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Heterogeneous information networks (HINs) currently play an important role in daily

life. HINs are applied in many fields, such as science research, e-commerce,

recommendation systems, and bioinformatics. Particularly, HINs have been used in

biomedical research. Algorithms have been proposed to calculate the correlations

between drugs and targets and between diseases and genes. Recently, the interaction

between drugs and human genes has become an important subject in the research on

drug efficacy and human genomics. In previous studies, numerous prediction methods

using machine learning and statistical prediction models were proposed to explore this

interaction on the biological network. In the current work, we introduce a representation

learning method into the biological heterogeneous network and use the representation

learning models metapath2vec and metapath2vec++ on our dataset. We combine the

adverse drug reaction (ADR) data in the drug–gene network with causal relationship

between drugs and ADRs. This article first presents an analysis of the importance

of predicting drug–gene relationships and discusses the existing prediction methods.

Second, the skip-gram model commonly used in representation learning for natural

language processing tasks is explained. Third, the metapath2vec and metapath2vec++

models for the example of drug–gene-ADR network are described. Next, the kernelized

Bayesian matrix factorization algorithm is used to complete the prediction. Finally, the

experimental results of both models are compared with Katz, CATAPULT, and matrix

factorization, the prediction visualized using the receiver operating characteristic curves

are presented, and the area under the receiver operating characteristic values for three

varying algorithm parameters are calculated.

Keywords: drug–gene, ADR, heterogeneous network, link prediction, representation learning, network embedding

INTRODUCTION

Over the past few years, predicting the relationship between drugs and genes have gradually become
a subject of concern among researchers in the fields of new drug discovery and personalized
medicine. Conventionally, the route for improving drug efficacy is to analyze the interaction
between the drugs and their targets. Most targets are proteins encoded from genes; thus, raising this
research work to the gene level is a critical development. Studies on drug–gene interactions have
proved that determining this relationship can not only improve the positive effects of drugs but also
help prevent adverse drug reactions (ADRs) by enabling genotype-guided prescription. As early as
1909, Garrod proposed that people would have different responses after using a given drug (Garrod,
1909). Currently, an increasing number of people believe that gene is a vital factor in the variability
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of drug response (Swen et al., 2007). According to a number
of studies, gene expression may affect the efficacy of the drugs;
however, some drugs can also upregulate or downregulate the
expression of corresponding human genes (Liu and Pan, 2015).
The assumption underlying individualized medication according
to human genotype is that the human genotype will determine
the reaction to a givenmedication (Weiss et al., 2008). On the one
hand, patients may positively respond to the medication or the
risk of complications may be low. On the other hand, drugs may
provoke a series of side effects. For example, genetic factors may
have an effect on the response to antihypertensive medication.
Schelleman et al. (2004) found that compared with other
antihypertensive treatments, diuretics as therapy can reduce the
risk of myocardial infarction and stroke among patients with the
460W allele of the α-adducin gene because of the interactions
between the genetic polymorphisms for endothelial nitric oxide
synthase and diuretics and between the α-adducin gene and
diuretics.

Traditional prediction methods belong to two categories:
machine learning and statistics (Pan et al., 2017). Conventional
machine learning methods directly treat the known drug–gene
pairs as the positive training set and the unknown genes as the
negative training set. In other words, these methods ignore the
possibility of unknown positive samples in the data.

Typical statistical prediction methods are classified into two
types: structure-based approaches and text mining methods.
Structure-based approaches focus on the physiochemical
properties of drug binding sites to predict drug availability
(Cheng et al., 2007). These methods require the binding site
information of the drugs as the structural features of the target
proteins or the expressed sequences of genes to which a drug
compound molecule binds have effects. Thus, these methods
cannot be used for genes with unknown sequences. Text mining
methods are based on the assumption that two biological entities
may be very likely related if they appear in one body of literature
(Zhu et al., 2005). However, this type of methods is not feasible
for entities without any known interactions.

Recently, Dong et al. (2017) proposed two models called
metapath2vec and metapath2vec++, which can effectively
represent the semantic information and structure of a
heterogeneous information network (HIN) simultaneously.
In the current work, we extend these algorithms into the drug–
gene field and use both models on a biological heterogeneous
network consisting of three types of nodes to predict the
interactions between drugs and genes.

