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Large-scale tumor genome sequencing projects have revealed a complex landscape

of genomic mutations in multiple cancer types. A major goal of these projects is to

characterize somatic mutations and discover cancer drivers, thereby providing important

clues to uncover diagnostic or therapeutic targets for clinical treatment. However,

distinguishing only a few somatic mutations from the majority of passenger mutations

is still a major challenge facing the biological community. Fortunately, combining

other functional features with mutations to predict cancer driver genes is an effective

approach to solve the above problem. Protein lysine modifications are an important

functional feature that regulates the development of cancer. Therefore, in this work, we

have systematically analyzed somatic mutations on seven protein lysine modifications

and identified several important drivers that are responsible for tumorigenesis. From

published literature, we first collected more than 100,000 lysine modification sites for

analysis. Another 1 million non-synonymous single nucleotide variants (SNVs) were then

downloaded from TCGA and mapped to our collected lysine modification sites. To

identify driver proteins that significantly altered lysine modifications, we further developed

a hierarchical Bayesian model and applied the Markov Chain Monte Carlo (MCMC)

method for testing. Strikingly, the coding sequences of 473 proteins were found to

carry a higher mutation rate in lysine modification sites compared to other background

regions. Hypergeometric tests also revealed that these gene products were enriched

in known cancer drivers. Functional analysis suggested that mutations within the lysine

modification regions possessed higher evolutionary conservation and deleteriousness.

Furthermore, pathway enrichment showed that mutations on lysine modification sites

mainly affected cancer related processes, such as cell cycle and RNA transport.

Moreover, clinical studies also suggested that the driver proteins were significantly

associated with patient survival, implying an opportunity to use lysine modifications as

molecular markers in cancer diagnosis or treatment. By searching within protein-protein

interaction networks using a random walk with restart (RWR) algorithm, we further
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identified a series of potential treatment agents and therapeutic targets for cancer related

to lysine modifications. Collectively, this study reveals the functional importance of lysine

modifications in cancer development andmay benefit the discovery of novel mechanisms

for cancer treatment.

Keywords: lysine modifications, cancer, somatic mutations, clinical analysis, pathway and network analysis

INTRODUCTION

Somatic mutations have a crucial role in the regulation of
cancer progression, and therefore, interpreting the functional
consequences of somatic mutations on gene products will be
essential for developing potential targets for cancer therapies. As
a benefit of the recent advances in next-generation sequencing
technology and reduced analysis costs, the amount of data
regarding somatic mutations in various cancer types has
increased enormously in the past few years. A complex landscape
of somatic mutations in cancers of multiple types and tissues
has been revealed in large-scale cancer genomic datasets, such
as TCGA and The International Cancer Genome Consortium
(ICGC). However, among these massive amounts of mutations,
not all of them are real drivers for cancer; instead, the majority
of the mutations do not have a noticeable effect. Therefore,
distinguishing only a few driver mutations from the majority of
passenger mutations present in a cohort of patients is still a key
challenge in the analysis of cancer genomes.

According to previous studies (Diaz-Cano, 2012; Morris et al.,
2016), there is a significant genetic heterogeneity within the
driver mutations presented in various cancer types. One possible
explanation for this phenomenon is that the behavior of a
cancer cell depends not only on genetic mutations but also on
the dynamic regulation of non-genetic information. Therefore,
combining mutations with other non-genetic regulations is an
effective approach for predicting novel cancer driver genes
and may provide extra guidance for cancer studies compared
to traditional frequency-based methods (Vandin et al., 2012;
Chen et al., 2013; Gonzalez-Perez et al., 2013; Leiserson et al.,
2013; Tamborero et al., 2013; Cheng et al., 2014; Zhang et al.,
2014). Protein post-translational modifications (PTMs), which
are known to play critical roles in cancer development (Bode and
Dong, 2004; Krueger and Srivastava, 2006; Jin and Zangar, 2009;
Silvera et al., 2010), are an important functional feature that can
be used in the prediction of novel cancer drivers. Among various
protein amino acid residues, lysine has comparatively extensive
and important modifications, such as acetylation, methylation
and ubiquitination (Freiman and Tjian, 2003). The modification
of lysine by ubiquitin and SUMO on specific proteins can
reshape the binding interface between the modified protein and
other biological macromolecules, regulating their affinity for
DNA, proteins, plasma membranes or other endomembrane
systems (Bergink and Jentsch, 2009; Dikic et al., 2009). Therefore,
mutations of these modification sites may cause malfunction in
PTM process, altering the subcellular location or activity of the
modified protein and leading to abnormal functionalities (Ea
et al., 2006). Recent research has reported that aberrant levels

of histone acetylation can promote oncogenic transformation
and tumorigenesis by deregulating chromatin-based processes
(Lee et al., 2014; Di Martile et al., 2016). As research moves
forward, growing evidence has shown that the acetylation process
on non-histone proteins (Glozak et al., 2005; Singh et al.,
2010), especially transcription factors, is highly related to cancer
phenotype. In addition to lysine acetylation, SUMOylation,
and ubiquitination were also found to be involve in cancer
progression. For example, the mutation of E318K on melanoma-
lineage-specific microphthalmia-associated transcription factor
(MITF) can disrupt a SUMO consensus site, and lack of
SUMOylation increased the transcriptional activity of MITF,
thereby increasing the levels of other tumor promoting factors,
such as HIF1α (Bertolotto et al., 2011; Yokoyama et al., 2011).
Thus, aberrant SUMOylation of MITF promotes tumor initiation
and progression. In addition to MITF, another key cancer driver
that is regulated by lysine modification is the androgen receptor
(AR). According to previous evidence (Heinlein and Chang,
2004; Balk and Knudsen, 2008; Tan et al., 2015), AR is the
main driver of prostate cancer development and progression.
Recent research has revealed that the ubiquitination of AR
at position K311 is critical for its proper function, regulating
both AR protein stability and AR transcriptional activity. When
such an ubiquitination site loses its function, the expression
of over a thousand downstream genes will be altered, possibly
leading to misregulation in chromatin organization, cellular
adhesion, motility, and signal transduction (McClurg et al.,
2016). In this regard, the annotation of known cancer mutations
based on the effects on lysine modification and the discovery
of novel lysine modification-related drivers may be important
for providing potential guidance in the development of new
therapeutic strategies and drugs for cancer patients.

