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Phytophthora infestans, the causal agent of late blight disease, affects potatoes and

tomatoes worldwide. This plant pathogen has a hemibiotrophic lifestyle, having an

initial biotrophic infection phase during which the pathogen spreads within the host

tissue, followed by a necrotrophic phase in which host cell death is induced. Although

increasing information is available on the molecular mechanisms, underlying the distinct

phases of the hemibiotrophic lifestyle, studies that consider the entire metabolic

processes in the pathogen while undergoing the biotrophic, transition to necrotrophic,

and necrotrophic phases have not been conducted. In this study, the genome-scale

metabolic reconstruction of P. infestans was achieved. Subsequently, transcriptional

data (microarrays, RNA-seq) was integrated into the metabolic reconstruction to

obtain context-specific (metabolic) models (CSMs) of the infection process, using

constraint-based reconstruction and analysis. The goal was to identify specific metabolic

markers for distinct stages of the pathogen’s life cycle. Results indicate that the overall

metabolism show significant changes during infection. The most significant changes

in metabolism were observed at the latest time points of infection. Metabolic activity

associated with purine, pyrimidine, fatty acid, fructose and mannose, arginine, glycine,

serine, and threonine amino acids appeared to be the most important metabolisms

of the pathogen during the course of the infection, showing high number of reactions

associated with them and expression switches at important stages of the life cycle. This

study provides a framework for future throughput studies of themetabolic changes during

the hemibiotrophic life cycle of this important plant pathogen.

Keywords: context-specific models, flux balance analysis, plant-pathogen interaction, hemibiotrophy, metabolic
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INTRODUCTION

Late blight has been a major threat to global food security ever
since the Irish potato famine of the mid-nineteenth century (Fry,
2008). Globally, late blight costs billions of dollars annually.
Management mostly involves the use of fungicides, resistant
host genotypes, and cultural procedures designed to reduce the
introduction, survival, or infection rate of the causal organism,
Phytophthora infestans (Fry, 2008). The pathogen’s genome
plasticity, with the presence of transposable elements and repeat-
rich regions, fosters the emergence of a high number ofmutations
which increases the probability of overcoming major resistance
genes and evolving to counteract other control methods, such as
fungicide applications (McDonald and Linde, 2002; Fry, 2008).

Phytophthora infestans is a hemibiotrophic pathogen having
an initial biotrophic phase, followed by a necrotrophic phase
during which host cell death is induced (Fry, 2008). The
first stages of infection are asymptomatic because of effective
suppression of the plant’s immune response caused by the
secretion of proteins known as effectors that can change the host’s
physiology and facilitate colonization. The “shift” between the
biotrophic and necrotrophic phases is poorly understood and
is becoming an important field of study. Lee and Rose (2010)
proposed a hypothetical model of transition between biotrophy
and necrotrophy where effectors play an important role; for
example, SNE1 acts by suppressing programmed cell death in the
host and halting the effects of necrosis inducing proteins (NIPs)
(Kelley et al., 2010) until the necrotrophic phase is initiated.
This “simultaneous accelerator and brake model” (Lee and Rose,
2010) strategy of infection could explain the onset of necrosis and
provides clues for the regulation of pathogenesis as well as the
organism’s lifestyle.

Previous studies have used metabolic networks as tools to
elucidate the lifestyle and life cycle of particular plant pathogens
(Duan et al., 2013). In a broad sense, a metabolic model is
a holistic view of a system, and it represents the connectivity
between metabolites and reaction-catalyzing enzymes (Pitkänen
et al., 2010). A metabolic network could be reconstructed
in a top-down manner taking advantage of the organism’s
genome annotation to extract critical information on the protein
elements involved in metabolism. These models are often called
genome-scale reconstructions and can gather and integrate all
the available information for complex systems, such as host-
pathogen interactions. With increased amounts of information
on the physiology, biochemistry, and genetics of the target
organism, the predictive capacity of the model is greatly
improved (Pitkänen et al., 2010).

There are many types of interaction networks, including

protein–protein, metabolic, signaling, and transcription-
regulatory networks. None of these networks are independent

(Barabási and Oltvai, 2004), and together, they contribute to the
understanding of a system. In 2013, Seidl et al. (2013) constructed

a gene network of P. infestans and determined functional models
related to its life stages using predictions of protein-protein
interactions. Rodenburg et al. (2017) then reconstructed the
first genome-scale metabolic model for P. infestans, based
on reactions found in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Rodenburg et al., 2017). They also used RNA
sequencing data to quantify gene expression in four in vitro life
stages of P. infestans, i.e., mycelium, sporangia, zoospores, and
germinating cysts (Rodenburg et al., 2017).