This paper is organized as follows:

1) The dataset that combines drug–gene interaction and drug–
ADR interaction data is presented. The source database used
is introduced.

2) The conventional representation learning model skip-gram is
explained, and the softmax function of the model is improved.

3) The metapath2vec and metapath2vec++ models are applied
to our biological heterogeneous network, and the prediction
results are discussed.

4) After the results of the two models (i.e., metapath2vec
and metapath2vec++) on our dataset are obtained, the

performances of both models are compared with those
of three conventional prediction algorithms, namely, Katz,
CATAPULT, and matrix factorization (MF). The comparison
results presented in section IV demonstrate that the two
representation learning methods have achieved the highest
accuracy of prediction.

PRELIMINARIES

Experimental Data
Drug–Gene–ADR Network
In our experiment, we applied the metapath2vec and
metapath2vec++ models to a biological HIN with three
types of nodes, namely, drug, gene, and ADR, and four types of
relationship, namely similarity between drugs, similarity between
genes, drug–gene interaction, and drug–ADR interaction.

The heterogeneous network is partially represented by
Figure 1. In the network, the blue nodes indicate drugs, the red
nodes indicate genes, and the green nodes indicate ADRs. The
solid lines represent the interactions of the node pairs, with the
blue lines showing a similarity between drugs and the red lines
showing a similarity between genes. Moreover, the gray lines
mean that an interrelationship exists between a drug and a gene,
and the green line symbolizes the causality between a drug and
an ADR.

The drug–gene interaction dataset was extracted from the
online database the Library of Integrated Network-Based Cellular
Signatures (LINCS). It is a rich database that aims to explain
biology by cataloging changes in gene expression and other
cellular processes occurring under a variety of drug therapies
or other perturbing factors. We selected 10,830 genes from the
database and 38,456 interacting drug–gene pairs to constitute the
drug–gene part of the network.

The data on the interactions between drugs and ADRs were
collected from the online database Adverse Drug Reaction
Classification System (ADReCS). The ADReCS is a database
specifically created for ADR research. It provides comprehensive
ADR ontology data, including data on ADR standardization
and hierarchical classification of ADR terms (Cai et al., 2014).
ADReCS has collected a large number of drug–ADR correlations
from more than three sources like DailyMed, MedDRA, and
SIDER2. DailyMed, which is a continuously updated website
providing massive information on medicines sold in the market
and containing 102,405 drug listings (as of May 21st, 2018)
submitted to the Food and Drug Administration, is the main
source of the data in ADReCS. Thus, ADReCS provides not
only data on ADRs but also information on 1,355 single
active ingredient drugs and 134,022 drug–ADR interactions. We
extracted from the database 1,370 ADRs caused by the drugs in
the drug–gene data. Consequently, we were able to incorporate
the concept of side effect in the drug–gene network.

Drug Similarity
In particular, we used two kinds of similarity data between
drugs to distinguish each drug effectively. First, the structural
similarities of drugs are based on the drug compounds’ chemical
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FIGURE 1 | Partial heterogeneous drug–gene–ADR network. To make the network clearer and more intuitive, we visualized the network by extracting some data from

the entire dataset. The blue rounded nodes represent drugs, the red rhombic nodes represent genes, and the green triangular nodes represent side effects.

structures, which were commonly used in previous drug–target
prediction studies.

The other kind of similarity data we used in the experiment are
the pharmacological correlation data based on the information
in the Anatomical Therapeutic Chemical (ATC) classification
system. This classification system is formulated and updated
on a regular basis by the WHO Collaborating Centre for
Drug Statistics Methodology. The ATC classification system can
classify drugs into diverse categories based on the treatment
effects and compound molecular features (Cai et al., 2014). In the
experiment, we presented a transformation strategy to change the
ATC data of drugs into pharmacological similarity scores of drugs
by comparing ATC categories belonging to two different drugs.