To uncover the potential mechanism of lysine modification
in cancer development, here, we collected 1,085,623 somatic
mutations and 103,248 lysine modification sites from existing
databases and published literatures. Combining the above
data together, we identified 164,884 lysine modification-related
mutations. To further predict driver proteins that carried
recurrent mutations on lysine modification sites, we developed
a hierarchical Bayesian model and applied a Markov Chain
Monte Carlo (MCMC) method for analysis. Furthermore, based
on the identified driver proteins, we performed comprehensive
downstream analysis to reveal their regulatory roles in biological
pathways and molecular interaction networks. In addition, their
potential clinical utilities in cancer diagnosis and treatment were
also evaluated in this study.We expect that the above information
will help in the discovery of novel mutagenic mechanisms and
therapeutic targets for cancer studies.
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MATERIALS AND METHODS

Collection of Lysine Modification Sites and
Non-synonymous Mutations
Experimentally identified lysine modification sites in
human proteins and their exact sequences were manually
collected from published literatures in PubMed by searching
for keywords such as “ubiquitination,” “acetylation,”
“sumoylation,” “methylation,” “succinylation,” “malonylation,”
“glutarylation,” “glycation,” “formylation,” “hydroxylation,”
“butyrylation,” “propionylation,” “crotonylation,”
“pupylation,” “neddylation,” “2-hydroxyisobutyrylation,”
“phosphoglycerylation,” “carboxylation,” “lipoylation,” and
“biotinylation.” To ensure an adequate amount of data, only
the modifications with more than 1,000 sites were retained
for subsequent analysis. Ultimately, seven types of lysine
modifications (ubiquitination, acetylation, SUMOylation,
glycation, malonylation, methylation, and succinylation) were
collected as the final data set. All modified proteins were
annotated with Ensembl transcripts and HGNC symbols using
the UniProt database.

Somatic mutations of 12 cancer types (BLCA, UCEC, LAML,
STAD, SKCM, GBM, THCA, LIHC, HNSC, COAD, LUSC,
and THYM) were downloaded from the TCGA data portal
(https://portal.gdc.cancer.gov/) on 16 March 2017. To obtain
a complete set of mutation data, we also downloaded somatic
mutations of these cancer types from the ICGC data portal
(ICGC, https://dcc.icgc.org/, downloaded on 21 November
2017) and the Catalog of Somatic Mutations in Cancer
(COSMIC Forbes et al., 2017, downloaded on 21 November
2017). The original mutation sites were then combined
from the above three databases, and redundant mutations
in the same patients in the same cancer type were removed.
After annotation by ANNOVAR (Wang et al., 2010), only
non-synonymous single nucleotide variants (SNVs) were
retained.

Identification of Lysine
Modification-Related Mutations From
Mutation Data
We applied a k-means clustering algorithm to extract
the corresponding motif regions of lysine modifications
(Supplementary Methods, Supplementary Table 1). We merged
the motifs of the same type of lysine modification in order at
integrated PTM sites with cancer mutations for each protein and
then denoted them as themodification regions. Correspondingly,
the remaining sequences were merged separately and denoted
as background regions (Figure 2). Non-synonymous mutations
were mapped to the protein sequences and divided into lysine
modification-related mutations, which were located in the
modification region, and modification-irrelevant mutations,
which were located in the background region. We only
focused on proteins with at least one lysine modification and
discarded other non-modified proteins to avoid systematic
biases.

Analysis of Lysine Modification-Related
Driver Proteins by Hierarchical Bayesian
Model
To identify proteins with significantly altered numbers of
lysine modification-related mutations, we then constructed
the following hierarchical Bayesian model. In our model, we
first assumed that mutations on the motif regions would
probably damage the lysine modification process, thereby
influencing the function of their corresponding proteins via
PTM-related pathways. If such mutations are highly correlated
with tumor proliferation, they will probably undergo strong
positive selection during the cancer development process, and
therefore, unexpectedly high mutation rates will be observed
in these regions. In view of this assumption, we can identify
lysine modification-related driver proteins by comparing the
mutation rates in both motif regions and modification-free
regions. Accordingly, a null hypothesis that the mutation rate in
the motif region is same as the mutation rate in the modification-
free region is proposed. More formally, we describe the detailed
computational process below.

First, for a given protein, let Y1,Y2, · · ·Yk represent
the number of somatic mutations in each position in the
modification region, and Yk+1,Yk+2, · · ·Yn be the same count
in the background region. According to this definition, the
observed counts Y can be described by a Poisson distribution
as shown in Equations (1) and (2), where λ1 and λ2 are the
mutation rates of the modification region and the background
region, respectively.

Yi ∼ Poisson(λ1) i = 1, 2, · · · , k (1)

Yi ∼ Poisson(λ2) i = k+ 1, k+ 2, · · · , n (2)

However, due to heterogeneity in the mutational spectrum of
tumors, the mutation rate may vary markedly within different
regions across different cancer types (Lawrence et al., 2013). To
capture this fluctuation, a prior distribution was applied on λ1
and λ2 to build a double hierarchical model. As stated in the
theory of probability, a gamma distribution is the conjugate prior
to the Poisson distribution. Therefore, two gamma distributions
with different shape parameters α and scale parameters β were
used to describe the distribution of λ1 and λ2 in Equations (3)
and (4):

λ1 ∼ Gamma(α1,β1) (3)

λ2 ∼ Gamma(α2,β2) (4)

To compare the mutation rates in the modification and
background regions, we first need to compute the marginal
distribution of λ1 and λ2 given the observed data Y in
our hierarchical model, i.e., calculating P(λ1|Y) and P(λ2|Y).
Therefore, a concrete from of the full joint probability should be
obtained. According to Bayesian theory, the full joint probability
can be written as shown in Equation (5) (see Supplementary
Methods for detail deviation process).
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FIGURE 1 | (A) The number of proteins with lysine modifications collected from published literatures. (B) The number of lysine modification sites collected in this

study. (C) Distribution of cancer samples and somatic mutations collected across 12 cancer types. (D) The count of mutated PTM sites across 12 cancer types.