However, until now, the interaction of the pathogen and
its host has not been studied in silico. The novelty of our
study was the use of a genome-scale metabolic network of
P. infestans and the derived context-specific models (CSMs) of
the infection process to identify important metabolic markers
in the pathogenic phases of this oomycete. Furthermore, we
tested the hypothesis of a significant change during infection at
the level of metabolism. The omics data selected for this study
responded to the criteria of quality and comprehensiveness. The
genomics data of the T30-4 P. infestans strain were chosen for
the analysis because it represents the best annotated genome
for the species (Haas et al., 2009). The transcriptomic data of
the strain 1,306 were selected for the present study because it
is the most comprehensive study of the metabolic changes of
the pathogen during its development (Ah-Fong et al., 2017). For
the initial genome-scale metabolic network, we used our own
reconstruction, different from the one proposed by Rodenburg
et al. (2017) because when they published their reconstruction,
ours was in an advanced stage and we decided to continue
using it. A thorough comparison of both reconstructions is made
available in this study to the scientific community.

MATERIALS AND METHODS

Metabolic Reconstruction
A draft metabolic reconstruction of P. infestans was generated
based on the P. infestans proteome available on UniProt
Knowledgebase (UniProtKB:UP000006643) (Haas et al., 2009;
The UniProt Consortium, 2015). This proteome was annotated
using the Automatic Annotation Server (KAAS) (Moriya et al.,
2007), in order to obtain the enzyme codes (EC) associated with
each protein. Using these ECs, the reaction list for P. infestanswas
retrieved from the KEGG (Ogata et al., 1999). The list of families
of transport proteins reported for P. infestans were retrieved
from TransportDB (Ren et al., 2007) and were manually curated.
Finally, the directionality of each reaction was assigned using
Gibbs free energy values provided by the database of MetaCyc
(Karp et al., 2002).

Once a draft of themetabolic reconstruction was obtained, 250
dead-end metabolites were identified using GapFind algorithm
(Satish Kumar et al., 2007). Then GapFill and multiple databases
were used to solve problematic metabolites: KEGG database,
transport reactions of BiGG database (Schellenberger et al., 2010),
and transport reactions of BioModels (BioModels, 2012). Finally,
the pathways related with every set of reactions were retrieved
from KEGG. The model was not compartmentalized because this
new level of complexity produced a non-functional model that
cannot grow in minimal media when it was tested.

The metabolic reconstruction was modeled using flux balance
analysis (FBA) and flux variability analysis (FVA) (Feist and
Palsson, 2010; Orth et al., 2010; Lakshmanan et al., 2014).
The reconstructions and FBA were conducted using COBRA
Toolbox 2.0 (Schellenberger et al., 2011) following the procedures
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suggested by Thiele and Palsson (2010) and Schellenberger et al.
(2011). The simulations for the full model were performed
in Henninger minimal media (Henniger, 1963). Biomass was
used as objective function for simulations. The biomass reaction
was defined using as a reference the objective function from
the metabolic model of Toxoplasma gondii (Song et al., 2013).
Stoichiometric coefficients were taken from the T. gondii model
but only metabolites present in the P. infestans model were
included (Table S1).

Construction of Context-Specific Models
and Metabolic Simulations
Context-specific models (CSMs) of the infection process for
P. infestans 06_3928A and T30-4 strains were generated using
microarray data available in the Gene Expression Omnibus
(GEO) database as the primary source of information (Table 1).

The TIGER toolbox (Jensen et al., 2011) was used to integrate
transcriptional data (microarrays, RNA-seq) into metabolic
reconstructions. This was done by mapping expressed genes to
enzymes that catalyze each metabolic reaction (known as gene-
protein reactions) and by generating a series of mathematical
inequalities. The Limma R package (Smyth, 2005) was used
for the microarray analysis, and the metabolic adjustment by
differential expression (MADE) algorithm was used to integrate
the transcriptomic data and metabolic reconstructions (Jensen
and Papin, 2011; Jensen et al., 2011). The MADE algorithm
requires two or more sets of microarray data to create a sequence
of binary expression states to reconstruct the reactions, hence no
thresholding is needed. Then, the TIGER toolbox (Jensen et al.,
2011) sets constraints for the optimization problem, yielding
one individual metabolic model for each condition or context-
specific models (CSMs). For the FBA, the MADE algorithm
only considers the reactions that were tagged as ON in the
previous step. A gene/reaction pair that is “ON” in the ON-OFF
network does not necessarily show a flux reaction in the FBA
network. With these two matrices, networks (CSMs) were built
and analyzed.