Major Motivation
We aimed to explore the interaction between drugs and genes
by constructing a heterogeneous network and contribute to the
literature on the prediction of the negative effects of new drugs
on human gene expression. Furthermore, in view of the growing
importance of identifying ADRs in developing new drugs, we
introduced ADR data to obtain a sizable amount of information
about drugs, regarded ADRs as a set of labels, and considered
the causal relationships between drugs and ADRs to be a group
feature of drugs.

PROPOSED METHODS

Related Work
Skip-Gram
Skip-gram is a language model widely used for training word
representation vectors to determine the relationships between
words in a network. To help predict the context words of the

target word in a sentence or in an entire document, a skip-
gram model finds the representations of these words (Cai et al.,
2014). Simply, a skip-gram model can provide the information
surrounding a word. A skip-gram model generally has three or
more layers; a center word is inputted in the input layer, and
consequently, a certain amount of words related to the input
word are generated with a high probability. Given an example of
a drug set, if a series of drugs (i.e., d1, d2, . . . , dN) constitutes the
training set, some of these drugs are related, regardless of whether
the relationships between others are unknown. The average log
probability that the skip-gram model should maximize can be
defined as follows:

1

N

∑N

n = 1

∑

−c≤j≤c,j 6=0
log p(dn+j|dn), (1)

where N is the number of drugs, dn and dn+j indicate two related
drug nodes in the training set, and c is the number of drugs in
the training set. A higher prediction accuracy can be achieved
with more training samples. In the original skip-gram model, vd
is the input representation vector, v

′
d is the output representation

vector of drug d, andD is the total number of drugs. Accordingly,
the probability of dn+j related to dn can be computed by the
following softmax function:

p
(

dn+j|dn
)

=
e
(v′dn+j

⊤vdn )

∑D
d = 1 e

(v′d⊤vdn
)
. (2)

Hierarchical Softmax
In a typical skip-gram model, the output layer commonly
uses a softmax function to yield the probability distribution.
In general, the softmax function can squash a vector of real
values into another vector whose values are controlled within
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FIGURE 2 | Diagram of hierarchical softmax.

the range (0, 1). To reduce the computational cost and time, a
replacement function called hierarchical softmax was proposed
in (Morin and Bengio, 2005). The hierarchical softmax function
requires less computational space and time by obtaining a vector
with a length of no more than log2|D|, whereas the standard
softmax must compute a D-dimension vector (Mikolov et al.,
2013). Hierarchical softmax constructs a binary tree with all the
nodes as leaves (Figure 2) to achieve exponential speed-up of
computation. The output of learning a drug relationship dataset
is formalized as a Huffman tree with a train of binary decisions.
Themore related to the root, the closer the distance to the current
node is. The algorithm then assigns 1 to the left branch and 0 to
the right branch of each node on the tree to formalize these nodes
into vectors, which denote the paths from the root node to the
current nodes. In Figure 2, the red line indicates the metapath
between drug “D013999,” the root, and drug “C014374” and
corresponds to the information learned from the input dataset.

Noise-Contrastive Estimation
To present an alternative to hierarchical softmax and further
improve computational performance, Gutmann and Hyvarinen
(Morin and Bengio, 2005) proposed noise-contrastive estimation
(NCE), which is a method based on sampling. The core idea
of NCE is that for each instance of sampling n labels from the
entire dataset including its own label, only the possibility of the
instance belonging to the n+1 labels should be computed instead
of calculating the probabilities of the objects related to every
label. In Figure 3, the genes are temporarily regarded as labels
of drugs. When the NCE strategy is used to identify labels for
drug “D020849,” noise labels such as gene “3108” and gene “9143”
can be randomly sampled. Furthermore, gene “148022” can be

FIGURE 3 | Diagram of drug–gene network. The blue nodes indicate drugs,

and the red nodes indicate genes. The solid lines represent drug–gene

interactions, with the blue lines indicating a similarity between two drugs, and

the red lines indicating a similarity between two genes. The black line means

that the nodes are selected as candidate labels of drug “D020849,” and the

dotted line indicates that the node on the end side of the line is a sampled

label.

sampled on the basis of the similarity between drug “D020849”
and drug “D013999” (an interaction occurs between “D013999”
and gene “9053”), or gene “1027” can be sampled because of
the similarity between gene “1027” and gene “3108,” which is
related to drug “D020849.” The NCE method divides the labels
of the central node into two categories: true label and noise
label. Subsequently, the multilabel classification problem can be
translated to a binary classification task, thereby significantly
reducing the time cost.