(E) The count of mutated PTM motifs across 12 cancer types. The proportion of mutated lysine modification motifs are shown above the bar plot.

P(λ1, λ2|Y) = P(Y1 : k| λ1)P(Yk+1 : n

∣

∣ λ2)P(λ1)P(λ2)

=
∏k
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e−λ1

λ1
Yi

Yi!

∏n

i=k+1
e−λ2

λ2
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β1
α1λ1

α1−1e−β1λ1

Ŵ(α1)

β2
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Ŵ(α2)
(5)

However, computing the marginal distribution from the above
full joint probability required integrating over other unrelated
variables in Equation (5), which was generally a formidable
analytic problem and could hardly be done manually. Rather
than mathematically computing the integration, estimating
the marginal distributions by the MCMC method, i.e., Gibbs

sampling, is a more straightforward approach. Therefore, in
order to implement Gibbs sampling (Supplementary Figure 3),
the full conditional posterior probability of every parameter
should be calculated. As shown in the Supplementary Methods,
the final full conditional posterior probability of λ1 and λ2 were
obtained in

P(λ1|λ2,Y) = Gamma(
k

∑

i=1

Yi + α1, k+ β1) (6)

P(λ2|λ1,Y) = Gamma(
n

∑

i=k+1

Yi + α2, n− k+ β2) (7)

Equations (6) and (7).
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FIGURE 2 | An overview of the analysis model. Lysine modification sites were collected from published literatures. Somatic mutations were downloaded from TCGA,

ICGC, and COSMIC. A hierarchical Bayesian model was then constructed to identify proteins with mutations that were significantly enriched in PTM regions.

Downstream analysis was also performed to reveal the mechanism of lysine modification-related mutations in cancers.

To test the difference between the mutation rates of the
background and modification regions, a variable of interest
might be the relative mutation rate, which is defined as R =
λ1
λ2
. Similarly, the full conditional posterior probability can be

calculated as shown in Equation (8) (Supplementary Methods).

P(R |λ1 , λ2,Y) = Gamma(
∑k

i=1
Yi + α1, λ2k+ λ2β1) (8)

After calculating all full conditional probabilities of each variable,
we can now use a Gibbs sampling algorithm to estimate
the marginal distribution of these parameters. During the
calculation, we performed 5,200 iterations in total and removed
the first 200 iterations as a burn-in process. Finally, the marginal
distribution of λ1, λ2 and R was estimated by the data sampled
from the last 5,000 iterations. Given the null hypothesis raised at
the very beginning of this section, we can rewrite the hypothesis
as shown in Equation (9).

H0 :R ≤ 1

H1 :R > 1 (9)

The p-value under the null hypothesis is then calculated from
the marginal distribution of R. For each tested protein, the
probability of observing a relative mutation rate <1 can be

calculated. To control false positives, the Benjamini-Hochberg
procedure is applied to each p-value. If the corrected p-value for
a given protein is lower than the significance level, i.e., 0.05, we
identify it as a significantly mutated protein.

Domain Association Analysis of Lysine
Modification-Related Driver Proteins
The functional domains of each candidate driver protein were
first predicted from InterProScan (Jones et al., 2014) using the
Pfam (Finn et al., 2014) and SMART databases (Schultz et al.,
1998; Letunic et al., 2009). The predicted regions of each protein
were then merged together to construct a domain region, and
the remaining sequences were merged as a disorder region.
To examine whether the lysine modification-related mutations
occurred preferentially in the domain region than in the disorder
region, we designed a two-tailed bootstrap tests to compare the
number of lysine modification-related mutations in the domain
and disorder region. The bootstrap test was performed according
to the following steps.

First, for each protein, we used Equations (10) and (11)
to calculate the number of mutations that occurred per
thousand amino acids in the domain region and disorder region.
Specifically, we denoted the above mutation number in the
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domain region and disorder region as x and y, respectively.

x =
X

l1
× 1000 (10)

y =
Y

l2
× 1000 (11)

where X and Y are the exact number of lysine modification-
related mutations observed in the domain region and disorder
region, respectively. l1 and l2 are the length of the domain region
and disorder region, respectively.

Next, we tested the null hypothesis that x was equal to y
in our observed data. To test this hypothesis, the probability
of observing x not equal to y under the null distribution
must be calculated. Therefore, we used the transformation in
Equations (12) and (13) to estimate the null distribution. After
the transformation in Equations (12) and (13), we can let the
distribution of x and y be the same and constrain them to have
the same center z.

x̃i = xi − x̄+ z (12)

ỹj = yj − ȳ+ z (13)

z =

∑m
i=1 xi +

∑n
j=1 yj

m+ n
(14)

In the above equation, xi is the number of mutations located
in the domain region for the i-th protein, whereas yj is the
number of mutations for disorder regions in the j-th protein. x̄
and ȳ are the average number of mutations located in all domain
regions and disorder regions, respectively.m and n represent the
total number of mutations in the domain and disorder region,
respectively.

Based on the above definition, we then constructed B
bootstrap data sets (x∗, y∗) by sampling x∗ with replacement
from x̃ and y∗ with replacement fromỹ. The test statistic t∗

b
was

calculated as shown in Equation (15).

t∗b =
x̄∗
b
− ȳ∗

b
√

σ̂
∗2
xb
n +

√

σ̂
∗2
yb

m

(15)

where x̄∗
b
is the mean and σ̂ ∗2

xb
is the variance of the bth bootstrap

sample x∗
b
. The probability of observing x not equal to y under

the null distribution can now be approximated by Equations (16)
and (17).

p =

B
∑

b=1
I(

∣

∣t∗b
∣

∣ ≥ |tobs| )

B
(16)

I(x) =

{

1 x = True
0 x = False

(17)

If the calculated p-value is lower than a pre-defined significance
level, e.g., 0.05, then we should reject the null hypothesis and
accept that the lysine modification mutations are more likely to
be enriched in the domain region.