Comparisons of FBA for all CSMs and
Comparison of P. infestans Strains 06
_3928A and T30-4 CSMs
In order to compare the different strains at different days
post inoculation, FBA for every CSM was calculated. For every
FBA of each CSM the active reactions (flux different from
zero, in mmol/gDW/h) were established. Then based on those
active reactions, calculations of pan, core, accessory, and unique
reactomes were performed. The definitions for each one is
as follows: (i) Pan reactome: reactions (and pathways for the
reactions) present in all CSMs compared; (ii) Core reactome:
reactions shared among the CSMs compared; (iii) Accessory
reactome: reactions present in more than one CSM but not in all;
and (iv) Unique reactome: reactions present in only one CSM.
From now on, when unique, core and accessory are referred
in the context of metabolic pathways, it does not imply that a
whole pathway is unique, accessory or core, but it means that the
reactions found in each set belonging to these pathways could be

unique, accessory or core. It is a way to contextualize the reactions
at the level of metabolic pathways.

These calculations were performed at three levels. The first
level, evaluates the whole model based on the reactions that
are active in each strain using Venny 2.1.0 (Oliveros, 2016) to
produce the values of a Venn diagramwith the shared and unique
reactions between the two models (two strains). The second level
evaluated the general behavior at the metabolic level of the nine
CSMs. The third level assesses the metabolic activity at the strain
level at different time points. In this comparison, all the CSMs
were grouped into two sets for each strain. For example, the pan
reactome of every strain consists of the reactions that were active
in any stage of development (dpi) for a particular strain. The core
reactome of the strains is the reactions shared by the CSMs of
each strain and the core of cores. The reactions shared by the
two core reactomes, was also calculated. Finally, the accessory
and unique reactomes for each strain were obtained. Figure 1
illustrates the concepts of the comparisons.

Hierarchical Clustering Heatmap
In order to uncover the relationships among the different CSMs
we performed a hierarchical clustering of CSMs separated by
strain. Z-scores to normalize flux values (mmol/gDW/h) were
computed. The linkage matrix with Euclidean distance based
on Ward’s method was calculated (Ward, 1963). A dendrogram
was done for coloring purposes using a color threshold of 0.25.
Finally, cluster maps of the two strains were calculated. All
procedures were performed in Python using SciPy package.

RESULTS

Metabolic Reconstruction
The final reconstruction of P. infestans accounted for 1,530
metabolites participating in 1,571 reactions (Table 2) belonging
to 1,094 pathways (Table S2) and associated to 1,375 genes;
194 reactions are orphan (without an associated gen). The
35 exchange reactions represent the metabolites of the
Henninger minimal media for simulation of the complete
model. Furthermore, 249 reactions participating in transport
were included in contextual models. Transport reactions were
selectively chosen by MADE based on transcriptomic data
in order to simulate different metabolite exchanges in every
stage. The genome of P. infestans T30-4 strain has 19,934 genes,
so, the metabolic genes (1,375) cover 7% of the coding gene
space. The pathways with more reactions in the reconstruction
of P. infestans were associated with glycerophospholipid
metabolism, then fructose and mannose metabolism, and
glycine, serine, and threonine metabolism (Figure 2, Table S2).
The list of top 18 pathways and the number of reactions by
category is shown in Figure 2. The whole list is shown in
Table S2.

Flux Balance Analysis of Nine Different
Context-Specific Models (CSMs)
Using the MADE algorithm, nine CSMs were obtained and
analyzed under the objective function biomass production
(Tables S8–S10). The nine CSMs correspond to the two strains
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TABLE 1 | Data used for the formulation of Context Specific Models (CSMs).