The probability of the true label can be defined as

p
(

gi = 1|G, d
)

=
pθ (d|G)

pθ

(

d
∣

∣G
)

+ k∗q(d)
, (3)

where gi is a gene label of the central drug d and G is the label
set of d. Meanwhile, k noise labels are selected from a noise
distribution q(d). In (3), θ is a parameter used to maximize the
conditional likelihood of the label set (Gutmann and Hyvarinen,
2012).

Next, the noise sample probability can be computed as follows:

p
(

gi = 0|G, d
)

=
k∗q(d)

pθ

(

d
∣

∣G
)

+ k∗q(d)
. (4)

Accordingly, the cost function for N total number of central
drugs is computed as follows:

1

N

∑N

i

{

log p
(

gi = 1|G, d
)

+
∑

log p
(

gi = 0|G, d
)

}

. (5)

Negative Sampling
Mikolov (Cai et al., 2014) proposed negative sampling to replace
hierarchical softmax. Negative sampling can simplify NCE and
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maintain the quality of the representation vectors. It is similar
to NCE as it also uses a noise label set to change the task into
a binary classification problem. Thus, negative sampling can be
regarded as a specific version of NCE with the constant q and
k = |V|. Accordingly, the probability computation in (3) can be
changed into

p
(

gi = 1|G, d
)

=
pθ (d|G)

pθ

(

d
∣

∣G
)

+ 1
, (6)

and Equation (4) is simplified to

p
(

gi = 0|G, d
)

=
1

pθ

(

d
∣

∣G
)

+ 1
. (7)

Metapath2vec
In view of the application of the skip-gram model on a language
network, it may be designed for homogeneous networks with
only one type of nodes. Thus, it cannot be directly used on
a network consisting of multiple types of nodes and links. In
developing the metapath2vec model, Dong et al. (2017) designed
a skip-gram model that can be applied to a heterogeneous
network by incorporating heterogeneous network features and
implemented two improvements on the standard framework.

Nodes in a network are generally related to each other on
two aspects, their semantic relevance and structural similarity.
Nodes with similar semantemes are obviously associated and
should be close in geographic proximity. For example, for the
two nodes drug “D020849” and drug “D013999” in Figure 3,
an edge indicates drug similarity between them. In other words,
they have similar semanteme. If a clustering algorithm were to
be performed, the two drugs may have a high probability of
belonging to a common cluster or community. With regard to
structural correlation, two nodes also exhibit an affinity if they
have extremely similar structures in the entire network, such as
the two nodes gene “9053” and gene “56924” in Figure 3. Both
of them are related to only one drug node with no more edges.
Thus, when we calculate the representations of these two genes,
they should be embedded close to each other.

In the node2vec model, which is used on homogeneous
networks to analyze the relationship between words, Grover and
Leskovec (Dyer, 2014) combined the advantages of breadth-first
sampling (BFS) and depth-first sampling (DFS) to establish a
supervised randomwalk algorithm. Typically, BFS can effectively
sample a group of nodes on the basis of structural similarity.
By contrast, DFS prefers to search a train of nodes forming a
path according to their content similarity. The random walk
algorithm used in node2vec presents two benefits; it functions as
a two-sample algorithm and performs well in terms of time and
complexity and space.

The first improvement of the metapath2vec model from
the skip-gram model is the incorporation of the random walk
method, which allows for the compression of the structural
feature of a heterogeneous network based on the homogeneous
version used in node2vec. The drug–gene–ADR network in
Figure 4 visualizes the capability of the metapath to restrict the
random walker according to a given metapath and consequently
sample diverse nodes in a heterogeneous network.

FIGURE 4 | Drug–gene–ADR network. The blue nodes indicate drugs, the red

nodes indicate genes, and the green nodes indicate ADRs. The green lines

between drug nodes and ADR nodes indicate the caused association of a

drug–ADR pair, and the orange lines illustrate the interactive association

between drugs and genes. The blue and pink lines indicate the similarity

between two drugs and two genes respectively.