Conservation and Deleteriousness
Analysis of Lysine Modification-Related
Mutations
The sequence conservation of each mutation site was quantified
using the 100 way phastCons score calculated in ANNOVAR. The
phastCons score was originally designed to identify conserved
elements in multiply aligned sequences. Using a phylogenetic
hidden Markov model (phylo-HMM), the probability of
nucleotide substitutions occur at each site in a genome was
quantitatively measured (Siepel et al., 2005). And based on
such probability profile (i.e., phastCons score profile), one can
calculate the conservation degree of a given mutation site. In this
study, we used the phastCons scores to quantify the conservation
degree of all the lysine modification-related mutations and
other non-lysine modification mutations. Their cumulative
distribution functions (CDF) were also plotted to present the
differences.

To investigate that whether our identified lysine modification-
related mutations was more probable to damage specific protein
functions, we next introduced a deleterious scores in our
study for measuring their deleteriousness. We defined that if
a given SNV was found to disrupt the functional domains or
regulation regions in a specific protein, such mutation would
be deleterious to protein functions. Therefore, five pieces of
software, including SIFT (Ng and Henikoff, 2001), PolyPhen2
HVAR, PolyPhen2 HDIV (Adzhubei et al., 2010), LRT (Chun
and Fay, 2009), and FATHMM (Shihab et al., 2013), were
adopted to predict the functional consequences of our identified
lysine modification-related mutation sites. To ensure prediction
accuracy, we further defined a deleterious score by integrating
the prediction results from the above five software. Specifically,
the deleterious score was calculated by counting the number of
the above methods that considered a mutation to be deleterious.
A deleterious score of 0 means that the mutation is predicted
to be tolerated in all methods, whereas a deleterious score of
5 means that the corresponding mutation is predicted to be
deleterious in all five predictors. As a result, the deleterious
score may range from 0 to 5, and a higher score indicates a
higher probability of deleterious. Next, a two-tailed proportion
test was then applied to compare the deleterious difference
between lysine modification-related mutations and other
mutations.

Subcellular Location Analysis
To annotate the subcellular location of our identified driver
proteins, we first downloaded the data set from Thul’s paper
(Thul and Akesson, 2017). The identified driver proteins
were then mapped to their corresponding subcellular locations
according to the downloaded data set. Specifically, we categorized
our driver proteins into 13 basic cellular compartments,
which were the cytosol, mitochondria, microtubules, actin
filaments, intermediate filaments, centrosome, nucleus,
nucleoli, vesicles, plasma membrane, Golgi apparatus, ER,
and secreted. The final annotation was summarized in a Venn
diagram.
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FIGURE 3 | (A) The heatmap shows the number of significantly mutated lysine modification-related proteins across 7 modification types in 12 cancers. (B) The 25

driver proteins that mutated in more than one cancer type are shown in the Circos plot. The width of the lines that connect mutated proteins to cancer types denotes

the log10 value of the fold change between modification regions and background regions. Different colors represent different cancer types. (C) Oncoprint for lysine

modification-related mutations in UCEC. The number of mutations in each patient or protein are visualized in the bar graph.

Pathway Enrichment Analysis
To uncover the regulation roles of our identified driver proteins
in cancers, we performed KEGG pathway and Gene Ontology
enrichment analysis using the “clusterProfiler” (Yu et al., 2012)
and “ReactomePA” (Yu and He, 2016) package in R. The
analysis results were illustrated using bubble plots or Cytoscape
(Demchak et al., 2014).

Survival Analysis
We downloaded survival data from the TCGA data portal
(https://tcga-data.nci.nih.gov/docs/publications/tcga/?) and
employed the R package “survival”(https://CRAN.R-project.org/
package=survival) to obtain the distribution of overall survival

time using Kaplan-Meier estimation. A log-rank test was used
to compare the survival distributions of two groups: patients
with mutations exactly located in PTM modification regions
and patients with other mutations. Survival curves were plotted
by the R package “survminer” (http://www.sthda.com/english/
rpkgs/survminer).

RESULTS

Global Analysis Reveals Recurrent Cancer
Mutations in Lysine Modification Sites
To investigate specific cancer mutations in lysine modifications,
we collected 103,248 experimentally identified lysine

Frontiers in Genetics | www.frontiersin.org 7 July 2018 | Volume 9 | Article 254

https://tcga-data.nci.nih.gov/docs/publications/tcga/?
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
http://www.sthda.com/english/rpkgs/survminer
http://www.sthda.com/english/rpkgs/survminer
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. Lysine Modification-Related Mutations in Cancer

modification sites in 13,378 proteins in total from published
literatures (Figure 1A). The collectedmodification sites consisted
of 77,364 ubiquitination sites, 29,942 acetylation sites, 7,821
SUMOylation sites, 6,568 glycation sites, 5,013 malonylation
sites, 2,018 methylation sites, and 2,014 succinylation sites
(Figure 1B, Supplementary Table 2). Considering the fact that
modifications of lysine residues were mainly catalyzed by specific
enzymes and that each enzyme has a quite different recognition
motif, we first applied a modified k-means clustering algorithm
to divide the modification sites into different consensus groups
(Supplementary Figure 1). To determine the optimal recognition
motif for each consensus group, we then carried out a PSSM-
based method on the grouped data and visualized the amino
acid preference with the Seq2Logo software (Thomsen and
Nielsen, 2012). According to the calculated amino acid profiles
(Supplementary Figure 2), we empirically selected the optimal
length of the recognition motif and constructed the motif region
for each consensus group.

Recent publications have revealed that amino acid mutations
within the modification motif can disrupt the interaction
between modification enzymes and specific amino acid residues,
thereby altering the level of post-translational modification
on specific proteins (Taverna et al., 2007; Reimand and
Bader, 2013; Hornbeck et al., 2015). Therefore, a total of
1,085,623 non-synonymous mutations (Figure 1C) from 7,786
patients (Figure 1C) were collected from TCGA for subsequent
analysis. By mapping the non-synonymous mutations to the
motif regions, we finally obtained 164,884 lysine modification-
related mutations from 12 selected cancers in 7 modification
types (ubiquitination, acetylation, SUMOylation, glycation,
malonylation, methylation, and succinylation) (Supplementary
Table 3), which amounted to 68,401 damaged lysine modification
sites (Figure 1D). Surprisingly, of the 12 selected cancer types,
we observed that uterine corpus endometrial carcinoma carried
the largest number of lysine modification-related mutations in
its samples, and more than 33.8% of the modification sites
were mutated in this cancer type (Figure 1E). These results
demonstrated that abnormal lysine modification is a general
mechanism of cancer cell regulation, implying its functional
importance in different cancer types.