Phase /treatment Graphical representation GEO Accession number (Phytophthora

infestans isolate used)

References

Mycelia on rye sucrose agar GSE33240 (Average expression of isolate 06_3928A) Cooke et al., 2012

2 days post inoculation on potato leaflets

3 days post inoculation on potato leaflets

4 days post inoculation on potato leaflets

Mycelia on rye sucrose agar GSE14480 (Isolate T30-4) Haas et al., 2009

2 days post inoculation on potato leaflets

3 days post inoculation on potato leaflets

4 days post inoculation on potato leaflets

5 days post inoculation on potato leaflets

GEO Accession numbers are provided as well. A graphical representation of each stage is provided for reference.

FIGURE 1 | Comparisons of CSMs at different levels (A) 9 CSMs (B) between strains (C) within the strains.

growing on media and at different time points during the
infection: 06_3928A (mycelia on rye sucrose agar (RSA), 2, 3, and
4 days post-inoculation [dpi]) and T30-4 (mycelia on RSA and 2,
3, 4, and 5 dpi; Table 1).

After the analysis of the model, a second level of analysis
was done to compare all CSMs, by pooling the data for

the two strains and the treatments. A total of 596 (86.1%)
reactions were obtained for the two strains (core reactions)
while the number of pathways in the core model was 144
(Table S2). The pathways with more reactions assigned in the
core corresponded to the fructose and mannose metabolism,
suggesting that this metabolism is very important for the
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TABLE 2 | Metabolic reconstruction of Phytophthora infestans.

Phytophthora infestans metabolic reconstruction properties

GPR 1375

Reactions 1571

Cellular 1287

Transport 249

Exchange reactions 35

Metabolites 1530

GPR, Gene protein reaction associations.

pathogen to survive in its host. The analysis showed 26
unique (Table S2) and 366 accessory pathways for both strains
and treatments combined. Accessory pathways are the ones
present in more than one CSM (growth medium or during
infection) but not in all. In other words, the accessory
pathways represent the metabolic plasticity of the strains,
rapidly adapting to a changing environment. The pathways
with more reactions in the accessory group corresponded
to glycerophospholipid metabolism, fructose and mannose
metabolism, fatty acid biosynthesis, glycolysis—gluconeogenesis,
amino acid and purine—pyrimidine metabolisms (Table S2).
A total of 26 pathways were unique to one CSM (Table S2).
The pathways with more reactions in the unique category
were the ones involved in fatty acid degradation (Figure 3,
Table S2). They were unique in the CSMs at early time
points during plant infection, in both strains (Table S2). The
specific reactions involved in the fatty acid degradation were
the KEGG reactions: R00631, R03857, R03990, R04751, and
R04754. In the CSMs corresponding to the growth in RSA
medium, the unique pathways corresponded to the purine and
pyrimidinemetabolism, as well as amino acids and starch/sucrose
metabolism (Table S2).

Flux Balance Analysis of Two Phytophthora

infestans Strains Growing in Medium and
in the Host
The two P. infestans strains, 06_3928A and T30-4, were
compared against each other. Table 3 shows the active fluxes
(mmol/gDW/h) for each strain and each time point, as well as
the core for each strain and for both strains. For all the treatments
pooled, a total of 617 (91.54%) core reactions, 24 (3.56%) unique
reactions for strain 06_3928A, and 33 (4.90%) unique reactions
for strain T30-4, respectively, were identified (Table S3). The core
pathways correspond to the pathways in common for the two
strains in all the treatments together.

In order to characterize each stage of development for each
strain, the pan and core reactomes as well as the accessory and
unique pathways were retrieved for each strain from the different
treatments, for the nine CSMs (Table S4). In this case, data were
analyzed within each strain and not between them, for example,
the core reactions for the T30-4 strain are the ones present in all
the CSMs (n = 5: five treatments: RSA and four time points) for
that strain.

The pathways with more reactions active in FBA for each
strain are depicted in Figure S1 (pan and core reactomes)
and Figure S2 (accessory and unique reactomes). In the
case of the pan and core reactomes, the list of pathways
showed the similarity between the two strains, reflecting a
common metabolism. For both the core and the pan, the
three pathways with more reactions corresponded to fructose
and mannose, glycerophospholipid, and glycine—threonine
metabolisms (Figure S1, Table S4). In the case of the accessory
and unique reactomes, the two strains also showed a common set
of metabolisms. The metabolic category with more reactions for
the accessory pathways was the fatty acid biosynthesis and for the
unique, the fatty-acid elongation pathways (Figure S2, Table S4).