Controlled by the given metapath “Drug–ADR–Drug–Gene–
Drug,” the metapath-based random walker standing on the node
drug “D013999” selects ADR “06.04.05” to be its next step instead
of jumping to other neighboring nodes, such as gene “9053” or
gene “55038.” Thus the specific heterogeneous semanteme can
be identified from the entire network.

In addition to the metapath-based random walk, the second
improvement exhibited by the metapath2vec model is the
heterogeneous skip-gram model. This model is established by
calculating the probability that a node has a heterogeneous
neighbor set and then maximizing the computation result. Dong
et al. (2017) defined this model as follows:

argmax θ

∑

d∈V

∑

t∈TV

∑

gt∈Nt(d)
log p(gt|d, θ), (8)

where d is the central drug node in the heterogeneous network.
Nt(d) is the neighbor set in which gt is one of the neighbor nodes
of d; V and TV represent the node set and the type set of the
nodes, respectively.

Metapath2vec++

Metapath2vec++ is the upgraded version of the metapath2vec
model with the improvement of endowing the negative sampling
strategy mentioned in section III-A4 with a heterogeneous
character. The softmax function used in the metapath2vec model
is more applicable to a homogeneous network because this
function ignores the heterogeneity of the network. In models

Frontiers in Genetics | www.frontiersin.org 5 July 2018 | Volume 9 | Article 248

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhu et al. Prediction of Drug–Gene Interaction by Using Metapath2vec

with the traditional softmax function, such as node2vec or
metapath2vec, the output layer exports a matrix consisting
of the representation vector of each node. By contrast,
the metapath2vec++ model can more clearly analyze the
heterogeneous semantic relationship between these nodes, which
are assigned to the neighbor set of the central node. Figure 5
demonstrates the main difference between metapath2vec and
metapath2vec++.

Prediction
After the representation vector of each node in the entire network
is constructed by the two representation learning models, the
prediction algorithm can be executed to obtain the related score
between a drug node and a gene node.

The kernelized Bayesian matrix factorization (KBMF)method
combines the ideas of multiple kernel learning andMF to employ
more kinds of features, which can contribute to the prediction
results. Every specific metapath can offer a group of latent
features embedded in the representation vectors, and different
features can make different contributions to the prediction. The
conventional MF method cannot simultaneously take advantage
of features from multiple domains; therefore, we used KBMF
(Gönen et al., 2013), a variation of the MF with kernels, to
calculate the probability of a drug–gene pair. In the KBMF
model, a set of kernels corresponds to a set of features from
multiple domains. In our experiment, we used the representation
vectors of each metapath instead of the set of kernels. Afterward,
the model assigns a group of weights to these kernels to
integrate every component linearly with the assumption that
kernel weights are normally distributed without enforcing any
constraints on them. The main process of KBMF is summarized
in Figure 6, which demonstrates how to use more than one group
of features and how to combine all kernels. In the diagram, there
are m groups of drug features and n groups of gene features
indicated by the kernel matrices Km

d
∈ R

Nd×Nd and Kn
g ∈

R
Ng×Ng , respectively, where Nd is the number of drugs in the

training set and Ng is the number of genes in the training set.
In the same diagram, Ad ∈ R

Nd×X and Ag ∈ R
Nd×X represent

the projection matrix of drugs and genes to the subspace with
dimension X, respectively; Gm

d
= AT

d
Km
d
refers to the component

of a specific kernel for drugs, and Gn
g has a similar meaning for

genes. After the components for all the kernels are obtained, they
can be combined with the kernel weights ed and eg to derive the
composite components Hd and Hg . Finally, the relative score for
each drug–gene pair is calculated by Hd and Hg .

EXPERIMENTAL RESULTS

Performance Metric
Receiver operating characteristic (ROC) curves (Hanley and
McNeil, 1982) are widely used to assess the discrimination
capability of data mining algorithms, especially for measuring
the link prediction results (Grover and Leskovec, 2016). Both
ROC curve and area under the receiver operating characteristic

FIGURE 6 | Diagram of kernelized Bayesian matrix factorization algorithm.