Driver Proteins With Significant Lysine
Modification-Related Mutations
To identify driver proteins carrying significant lysine
modification-related mutations in multiple cancer types,
we developed a hierarchical Bayesian model and applied
the MCMC method to estimate the mutation frequency in
modification regions (Figure 2, Supplementary Methods). We
assumed that for a given protein, if the mutation frequency
observed in the motif region was higher than that the non-motif
region, the modification process in this protein may undergo
obvious positive selection and the corresponding mutations
may have a significant effect on protein function. Therefore,
identifying proteins that carried a higher mutation rate in
the lysine modification site could assist with finding targets

that potentially drive cancer progression. In this regard, a null
hypothesis that the mutation rate in motif regions is equal
to that in non-motif regions was proposed in our Bayesian
model. For each tested protein, the p-value of observing a higher
mutation rate in motif regions than in non-motif regions was
calculated. In addition, the Benjamini-Hochberg method was
then applied to control the false discover rate in the statistical
test.

For all 12 selected cancer types, we applied this model to
identify potential driver proteins regarding the 7 types of lysine
modification. Of the 13,378 mutated proteins, a total of 473
proteins were found to have significantly higher substitution
rates in lysine modification motifs than in background regions
(Figure 3A). Of these 473 proteins, 45 are known cancer
drivers according to the Cancer Gene Census in COSMIC
database where there are 699 cancer drivers in total, highlighting
that our identified proteins had significant functionality in
tumorigenesis (Supplementary Table 4, p-value = 1.9 × 10−5,
Fisher’s exact test). Among these driver proteins, 25 were
found to be significantly mutated in more than one cancer
type (Figure 3B), suggesting a general driver mechanism of
lysine modification in multiple cancer types. In our tested
cancer types, endometrial carcinoma had the most striking
number of lysine modification-related mutations. In total, 86
proteins were identified as significantly mutated in the region
of modification motifs across 7 types of lysine modifications
(Figure 3A). More than 20 proteins in endometrial carcinoma
had a mutation rate in lysine modification motifs that was
higher than 2% (Figure 3C). Moreover, we found that in
endometrial carcinoma, the most frequently mutated gene,
MACF1, also had a high lysinemodification-relatedmutation rate
in other cancers (Figure 4A), including BLCA, LUSC, HNSC,
and SKCM. According to published literature (Karakesisoglou
et al., 2000), the coding product of MACF1 can facilitate actin-
microtubule interactions and couple the microtubule network
to cellular junctions. Some related works indicated that MACF1
was an important signaling molecule with various functions in
cell processes, embryo development, tissue-specific functions,
and human diseases (Hu et al., 2016). Since MACF1 can
act as a positive regulator in the Wnt receptor signaling
pathway and function through the oncogenic MAPK signaling
pathway (Chen et al., 2006), it has been selected as a novel
potential target in several cancers (Miao et al., 2017). In our
studies, various types of lysine modifications were mapped to
MACF1, indicating an important function of post-translational
modification in regulating the formation and interaction of
cytoskeletal networks (Figure 4B). Interestingly, in our analysis,
we observed a remarkable distribution of amino acid mutations
around the lysine modification sites across 12 cancer types
(Figure 4C). Moreover, most of the lysine modification-related
mutations were found to be located in important functional
domains, such as plectin repeats and growth-arrest-specific
domains (Figure 4C). The above results suggested that lysine
modification-related mutations in MACF1 may interfere with
its proper function and cause the appearance of cancer
phenotypes.
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FIGURE 4 | (A) Distribution of lysine modification-related mutations in MACF1 across the top five cancer types. (B) The lysine modification regions and number of

flanking modified sites per residue (orange) in MACF1. (C) The number of mutations per residue in MACF1. The domain organization of MACF1 is shown below the

chart.

Lysine Modification-Related Mutations Are
Highly Conserved and Highly Deleterious
To explore the potential function of our identified lysine
modification-related mutations, we conducted a series of
proteome-wide analysis in this study. First, a bootstrap test was
applied to examine the functional impact of lysine modification-
related mutations on protein domains. Interestingly, among the
12 tested cancer types, lysine modification-related mutations
more preferably occurred in known domain regions than
in other regions (Figure 5A), suggesting that these kinds of
mutations may have underlying effects on protein functions in
different cancer types. Furthermore, using hypergeometric
test, we also filtered out a set of protein domains that
were more concentrated with lysine modification-related
mutations. Of which, the Myotonic dystrophy protein kinase
domain in CDC42BPB (Zhao and Manser, 2015) and AT

hook domain in SETBP1 (Piazza et al., 2013; Coccaro
et al., 2017) stand out as two most representative examples
(Supplementary Table 5). We expected that this candidate list
of mutated domains may help to discover novel mechanisms
of abnormal lysine modifications on regulating protein domain
functions.

In addition to domain analysis, we also examined the
evolutionary conservation of these lysine modification-
related mutations. Using the phastCons 100-way scheme
(Siepel et al., 2005), we calculated the conservation scores in
both lysine modification-related mutations and other non-
synonymous mutations and found that mutations related
to lysine modification were more functionally conserved
than other mutations (p-value < 2.2 × 10−16, Kolmogorov-
Smirnov test) (Figure 5B). Moreover, the deleteriousness
level of both lysine modification-related mutations and

Frontiers in Genetics | www.frontiersin.org 9 July 2018 | Volume 9 | Article 254

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. Lysine Modification-Related Mutations in Cancer

FIGURE 5 | (A) The box plot shows the differences in mutation rates in the domain regions and disorder regions. (B) The cumulative distribution function of the

predicted conservation scores in lysine modification-related mutations and other mutations. A Kolmogorov-Smirnov test was applied to examine their statistical

differences. (C) The deleteriousness of lysine modification-related mutations and other mutations. A two-tailed population test was applied to evaluate the differences.