The unique pathways and reactions of each strain reflect
the metabolic versatility of each strain. In this analysis, the
unique pathways correspond to pathways that are only active
in one treatment. Also, unique can be additional reactions that
the pathogen is manipulating (with an active flux) to thrive in
the treatment under study. Table S4 shows the list of unique
reactions for the models of the two strains, the treatment in
which they were unique, as well as the flux in each of the
treatments. Some of the most interesting pathways related with
the unique reactions were some involved in the nitrogen and the
ß-alanine metabolisms only present in the RSA medium and not
in planta (Table S4). Furthermore, some reactions of the fructose
and mannose metabolism that are highly represented in planta
condition, are active when P. infestans strain T30-4 is growing
on medium and at the latest time point of infection (5 dpi).
Some of the reactions had positive while others had negative
fluxes (mmol/gDW/h) implying a different directionality of the
reactions (Table S4).

Markers of life Stages in the Host
Hierarchical clustering heatmaps for P. infestans strains are
shown in Figure 4. Clustering of the time points showed
the same results for both strains. Earlier time points (2
and 3 dpi) grouped together and apart from later time
points (4 and 5 dpi). In both strains, the metabolism 4
dpi was the most similar to the metabolism of the strains
growing in the RSA medium. From Figure 4 it is also evident
that the metabolism did not dramatically change over the
course of infection. The later time points, 5 dpi for strain
T30-4 and 4 dpi for strain 06 _3928A, were the most
different.

Four groups of reactions were identified. The host group
corresponded to those reactions that are not active in RSA
medium and become active at early time points after inoculation
(Table S5). The biotrophy group are the reactions that are
active in the first stages of infection (2–3 dpi) and decrease
at the later stages of infection (4 dpi). The necrotrophy
group are the reactions that are inactive during the first
stages of infection (2–3 dpi) and increase at the later stages
of infection (4–5 dpi). Finally, the transition group are the
reactions with changes between 2 and 3 dpi, and 3 and
4 dpi. The changes are defined as fluxes that change from
absolute values smaller than 100 to >500 mmol/gDW/h; in
several cases the reactions were abruptly switched on (absolute
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FIGURE 2 | Reactions of the metabolic reconstruction of Phytophthora infestans grouped by metabolic pathways according to the Kyoto Encyclopedia of Genes and

Genomes (KEGG). Number of reactions by category are listed.

flux value of 1,000 mmol/gDW/h) or off (flux value of 0)
in this group. Table S5 summarizes the reactions in the four
groups.

When the pathogen is inoculated, as expected, several
reactions of the metabolism are altered (their metabolic
fluxes changed). The pathways with more reactions associated
belonged to the purine and pyrimidine metabolism, the
glycerophospholipid metabolism, and some reactions involving

isomerase enzymes of the glycolysis/gluconeogenesis metabolism
(Table S5). In the case of the pyrimidine metabolism, three
transferases showed active fluxes at early time points in
the two strains: phosphate adenylyltransferase, phosphate
uridylyltransferase, and phosphate cytidylyltransferase.

The biotrophy phase of infection (2–3 dpi) did show
some interesting metabolic markers. First, there was a
change in the biosynthesis of some amino acids and the
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FIGURE 3 | Reactions of the metabolic reconstruction of Phytophthora infestans grouped by metabolic pathways according to the Kyoto Encyclopedia of Genes and

Genomes (KEGG) for pan, core, accessory, and unique reactomes calculated over the nine context-specific (metabolic) models (CSMs).

synthesis of 1,3-beta-glucan, the main component of the
Phytophthora genus’ cell walls (Bartnicki-Garcia andWang, 1983;
Table S5).

In the necrotrophy phase of infection, the
glycerophospholipid metabolism was altered, their metabolic
fluxes changed, but this time with more active fluxes than
in the host category (Table S5). For the transition between
biotrophy and necrotrophy, the metabolic markers of this
phase corresponded to folate biosynthesis, the use of sugars, in
particular fructose and mannose, and also nitrogen metabolism
specifically, the metabolism (biosynthesis) of the amino acids,
arginine, serine, glycine, and threonine (Table S5). The fatty
acid-elongation pathways also showed active fluxes at early time
points (biotrophy) and changed to flux 0 or the directionality of
the reaction at later time points.