FIGURE 5 | An intuitive example of the heterogeneous network with drug, gene, and ADR nodes to demonstrate the main difference between metapath2vec and

metapath2vec++. When the node drug “D013999” is selected as the central node and its neighbor set is produced, metapath2vec usually presents a probability

matrix of all the neighbors together, whereas metapath2vec++ presents the probability of each neighbor type separately.
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(AUROC) curve can estimate the performance of a binary
classifier. Compared with other performance metrics widely used
for classification algorithms, such as precision and recall ratio, the
ROC curve can remain stable and constant when the distribution
of positive samples and negative samples in the dataset is
changed. The ratio between positive and negative instances
cannot always be balanced in real-world datasets. In fact, the
number of negative samples is commonly much larger than the
positive samples, thereby resulting in a data imbalance problem,

which clearly affects the estimation. Thus, the precision–recall
curve may significantly change along with the size of the dataset.
Therefore, we used the ROC curve as the performance metric in
our experiment.

Parameter Setting
In this section, we introduce the parameters used in the
experiment and compare the prediction results for each
parameter adjustment. The metapath2vec and metapath2vec++

FIGURE 7 | Prediction results obtained by (A–C) varying three parameters and (D) comparing metapath2vec and metapath2vec++. (A) ROC curves for changing w

that indicates the numbers of walkers in the random walk algorithm. (B) ROC curves for changing l that indicates the lengths of the metapath in the random walk

process. (C) ROC curves for changing d that indicates the dimensions of the representation vector. (D) ROC curves for comparisons of metapath2vec and

metapath2vec++.

TABLE 1 | AUROC values for three varying parameters.

Parameter Object 1 2 3 4 5

Number of walkers Value 200 400 1,000 1,500 2,000

AUROC 7.682E-01 ± 0.005 7.876E-01 ± 0.005 8.021E-01 ± 0.005 7.854E-01 ± 0.005 7.982E-01 ± 0.005

Path length Value 10 30 100 150 200

AUROC 7.805E-01 ± 0.005 7.830E-01 ± 0.005 8.021E-01±0.005 7.825E-01 ± 0.005 8.023E-01 ± 0.005

Dimension of representation vector Value 100 150 200 250 500

AUROC 8.021E-01 ± 0.005 8.125E-01 ± 0.005 8.367E-01 ± 0.005 8.322E-01 ± 0.005 8.093E-01 ± 0.005

The bold values indicate the best results in the experiments with different values of parameters.
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FIGURE 8 | Comparison of the prediction results of metapath2vec and

metapath2vec++ with those of three conventional prediction algorithms,

namely, Katz, CATAPULT, and KBMF.

algorithms each include five parameters. We modified three of
these parameters as follows to test the sensitivity of the models.

1) The number of walkers (w): We selected five values of the
number of walkers from 200 to 2,000, and the ROC curves
of the prediction results are shown in Figure 7A. The best
parameter setting of w for our biological heterogeneous
network was 200. The ROC values are summarized in
Table 1.

2) The number of steps or path length (l): The total number of
steps decides the length of a metapath. In our experiment,
we selected five path lengths in the range of 10–200. On our
dataset, the best result was obtained when l was set at 200.
The result comparison is illustrated in Figure 7B, and the best
AUROC is presented in Table 1.

3) The dimension of the representation vector (d): This
parameter restricts the size of the representation vector. We
set five values from 100 to 500 as d. The results obtained when
this parameter was changed are visualized as ROC curves in
Figure 7C, and the AUROC values are all included in Table 1.

4) Figure 7D shows the ROC curves for the prediction results
of metapath2vec and metapath2vec++. The latter apparently
performed better.

Comparison Methods
To verify the excellent performance of both metapath2vec and
metapath2vec++ further, we set the three parameters mentioned
above as w = 1,000, l = 100, and d = 100, respectively and
selected three existing algorithms commonly used for the link
prediction problem, namely, Katz, CATAPULT, and KBMF, and
compared them with the two models proposed in this study. In
this section, we briefly discuss these conventional methods and

present the comparison of the experimental results represented
by ROC curves.

