents estimates of the effects of the homozygous haplotypes. Specifically, letter ab means that the denoted estimates are of the combined effects of BW_H9a and
BW_H9b.
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FIGURE 5 | Genetic characteristics of the significant haplotypes in BW_Q9 and Q27. (A,B) Distribution of the significant haplotypes from BW_Q9 and Q27 in six
subpopulations. (C) Estimated effects of the combined two haplotypes, BW_H9a and BW_H9b, on body weight at 14 and 15 weeks of age. (D) Estimated effects of
the homozygous BW_H27 on body weight from 4 to 8 weeks of age.

TABLE 4 | Single-nucleotide polymorphisms (SNPs) of significant
variance-heterogeneity detected by vGWAS in this study.

SNP Chromosome Position (bp)1 Trait P-value2

rs16225434 3 7928979 BW2 1.5E-5

rs14545931 (BW_Q5) 5 49062749 BW10 1.8E-5

BW12 1.8E-6∗

rs313615987 (BW_Q9) 9 18601322 BW15 8.9E-7∗

rs315546657 10 13131038 BW4 7.2E-6

rs14024825 11 10905011 BW10 1.1E-5

rs14274361 20 6829862 BW1 2.4E-6∗

1Position from the assembly of Gallus gallus 5.0.
2“∗” denotes 1% genome-wide significance, while the remaining loci were the 5%
genome-wide significance.

interactions were mostly due to deviated phenotypic values of a
few individuals.

DISCUSSION

To explore the genetic basis underlying the large variation
in BW among Chinese indigenous chicken breeds, we herein
described a GWA study in a population that consisted of four
Chinese indigenous subpopulations. Due to the small sample

size and the mixed population structure, a stringent standard
was applied to control the stratification. Significant results either
were determined by two analytic methods or were found to be
associated with BW traits at different weeks of age. Based on
the idea that the haplotype would be in greater LD with the
causal mutation than a single SNP would (Cedric et al., 2013),
haplotype-based association analyses were further performed.
Then, not only were all loci validated, but the power of the
analyses was increased so that larger effects and more associated
traits were obtained (Table 3). Finally, a total of six QTLs
with seven underlying haplotypes were found to be significantly
associated with BW traits from birth to 15 weeks of age.

We performed candidate gene searches and preliminary GO
analysis within both the single and epistatic QTL regions. The
QTL regions surrounding the significant SNPs were defined to a
relatively small region (2× 72 Kb) based on the average LD decay
distance between two markers in Silkie, which was the longest
among these four subpopulations. Therefore, a small number of
candidate genes were identified and no enriched pathway was
found. Because functional validation of these candidate genes
was beyond the scope of the current study, we did not list all
of them in the “Results” section, but we have included some
of the promising candidates in the following discussion. These
candidates had been functionally studied in previous reports.
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Given the large confidence intervals normally obtained in
classical QTL scans, it is not surprising that all six loci co-
localize with the QTLs from previous studies in chickenQTLdb
(Hu et al., 2016). The earlier studies in Chinese indigenous
chickens had also detected BW_Q9 in Xinghua chicken (Fang
et al., 2010) and BW_Q27 in Beard chicken (Sheng et al., 2013),
which further confirmed their common role in affecting BW
among different breeds. Meanwhile, candidate gene searching
within the regions that were 72 Kb (defined in Figure 1C)
upstream and downstream of the detected SNPs also identified
two important functionally related genes. One is delta like non-
canonical Notch ligand 1 (DLK1), which is 32 Kb upstream of the
identified core SNP in BW_Q5. Previous studies had indicated
its association with muscle tissue development in chickens (Shin
et al., 2008) and obesity in humans (Persson-Augner et al.,
2014). The other is growth differentiation factor 5 (GDF5), which
contained the core SNP in BW_Q20 as an intron variant. Its
effect on skeletal development in chickens (Francis-West et al.,
1999) and adipogenesis in mice (Hinoi et al., 2014) suggests an
important role in affecting BW.

The important contribution of epistasis to quantitative traits
had long been established in several organisms (Carlborg et al.,
2006; Wei et al., 2014; Mackay, 2015; Forsberg et al., 2017).
Recently, scaning for genetic variance-heterogeneity (vGWAS)
had been proposed as an effective method to reveal epistatic
effects (Shen et al., 2014; Forsberg et al., 2015). In the present
study, we also performed the epistatic scans first by vGWAS and
then by the classical two-locus model. In the exhaustive two-
locus epistatic scans, while half of the six genome-wide significant
vGWAS results were paired with their suggestive significant
interactive loci, only BW_Q2 from the GWA study results
was identified with its significant interactive pairs. Although a
number of different mechanisms other than epistasis can also
lead to such genetic variance-heterogeneity (Struchalin et al.,
2010; Rönnegård and Valdar, 2011, 2012), in our study, we did
observe a substantial proportion of the vGWAS results showing
significant gene–gene interaction effects on the phenotypes.
Moreover, known candidate genes, such as ATP binding cassette
subfamily D member 2 (ABCD2) (Liu et al., 2012), nuclear
receptor interacting protein 1 (NRIP1) (Park et al., 2011), KIT
proto-oncogene receptor tyrosine kinase (KIT) (Gutierrez et al.,
2015) and butyrylcholinesterase (BCHE) (Lima et al., 2013), had
been located in the vicinity of several significant interactive loci.
However, we do advise caution in interpreting these results, as
our study design is not ideal for such tests.