Comparison of the Metabolic
Reconstruction With a Previous Metabolic
Model of P. infestans
A comparison was made between the model of Rodenburg
et al. (2017) (iSR1301) and the one produced in the present
study to determine the similarities and differences between
them (Table 4). For the full model reconstructions before CSMs
reconstructions, 778 reactions within the cell were shared.
Likewise, 794 unique reactions were identified for the model used
in this study, and 708 for the model constructed by Rodenburg
et al. (2017). Also, the pathways, in which the reactions shared
between the two reconstructions are involved, were identified
(Figure S3).

In the case of transport and exchange reactions, they were
analyzed separately to determine the correspondence between

TABLE 3 | Comparisons of active fluxes (mmol/gDW/h) in Phytophthora infestans

strains T30-4 and 06_3928A when growing on rye sucrose agar (RSA) medium

and during the time course of infection.

Strain RSA 2 dpi 3 dpi 4 dpi 5 dpi Pan Core of

each strain

Core

P. infestans

06_3928A

389 503 513 330 NA* 641 235 212

P. infestans

T30-4

489 495 503 501 337 650 251

*This time point was not studied for the P. infestans 06_3928A strain and therefore the

data are not available in the GEO database. dpi, days post inoculation.

them, because they did not have the same database nomenclature.
Only a correspondence of 7 exchange and transport reactions
between the two models was found. Additionally, when we
analyzed in detail the reconstruction made by Rodenburg
et al. (2017) we found that the extracellular compartment is
disconnected from the rest of the reconstruction. In the category
of transport reactions, we obtained 249 reactions between the
extracellular and intracellular space, while in Rodenburg et al.
(2017) only 17 reactions were obtained. A comparison of the
number of shared and unique genes between the two models was
also performed. Between the model constructed in this study and
the model constructed by Rodenburg et al. (2017), a total of 781
genes were shared, and 564 and 520 unique genes were identified,
respectively.

Finally, a comparison was made between the compounds
that make up the objective function of both reconstructions.
Tables S6, S7 include detailed information and a correspondence
of the reactants and products of the objective functions of the two
models. The model of Rodenburg et al. (2017) has an objective
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FIGURE 4 | Hierarchical Clustering Heatmaps of Phytophthora infestans strains: (A) strain 06_3928A and (B) strain T30-4. Z-scores to normalize flux values were

computed (mmol/gDW/h). Linkage matrix with Euclidean distance based on Ward’s method was calculated. A dendrogram was calculated for coloring purposes

using a color threshold of 0.25. Finally, cluster maps of the two strains were calculated.

TABLE 4 | Comparisons between the iSR1301 metabolic model of P. infestans

(Rodenburg et al., 2017) and the one presented here.

Feature iSR1301 This study

Reactions 2,394 1,571

Compounds 2,685 1,530

Genes 1,408 1,375

Compartments Extracellular space, cytosol,

mitochondria, endoplasmic

reticule, Golgi, peroxisome

and vacuole

Extracellular space and

cytosol

Context-specific

models

Mycelium, sporangium,

zoospore and germination

cyst

Comparison of T30-4 strain

to 1306 strain at different

times of infection: RSA,

2dpi,3dpi,4dpi, and 5 dpi

RSA, Rye-sucrose Agar; dpi, days post inoculation.

function composed of 31 metabolites and our objective function
was composed of 39 metabolites. In total, the two models shared
25 compounds. Rodenburg et al. (2017) adopted stoichiometric
coefficients of 1 for all the compounds of the objective function.
As was mentioned before, in our reconstruction we used as base
the coefficients of T. gondii (Song et al., 2013). The value of
the objective function in the FBA for both models before the
reconstruction of the CSMs was compared (22.41 and 4.99 h−1

for (Rodenburg et al., 2017) and our model, respectively).
However, our model has bounded transport reactions while
the Rodenburg et al. (2017) model has unbounded transport
reactions. In order to made them comparable a calculation of
growth rate using FBA was performed with unbounded transport
reactions with a result value of 45.21.

The CSMs in the metabolic model published in 2017 included
mycelia, sporangia, zoospores, and germinating cysts, which
originally came from in vitro culture media. Our reconstructed
CSMs did not differentiate among the pathogen’s structures but
analyzed different life stages of the pathogen in planta.

DISCUSSION

This is the first metabolic reconstruction of P. infestans that
used transcriptional data to create models (context- specific
models, CSMs) of several life stages of this oomycete inside
the host. The CSMs represent the subset of reactions from
the genome-scale metabolic model (GSM) that show fluxes
that are active in a given context (Robaina Estévez and
Nikoloski, 2015). In this study, the contexts were the rye-
sucrose agar medium and the days after the inoculation on
the host. Moreover, the models obtained here provide insights
of the general metabolism of the oomycete during its growth,
development, and pathogenesis. Therefore, this study contributes
to the general knowledge of the causal agent of the late blight
disease.