(D) The subcellular localization of the driver proteins that carried a high rate of lysine modification-related mutations.

other ordinary mutations was measured in Figure 5C. As
expected, lysine modification-related mutations were predicted
to be more deleterious than other ordinary mutations with
a two-tailed population test (Figure 5C). Taking together
the above three analyses, we can conclude that lysine
modification-related mutations may have important roles
in regulating many hallmark cancer pathways (Knittle et al.,
2017; Chen et al., 2018; Cho et al., 2018) and may be driven
by strong positive selection during the development of cancer
cachexia.

In addition, to further characterize the cellular function
of our identified driver proteins, an analysis of subcellular
location was also carried out according to Thul’s paper (Thul
and Akesson, 2017). For the 473 identified driver proteins,
173 (36.57%) were localized in at least one cell compartment.
Among them, 128 (27.06%) were localized in the cytosol, 61
(12.89%) were found in the plasma membrane and 42 (8.87%)
were in the vesicles (Figure 5D). Specifically, a majority of
our identified proteins (443 out of 473, 93.66%) were outside
the nucleus, revealing that identified driver proteins involved
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in tumorigenesis mostly are non-histone and supporting the
idea that abnormal lysine modifications on non-histone proteins
also played an indispensable role in cancer development (Singh
et al., 2010; Carlson and Gozani, 2016). Further annotation with
HistoneDB2.0 revealed that only one protein named H2B1Mwas
histone.

Pathway Analysis Reveals Underlying
Roles of Lysine Modification-Related
Mutations
Based on the identified driver genes, we next preformed
pathway analysis to explore network signaling driven by lysine
modifications in multiple cancer types. Interestingly, in KEGG
annotation, we found that lysine modification-related mutations
were significantly enriched in pathways such as cell cycle and
RNA transport (Figure 6A). According to published literature
(Senderowicz, 2002; van Kouwenhove et al., 2011; Williams and
Stoeber, 2012), these pathways were known to have important
regulatory roles in the proliferation and apoptosis of cancer
tissue. Recently, some driver proteins in these pathway, for
example the MYC and EGFR antagonists, were also being
developed as therapeutic agents for prostate and colorectal cancer
(Moroni et al., 2005; Vita and Henriksson, 2006; Ciardiello and
Tortora, 2008; Perez et al., 2011). Similarly, GO enrichment
analysis also indicated that these driver proteins are more likely
to participate in cellular processes related to tumorigenesis,
including those involved in cell-cell adhesion, negative regulation
of transcription, cellular response to DNA damage stimulus
and transcription from RNA pol II promoter. As reported in
previous studies, the abnormal cell-cell adhesion can serve as
one of the 10 special characteristics of cancer and reduced
intercellular adhesiveness is indispensable for cancer invasion
and metastasis (Hirohashi and Kanai, 2003; Farahani et al.,
2014; Lin and Gregory, 2015). Besides, the negative regulation
of transcription pathway has been reported to be related with
proliferation and apoptosis of cancer cells (Lin and Gregory,
2015; Özeş et al., 2016). Also, the cellular response to DNA
damage stimulus is important for maintaining genome stability
(Siveen et al., 2014; Lin and Gregory, 2015; Özeş et al., 2016).
For the enriched GO term, the transcription from RNA pol II,
has been proved as a highly regulated process for tumorigenesis,
and can regulate the transcript level of some known oncogenes
such as MYC (Jonkers and Lis, 2015). A consistent result were
also observed in the enrichment analysis of molecular function
and cellular component aspects. Our identified driver proteins
mainly located in Nucleoplasm, Nucleus Cytosol, Cytoplasm and
cell adherens junction, and mainly regulated the RNA-binding
or cell adhesion functions. Moreover, Reactome pathway analysis
further suggested that mutation of lysine modifications on these
proteins can affect cell cycle and mitotic process, especially
those associated with cell apoptosis (i.e., the G1/S and G2/M
checkpoints) (Bannister and Kouzarides, 2011; Fiandalo and
Kyprianou, 2012; Williams and Stoeber, 2012; Figure 6B).

In summary, the above pathway analyses confirmed that
proteins with significant lysine modification mutations take
part in several critical regulation processes related to cancer

phenotypes, such as cell cycle progression and transcript
regulation. Particularly, several important driver proteins were
found to be dysfunctional in the above cancer-related pathways,
which was mainly due to the mutation of specific lysine
modification processes as reported by previous experimental
studies. Polyubiquitination mutation in PCNA (Cazzalini et al.,
2014) and abnormal acetylation in ATM (Bakkenist and Kastan,
2003; Sun et al., 2007) are two representative examples. These
results have further confirmed the validity of our computational
models.

Clinical Implications of Lysine Modification
Dysregulation in Cancer Patients
Currently, the clinical implications of lysine modifications
were largely unknown in multiple cancer types; therefore,
here, we performed a systematic investigation to explore the
clinical significance of lysine modification processes across
12 cancer types. To perform this investigation, 7,786 clinical
data were first collected from TCGA patients. The identified
lysine modification-related mutations were then mapped to their
corresponding patients according to their recorded barcodes,
and the prognosis of both the mutated group and non-
mutated group were compared using Kaplan-Meier curves.
Of the 12 selected cancer types, we found that patients with
lysine modification-related mutations had significantly worse
prognosis in liver cancer (LIHC) (Figure 6C) and thymus
cancer (THYM) (Figure 6D). The significant correlation between
lysine modification-related driver proteins and clinical prognosis
observed in these cancer types further indicated the critical
implications of lysine modifications in tumorigenesis. Given
the above results, we further analyzed the implications of the
identified proteins in these two cancer types. Specifically, in liver
cancer, we predicted 41 driver proteins that were significantly
mutated at lysine modification motifs. Eight (19.5%) of these
proteins were reported previously as cancer drivers (Friedenson,
2005; Silvera et al., 2010; Zhou et al., 2011; Chang et al., 2013;
Yu et al., 2013; Pandey et al., 2016; Miao et al., 2017; Tang et al.,
2017). In particular, HOXC10 was known to be associated with a
decrease in the overall survival rate of liver cancer (Tang et al.,
2017). Similar results were also observed in patients with thymus
cancer. In total, we identified 8 lysine modification-related driver
proteins, and 37.5% (3 out of 8) of them were proven by previous
publication (Heyd and Lynch, 2011; Blachly and Baiocchi, 2014;
Park et al., 2014; Papoudou-Bai et al., 2016). Again, the CCAR2
in our identified list is also known to correlate with patient
prognosis (Park et al., 2014; Papoudou-Bai et al., 2016). In this
regard, we can conclude that our method is sensitive to finding
potential gene products that have strong clinical implications in
cancer patients. Our computational model may provide useful
candidates for cancer diagnosis and therapies.