Katz
Katz (1953) is a famous algorithm first proposed to improve the
balloting results of a dataset for sociometric problems (Forsyth
and Katz, 1946). It has gradually been successfully applied to
heterogeneous networks for link prediction. This graph-based
algorithm can estimate the effects of a given node by calculating
the numbers of its direct neighbors and indirect neighbors. The
Katz method can be used to find the nodes related to the central
node by measuring their similarities in both the directed and
undirected graphs. Thus, it can predict the relationships between
nodes accurately for a social network, and its performance has
been proved (Singh-Blom et al., 2013). The main idea of Katz
is that if numerous paths exist between node j and the given
node i in a network, then the two nodes may be very similar
because these indirect links connect them. A similarity score for
each node pair can be obtained by counting the numbers of edges
with different steps from one to one, similar to the random walk
(Wang and Landau, 2001; Semage, 2017) process with fixed end
nodes. In our experiment, we used this method on our drug–
gene–ADR network to predict the correlation between a drug and
a gene. However, its prediction results are not as good as those of
the other compared models as it is applicable to a homogeneous
network because the input of Katz is an unweighted network.
As a result, the interaction scores of the drug–gene pairs are
poor. Furthermore, some ADRs are inconsequential because
the drug–ADR matrix is not extremely symmetric. The
ROC curve for the prediction result of Katz is shown in
Figure 8.

CATAPULT
Drawing from the idea of Katz, Singh-Blom (Singh-Blom et al.,
2013) proposed a new guilt-by-association (GBA) method called
CATAPULT. GBA (Oliver, 2000) is a powerful heuristic method
that infers whether a novel biological entity is associated
with another known entity through similarities in function or
structure. GBA methods can be used not only to illustrate the
associated expression of a group of genes but also to predict
the product of an unknown gene by searching for other genes
that are correlated with the given one (Wolfe et al., 2005). As
a GBA method, CATAPULT also presents good performance
in predicting related genes and drugs in our experiment. By
combining the Katz measure and machine learning, CATAPULT
can assign appropriate weights to a set of links with different
lengths by learning suitable features; thus, it improves the
accuracy of the original Katz method. Furthermore, CATAPULT
is also based on positive-unlabeled (PU) learning methods (Yang
et al., 2012), which are suitable for datasets with only positive
samples and unknown samples (Hsieh et al., 2015).Many datasets
in the real world seldom have determinate negative samples;
hence, traditional methods would select unlabeled nodes to
constitute a negative dataset. Thus, the noise of the negative
dataset can disturb the performance of the classifier because of
the potential related nodes whose links are not inexistent but
unknown. Introducing PU learning, CATAPULT uses a strategy
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to pick nodes without labels randomly to be negative samples to
solve this problem. The ROC curve for the prediction result of
CATAPULT is also presented in Figure 8.

Matrix Factorization
MF is another typical algorithm employed for network data
mining, and it is mainly used on structural link prediction
(Menon and Elkan, 2011). MF divides a matrix into more than
two different low-rank matrices and can effectively reduce high
dimensionality to obtain potential structures of the original data.
MF possesses several advantages (Lu and Yang, 2015). First, it
can solve the data sparseness problem (Koren, 2008) and can
easily be adopted in many fields with specific data. Second, it
can easily find the optimal solution. Third, by combining the
features of row data and column data of the given matrix, MF can
yield satisfactory results in link prediction. In the comparative
experiments, we used KBMF.

The main idea of KBMF is to use a group of kernels
following a normal distribution to use more than one set of node
features. We used this algorithm in our method to complete the
prediction part, after the representation vectors were obtained by
the representation learning models. Thus, we compared simple
KBMF and KBMF plus metapath2vec (denoted by metapath2vec
in Figure 8). The ROC curves for the prediction results of both
models are also shown in Figure 8.

CONCLUSION

The experimental results show that the extended representation
learning methods present excellent performance on a

heterogeneous network and possess good prospects in link
prediction.

On the basis of the prediction results, we determined
the best parameters for our biological heterogeneous network
dataset, namely, 200 for the number of walkers, 150 for the
length of a path in the random walk process, and 200 for
the dimension of the representation vector of each node.
Furthermore, we were able to understand the sensitivity of
the two models to parameter variation. In the future, we
expect to improve the prediction results by incorporating more
comprehensive data and extend the prediction task to drug–ADR
relationships.
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