Studies aimed at revealing the major variant for BW trait
had found that multiple important genes or pathways were
responsible for the high variability in BW in Chinese indigenous
chicken breeds. For example, BMP10 accounted for more than
20% of the phenotypic variation in the Yuanbao chicken (Wang
et al., 2016). miR-16 in one major QTL from Xinghua chicken was
found to decrease BW by inhibiting cell proliferation (Jia et al.,
2016). Ubiquitin mediated proteolysis, identified from several
pairs of interactive loci, played an important role in regulating
BW in Beard chickens (Sheng et al., 2013). Nevertheless, most
of these findings originated from a single indigenous breed, and
there is a low degree of overlap between the results. This led

to an assumption that the major contributor to BW in different
breeds might not be the same. GO analysis in our study seems
to support this assumption, since no significant enrichments of
the candidate genes were revealed (detailed results not shown).
Additionally, by further examining the significant haplotypes
within each subpopulation, more loci had effects on BW in a
single breed than had a common role in regulating BW across
all breeds.

In concordance with the relatively higher level of genetic
diversity observed in Beard chickens, four out of the six
identified QTLs were the breed-specific loci, in which the
significant haplotypes were uniquely found in Beard chickens
(Supplementary Table S3). More notably, BW_Q3, 5, and 20
were transgressive loci, i.e., the haplotypes having negative effects
on BW were of significantly higher proportion in the high BW
breed (Beard) of this study. Similar findings had been observed
in other chicken QTL scans (Abasht et al., 2006), even in one
population under intense artificial selection for BW (Sheng
et al., 2015), which suggested the presence of transgressive loci.
One possibility underlying such observations would be epistasis,
where the effects of these transgressive loci depended on the
genetic context in which they resided. In our vGWAS analysis,
BW_Q5 showed variance heterogeneity, suggesting that this
locus was a candidate of G∗E or G∗G interactions. However,
the sample size and marker density in our study limited our
ability to find its interactive pair in the exhaustive two-locus
scan. Another potential explanation would be that these loci
are pleiotropic for traits that are negatively correlated with BW,
similar patterns have been found in some plant studies (Qian
et al., 2016; Li et al., 2018). Therefore, regardless that their effects
on BW seemed to be against the selection in this population,
the overall fitness could still increase as they might have positive
effects (in terms of selection) on other trait(s). Further work,
(e.g., more phenotyping) is needed to dissect the underlying
mechanisms.

Unlike the four QTLs discussed above, BW_Q9 and Q27
were the breed-shared loci that were associated with BW across
the four subpopulations. Earlier studies in Chinese indigenous
chickens had already detected BW_Q9 in the Xinghua breed
(Fang et al., 2010) and BW_Q27 in Beard chicken (Sheng
et al., 2013), which further indicates the common role of these
two loci in different breeds. However, by further examining
the frequencies of their significant haplotypes across the four
subpopulations as well as in the two comparisons, RJ and RW
samples, the underlying genetic patterns of these two loci were
not the same. Haplotype BW_H27, which increased BW, was
present in greater proportions in the high BW subpopulations
than in the low BW subpopulations. Locus BW_Q9 had two
significant haplotypes that were of opposite effects, so that
different combinations of these two haplotypes would contribute
differently to the BW. Most studies that dissect the genetic
architecture of a complex trait, such as BW, focus on the
number of genetic variants affecting the trait and their physical
positions in the genome. Herein, we showed an example where
the additional information on the frequencies of underlying
genetic variants across different subpopulations, their magnitude
of effects, and gene–gene interactions provided an in-depth
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understanding of the genetic architecture of a complex trait,
which will be important to future advances in animal breeding.

In summary, we performed a GWA study across four Chinese
indigenous chicken breeds. The single-marker association study
identified six QTLs that were significantly associated with BW
from birth until 15 weeks of age, two of which (BW_Q9
and Q27) co-localized with known QTLs found in Chinese
indigenous breeds. Additionally, four out of the six QTLs were
polymorphisms in Beard chickens alone, thus, they were breed-
specific loci that contributed to BW variability in one breed.
This is probably caused by the complex origin and demographic
history of domestic chickens (Miao et al., 2013). While most
mapping studies have focused on the number of genetic variants
that were responsible for the phenotypic variability, we have
further examined their frequencies and the magnitude of effects
at the haplotype level. The breed-shared loci BW_Q9 and Q27
showed distinct underlying genetic patterns, which suggests not
only a polygenic basis but also a variant genetic architecture
leading to the complex quantitative characteristics of BW.
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