Network Analysis Identified Potential
Downstream Targets for Our Predicted
Driver Proteins
As the lysine modification-related driver proteins may function
crucially in several cancer hallmark pathways, it is indispensable
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FIGURE 6 | (A) The enriched GO terms and KEGG pathways obtained from the identified lysine modification-related driver proteins. (B) The result of Reactome

pathways analysis on the predicted driver proteins. (C) Kaplan–Meier plots comparing the overall survival rates between patients with lysine modification-related

mutations and patients without mutations in liver cancer and (D) thymic carcinoma.

to exploit their potential downstream targets through regulation
networks in cancer samples. We believed that this step was
critical for understanding complex biological networks in cancer
patients and could help identify novel drugs and targets
for cancer treatments. In this view, we applied a random
walk with restart (RWR) algorithm in this section. First, we
collected 199,734 pairs of experimentally validated protein-
protein interactions from the STRING database (Szklarczyk et al.,
2015) and 17,800 pairs of drug-target interactions from the
DrugBank database (Law et al., 2013). These interactions were
then combined into a heterogeneous network for subsequent
RWR search. Starting from our identified driver proteins,
RWR searched through the whole network and determined
neighboring targets and drugs that were potentially regulated
by the inputted proteins (Supplementary Methods). The search
results from 7 types of lysine modifications were presented using

Cytoscape software. In total, 2,511 pairs of interactions were
selected from the original heterogeneous network.

To comprehensively investigate the functional role of the
selected network, we applied the Enrichment Map (Zhang et al.,
2018) to cluster pathways from the RWR results. Interestingly, 14
pathways were identified as significantly enriched in our lysine
modification-mediated network. A majority of these pathways
were important cellular processes known to be associated with
cancer misregulation (Figure 7A). For example, the VEGF
signaling pathway (Hartsough et al., 2013), apoptosis (Lee et al.,
2015), and T cell receptor signaling pathway (Friend et al., 2014;
Hu and Sun, 2016) are three identified processes that regulate
cancer cell proliferation.

Next, to understand network details, we further extracted the
subnetwork of each studied modification type by reserving the
top 10 most relevant downstream targets (Fouss et al., 2012;
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FIGURE 7 | (A) Enrichment Map showing the annotated pathways in the whole network. Nodes represent a specific pathway, and edges connect pathways with

common genes. (B) The RWR analysis result for 7 types of lysine modifications. The identified driver proteins were taken as initial seeds in the RWR process. The

predicted targets were labeled in green, the known cancer driver genes were labeled with red circles, and enriched pathways were labeled with a colored shading.

Frontiers in Genetics | www.frontiersin.org 13 July 2018 | Volume 9 | Article 254

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. Lysine Modification-Related Mutations in Cancer

Zhu et al., 2013). Specifically, in acetylation, RWR identified
32 downstream targets that may interact with the inputted
driver proteins. Among these 32 downstream targets, 12 were
well-known cancer drivers. Moreover, 10 of the known cancer
drivers were transcription factors related to various cancer types,
which agreed with our functional enrichment analysis results that
acetylation mutations may affect translational misregulation in
cancer (Figure 7B).

Interesting results were also obtained from the analysis
of methylation-mutated proteins. Methylation mutations were
found to be related to the lysine degradation pathway
and mRNA surveillance pathway (Figure 7B). According to
published literature (Dimitrova et al., 2015; Shen et al., 2017),
lysine demethylases mainly regulate chromatin organization to
influence transcriptional processes, and cellular differentiation.
Therefore, abnormalities in the lysine degradation pathway
may cause serious diseases, such as cancer. In addition, the
mRNA surveillance pathway was also reported to be critical in
cancer development (Popp and Maquat, 2017). Under normal
circumstances, the mRNA surveillance pathway can ensure the
quality of transcripts and fine-tune transcript abundance in the
process of cell metabolism. However, in some cases, tumors
will exploit this pathway to downregulate gene expression by
apparently selecting for mutations that cause the destruction of
key tumor-suppressor mRNAs.

As for SUMOylation, we identified 9 downstream targets
that were known to drive cancer development. Further
functional analysis revealed that these downstream targetsmainly
functioned in pathways that controlled RNA metabolism, such
as RNA transport and RNA degradation processes. It is well
known that in tumor samples, the malignant phenotype is largely
the consequence of dysregulated gene expression (Raza et al.,
2015). Of all the molecules that affect gene expression, the
dysfunction of EIF4A2 was already known as a key mechanism
that may regulate malignant transformation (Eberle et al., 1997).
In addition, because of that knowledge, there is a developing
focus on targeting EIF4A in cancer therapy. In our computational
study, we found that aberrant SUMOylation on EIF4A2 may
contribute to the degradation process of RNA transcripts,
representing an interesting candidate for further experimental
verification.