Tools (CSMs) for studying the pathogen are now available
as well as metabolic markers in all the main life-cycle stages in
planta. A previous study modeled a gene network of P. infestans,
based on protein-protein data and identified gene models
related to selected developmental stages (e.g., hyphae, sporangia,
cleaving sporangia, zoospore, and cyst), but none of the stages
of the infection process (infection on leaflets) were included
(Seidl et al., 2013). The study of Rodenburg et al. (2017)
proposed the first metabolic reconstruction of the pathogen and
explored the metabolic response of this oomycete under several
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asexual life cycle stages. The network reconstruction in this study
confirmed previous results and included the metabolic processes
that occur during infection. Together these studies could lead to
a complete picture of the pathogen’s metabolism. For example,
Rodenburg et al. (2017) showed the importance of fatty acids
in Phytophthora zoospores. Fatty acid degradation (β-oxidation)
is not active in the zoospore stage (Rodenburg et al., 2017).
In this study, the importance of the fatty acids biosynthesis,
elongation, and degradation pathways during the infection cycle
was also shown. Therefore, extending the Rodenburg et al. (2017)
study, the results of this study showed that shortly after the
infection, some reactions related with the fatty acid elongation
are activated.

Both reconstructions started with similar genomic data and
used similar predictive software to obtain the list of reactions
that constituted the whole reconstruction before the CSMs.
Rodenburg et al. (2017) compartmentalized their reconstruction
and then generated Context Specific Models (CSMs). However,
they did not perform the Flux Balance Analysis (FBA) of the
CSMs but compared them at the structural level. In contrast,
we did not compartmentalize the metabolic reconstruction but
conducted the FBA and the Flux Variability Analysis (FVA) of
the CSMs. In Rodenburg et al. (2017) only asexual life stages
of the pathogen were considered, while our analyses considered
the plant infection up to 120 h allowing us to include the
biotrophic and necrotrophic phase of the pathogen’s life cycle.
It is important to consider that the algorithm that we used
to reconstruct the CSMs, MADE (Metabolic Adjustment by
Differential Expression), is different to iMAT (Iterative Method
with Adaptive Thresholding) used by Rodenburg et al. (2017).
MADE relies on the dynamic changes in the level of expression
of the genes associated to the reactions, thus, maintaining
a coherence between all CSMs, whereas, iMAT (Interactive
Method with Adaptive Thresholding) depends on a specific
differential expression threshold within each biological stage
analyzed.

The novelty of our work with regards to Rodenburg’s
from a biological point of view is the use of the modeling
and analysis of the distribution of fluxes in our CSMs
to understand the differences of the life stages during
the plant’s infection. Indeed, our CSMs cover the plant
infection, the most important phase of a pathogen’s life cycle,
including the biotrophy necrotrophy life stage. Furthermore,
we performed different comparisons between two strains
and the life stages including the identification of pan, core,
unique, and accessory reactomes through the modeling of
the CSMs. These comparisons and modeling contributed to
the understanding of the dynamics of pathogenicity under
the brake-accelerator hypothesis (Lee and Rose, 2010). The
putative biological markers of switching between biotrophy
and necrotrophy can be used for the design of control
strategies of the pathogen. Also, the understanding of that
switch improves the scientific knowledge into the pathogenicity
mechanisms.

This study presents a throughput tool for data mining
the metabolism of the pathogen that is more appropriate
than analyzing the genome. First, the publicly available

genome (Haas et al., 2009) needs a re-annotation given
that new studies show problems in some of its annotations.
For example, Rodenburg et al. revealed one unannotated
tyrosine decarboxylase gene and recommended to reassess the
annotation of the genome (Rodenburg et al., 2017). Second,
the construction of the CSMs allow for an understanding of
the dynamics of the genome exploiting the data gathered in
the databases and in most cases not thoroughly analyzed.
Taking advantage of the CSMs, in this study strain-
specific reactions or time point-specific reactions could be
identified.

One of the hypotheses of this study, an overall metabolism
change during the infection process, was confirmed since the
overall pattern of the metabolic fluxes changed dramatically
under the life stages analyzed. Furthermore, reactions involved
in these changes were classified in different metabolic categories.
This general result is in agreement with what was reported
for the pathosystem Septoria tritici—wheat, where an RNA-
seq analysis of the fungus showed that the most dominant set
of transcripts were assigned to metabolic processes making up
to 50% of the transcripts that clustered during the course of
the infection (Yang et al., 2013). The most striking change in
the metabolism is when the pathogen enters the necrotrophic
phase.

The main objective of this study was to assess metabolic
differences among growth conditions or life stages, to find
unique representative metabolic markers that could be associated
with important biological processes, such as living in the host,
biotrophy, transition between biotrophy and necrotrophy, and
necrotrophy. Despite the “uniformity” shown by the metabolism
of P. infestans under different growth conditions, there were
some unique reactions associated to each life stage model. These
results support data from other researchers. For example, in
another study, some amino acids were shown to be important
in compatible interactions between potato and P. infestans
(Grenville-Briggs et al., 2005). In the study reported here, the
importance of the amino acid arginine for the biotrophic stage
was demonstrated (active fluxes in the earlier time points).
Arginine has been reported to be an important constituent of
the pathogen effectors mainly expressed in biotrophy (Win et al.,
2007).

This study revealed the importance of the fructose/mannose
metabolism during infection of Phytophthora on its host. These
metabolic pathways were themost or one of the most represented
(number of reactions in these categories) in the core, pan,
and accessory reactomes when the nine CSMs were pooled
and/or when the strains were compared. Changes in the fructose
concentrations in the host tissues have been previously shown
(Judelson et al., 2009). Judelson et al. (2009) showed that fructose
levels in the host increased three-fold and glucose doubled,
during a 6-day infection period (Judelson et al., 2009). It is not
known if the pathogen responds to these changes, but based
on the results of this study, it can be suggested that fructose
metabolism is also changing in the pathogen. The reaction
catalyzed by the β-D-fructose 2,6-bisphosphate was active with
a flux only in planta, when compared to growth on RSA medium
in both strains (Table S5). This enzyme is a regulator with a dual
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function that allows it to control the rates of both glycolysis and
gluconeogenesis (Buchanan et al., 2015).

Although most of the predicted fluxes by the models have
been validated with experimental data, there are groups of
fluxes showing inconsistencies between real and modeled data
(Kjeldsen and Nielsen, 2008; Babaei et al., 2014). A main
concern in FBA analyses is the choice of the objective function.
Maximization of biomass is frequently used as the objective
function; thus, the underlying hypothesis is that maximal growth
rate is favored during evolution (Chen and Shachar-Hill, 2012).
But efficiency does not always correlate with high growth
rate (Schuster et al., 2008). Therefore, a variable objective
function should be applied on each CSM reflecting biological
evidence. For example, endogenous production of crucial, central
metabolites should be enhanced during the biotrophic phase of
hemibiotropic plant pathogens (Fernandez et al., 2013), while
metabolities involved in nutrient scavenging should be enhanced
during the necrotrophic phase. A good example of a metabolite
that is changing during infection and could be used as an
objective function is pyrimidine (García-Bayona et al., 2014).
Given this context, metabolites that are used as precursors
for the biosynthesis of amino acids and nucleotides, among
others, should be the objective functions of the CSMs related
to biotrophic phases, and metabolites corresponding to salvage
pathways should be included in necrotrophic phases. This new
approach could be the starting point for the generation of more
accurate CSMs for P. infestans.

In conclusion, the metabolic reconstruction and the
construction of CSMs provide important novel insights into
the whole metabolism of P. infestans at different stages of
development, growth, and pathogenesis of this plant pathogenic
oomycete. For example, sugars like fructose, amino acids
such as arginine, glycine, serine, threonine, and folate, among
others, are metabolites that could influence successful host
colonization. Network analyses allowed the development of
a new tool to design new experiments to comprehend the
complete metabolism of plant pathogens in planta. Despite the
complexity of the metabolism of P. infestans at each life stage, a
framework for future research that seeks to further understand
the hemibiotrophic life cycle of P. infestans is now available.
We are also aware that the use of two different strains can add
some noise to the analyses but our approach at the pathway level
permitted to assess some variation at the specific reactions used
by each strain.
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(Rodenburg et al., 2017) and the one presented here at the level of pathways of
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Table S10 | Same as Table S9.

Supplementary Data | P. infestans_M_model.xml. Metabolic model of
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