For other lysine modifications, such as ubiquitination,
succinylation, andmalonylation, the RWRmethod also identified
many potential downstream targets that may play crucial roles
in cancer-related pathways. For example, in ubiquitination,
protein processing in the endoplasmic reticulum was identified
as related to ubiquitination mutations in cancer patients. Two
critical driver genes were found to be associated with upstream
ubiquitination-related mutations. Additionally, succinylation-
related mutations were predicted to regulate the downstream
one carbon metabolism pathway. As illustrated in published
papers (Kalhan, 2013; Baggott and Tamura, 2015; Pirouzpanah
et al., 2015), this cancer pathway is not only essential for
the de novo synthesis of purines but also significantly related
to the expression of driver genes in breast cancer patients.
Furthermore, malonylation mutations were shown to influence
cell adhesion molecules and components in the Golgi complex

(Figure 7B), which may correlate to the metastasis of cancers. In
summary, ourmethod identified a series of potential downstream
proteins that were expected to correlate to lysine modification
mutations. Some of these proteins were identified in previous
publications, whereas others may be good candidates for follow-
up experimental studies. We hope that a deeper investigation of
these candidates will help illuminate novel mechanisms in cancer
biology.

In addition to lysine modification-mediated downstream
targets, RWR analysis also identified 13 corresponding drugs
that were considered to be affected by lysine modification
mutations (Supplementary Table 6). Of the 13 identified drugs,
7 were reported to be antineoplastic agents. They are azacitidine
(Cortvrindt et al., 1987), acadesine (Montraveta et al., 2014),
Cytidine (Periyasamy et al., 2015), mizoribine (Franchetti
et al., 2005), titanium dioxide (Tyagi et al., 2016), Cytarabine
(Xie et al., 2015), and Zebularine (Sabatino et al., 2013). As
a remarkable therapeutic drug, Zebularine can produce an
impressive therapeutic effect through the induction of apoptosis
in several cancers, such as lymphoma (Montraveta et al.,
2014, 2015), leukemia (Robert et al., 2009), retinoblastoma
(Theodoropoulou et al., 2013), and colorectal cancer (Ly et al.,
2013).

DISCUSSION

Since mutations in cancer-driven genes perform a crucial
promoting effect in the process of cancer development, the
prediction of such genes is of great importance in both
the theoretical study of complex diseases and the clinical
diagnosis of cancer patients (Kelly et al., 2010; Dawson and
Kouzarides, 2012; Di Martile et al., 2016). Instead of simply
identifying cancer drivers that carried exceeded number of
mutations, our studies further considered the corresponding
functional consequences of a given mutation in the form
of lysine modifications. A hierarchical Bayesian model was
therefore established to predict mutations that can alter lysine
modification level. Unlike other frequency-based methods, our
model did not require to accurately interpret the background
mutation rate, which make it more appropriate for identifying
rare mutations in the modification motif regions. By using
our computational model, we have identified numbers of
amino acid mutations that located in the lysine modification
motifs. Based on the lysine modification-related mutations,
we also identified a set of proteins that may probably drive
the development of cancer. The subsequent pathway analysis
revealed the functional importance of our identified driver
proteins. And the survival analysis also confirmed that these
proteins may have clinical implications on cancer patients.
When annotating the subcellular location of these proteins,
we found that vast majority of them were distributed outside
nucleus. This is mainly because that most of the identified
drivers were non-histone proteins, and may participate in
various cellular processes across cytoplasm. For lysine modified
proteins, one of the most special type was histones. In previous
literatures (Strahl and Allis, 2000; Tan et al., 2011), a huge
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catalog of histone modifications have been described, especially
lysine modification. In our data sets, 376 lysine modification
sites were collected from histones, and 349 of them were
found to have lysine modification-related mutations in cancer
patients. The remaining 99.8% mutation sites were located
in 472 non-histone proteins. This result indicated that the
abnormal lysine modification on non-histone proteins may
also have critical role on regulating cancer progression. Further
experimental verification on these non-histone proteins will
assist the discovery of novel mechanisms for the pathogenesis of
multiple cancers. Based on the above lysine modification-related
mutations and cancer driver proteins, we further explore their
downstream targets through a heterogeneous network using
the RWR algorithm. As we expected, searching the PPI and
drug-target network can help us identify potential treatment
agents for cancer therapeutics. For instance, the azacitidine
and acadesine. Azacitidine has been study as antiproliferative
agent in murine B16 melanoma by effecting several cellular
metabolic pathways (Cortvrindt et al., 1987), including the
activities of S-adenosylmethionine methyltransferase and
orotidine-5′-monophosphate decarboxylase (Cihák, 1974;
Christman et al., 1983). Acadesine has shown antitumoral
effects in the majority of MCL cell lines and primary MCL
samples via modulating immune response, actin cytoskeleton
organization and metal binding (Montraveta et al., 2014). We
believed that the integration of our computational resources with
other downstream analysis methods or experimental studies
may contribute to expand the prospects of lysine modification
in cancer studies, and may also open new avenues for cancer
therapeutics.

Although satisfying results were obtained in our analysis,
several considerations still limit the interpretation of our
discoveries. First, our current analysis only involved non-
synonymous point mutations, which were the simplest to
interpret, and removed other mutation types, such as frameshift
variations, deletions and insertions. However, these other
types of mutations can also induce carcinogenesis, so these
mutations must be included in our computational model
to comprehensively interpret the functional role of lysine
modification processes. Second, as somatic mutations are rare
in some proteins, bias will be introduced and false positives
will increase in such cases. Expanding the data volumes and
covering as many cancer patients as possible are efficient ways
to solve this problem. In the near future, more mutation
samples will be included in the analysis, and the accuracies
of our computational model can be improved. Third, at

this stage, our original computational model only evaluated
mutations located in modification motifs. As post-translational
modification processes aremainly catalyzed by specific enzymatic
systems, another valuable factor for interpreting mechanisms in
cancer development will be considering upstreammutations that
can alter enzyme activities (Li et al., 2010; Prabakaran et al., 2012).
Therefore, constructing a complete model that not only identifies
substrate mutations but also analyzes enzymatic alterations is a
priority task in future studies.

In summary, the above analysis highlights a new
tumorigenesis mechanism through the misregulation of
lysine modifications in cancer-relevant pathways. We found that
mutations at lysine modification sites significantly correlated
with worse overall survival in several cancers, indicating that
mutated proteins identified by our model can function as
novel potential cancer drivers and can be used as diagnostic
biomarkers in clinical practice. Overall, we expect that the
integration of PTM data and cancer mutations by our proposed
method can provide further functional evidence not available
from traditional methods to the research community.
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