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One of the main benefits of using modern RNA-Sequencing (RNA-Seq) technology is

the more accurate gene expression estimations compared with previous generations

of expression data, such as the microarray. However, numerous issues can result in

the possibility that an RNA-Seq read can be mapped to multiple locations on the

reference genome with the same alignment scores, which occurs in plant, animal, and

metagenome samples. Such a read is so-called a multiple-mapping read (MMR). The

impact of these MMRs is reflected in gene expression estimation and all downstream

analyses, including differential gene expression, functional enrichment, etc. Current

analysis pipelines lack the tools to effectively test the reliability of gene expression

estimations, thus are incapable of ensuring the validity of all downstream analyses. Our

investigation into 95 RNA-Seq datasets from seven plant and animal species (totaling

1,951 GB) indicates an average of roughly 22% of all reads are MMRs. Here we present a

machine learning-based tool called GeneQC (Gene expression Quality Control), which

can accurately estimate the reliability of each gene’s expression level derived from an

RNA-Seq dataset. The underlying algorithm is designed based on extracted genomic

and transcriptomic features, which are then combined using elastic-net regularization

and mixture model fitting to provide a clearer picture of mapping uncertainty for each

gene. GeneQC allows researchers to determine reliable expression estimations and

conduct further analysis on the gene expression that is of sufficient quality. This tool also

enables researchers to investigate continued re-alignment methods to determine more

accurate gene expression estimates for those with low reliability. Application of GeneQC

reveals high level of mapping uncertainty in plant samples and limited, severe mapping

uncertainty in animal samples. GeneQC is freely available at http://bmbl.sdstate.edu/

GeneQC/home.html.

Keywords: gene expression, RNA-Seq read alignment,mapping uncertainty,machine learning, elastic-net,mixture
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INTRODUCTION

RNA-Seq is a revolutionary high-throughput process that allows
researchers to observe the genetic makeup of a particular sample
(Wang et al., 2009; Garber et al., 2011; Ozsolak and Milos,
2011) and can assist in determination of regulatory mechanisms
and transcription unit prediction (Chou et al., 2015; Chen
et al., 2017). Research involving RNA-Seq data produces gene
expression profiles, in which a discrete expression value for
each annotated gene for that species is identified. These gene
expression profiles are extracted through computational analysis
pipelines (Trapnell et al., 2009; Andrews, 2010; Wang et al.,
2010; Grabherr et al., 2011; Kong, 2011; Li and Dewey, 2011;
Dobin et al., 2013; Philippe et al., 2013; Wu et al., 2013, 2016;
Anders et al., 2015; Bonfert et al., 2015; Chang et al., 2015; Kim
et al., 2015; Pertea et al., 2015, 2016; Yuan et al., 2017), which
can be analyzed further to identify differentially expressed genes
between treatment groups (Robinson et al., 2010; Anders and
Huber, 2012; Trapnell et al., 2012; Ritchie et al., 2015; Pimentel
et al., 2017; Monier et al., 2018), enriched functional gene
modules (Subramanian et al., 2005; Zhou and Su, 2007; Chen
et al., 2009; Pathan et al., 2015), co-expression networks (Zhang
et al., 2016; Cao et al., 2017), and to generate visualizations
to assist in broad interpretations between treatment groups
(Goff et al., 2013; Powell, 2015; Younesy et al., 2015; Ge, 2017;
Harshbarger et al., 2017; Nelson et al., 2017; Nueda et al.,
2017; McDermaid et al., 2018a; Perkel, 2018), among other
applications.

One application of RNA-Seq analysis pipelines is to use the
sequenced RNA-Seq reads (or reads for short) with a reference
genome, if available, to estimate the expression level of each
gene (Nagalakshmi et al., 2008; Miller et al., 2014). The basic
process is to map these reads to the location with the best
alignment score on the reference genome (Wu et al., 2014). Even
though numerous methods have been developed to facilitate this
analysis, some critical issues persist. The nature of DNA—long
strands of millions of base-pairs created by a reordering of the
four nucleotides—makes it inevitable that some similarities and
duplications will occur throughout the genome. This can lead to
ambiguity during readmapping, with specific reads being aligned
to multiple locations across the reference genome with the same
alignment scores (Li et al., 2009; Oshlack et al., 2010; Swan, 2013;
Trapnell et al., 2013; Baruzzo et al., 2017).

This MMR problem can be observed in any genomic region,
including, exons and transcripts. For conciseness, we refer to
these genomic regions simply as “genes.” This issue has been
observed in many diploid species, including human and other
mammals and Arabidopsis (Albrecht et al., 2009; Cho et al., 2009;
Yoder-Himes et al., 2009; Zhu et al., 2011; Network CGAR.,
2018;), as well as many multiploid species (Consortium IWGS.,
2014). In some species, such as Glycine max, up to 75% of the
genes have the duplicated partners in its genome (Schmutz et al.,
2010). For species with high levels of uncertainty, especially
angiosperms, the MMR problem can have serious implications
on gene expression levels and can be extremely hard to remediate
due to the genes’ and chromosomes’ duplicative nature. To more
fully investigate the prevalence of MMRs in current RNA-Seq

analyses, we analyzed almost two terabytes of RNA-Seq data from
seven plant and animal species. Upon analysis of this data, it
was clear that a large amount of MMRs was present in a variety
data. Thus, mapping uncertainty is inevitably affecting the gene
expression estimates and eventually causing bias in downstream
analyses.

During our initial investigation into the MMR problem, 95
datasets totaling 1,951 GB were analyzed. Both paired- and
single-end reads were collected fromNCBI (Coordinators, 2016),
URGI (https://urgi.versailles.inra.fr/), and JGI (Nordberg et al.,
2013) for seven plant and animal species. These species include
Arabidopsis thaliana, Vitis vinifera, Solanum Lycopersicum,
Panicum Virgatum, Triticum Aestivum, Homo sapiens, and Mus
musculus. The 95 datasets average 20.6 GB, with an average
overall alignment rate of 81.87%. Each dataset was aligned using
HISAT2 (Kim et al., 2015) against the appropriate reference
genome. Alignment statistics were collected or calculated from
the HISAT2 output file, as shown in Table 1. It was determined
that an average of 22% of all reads were ambiguously aligned
in each of the seven distinct plant and animal species. In
four datasets, over 35% of the reads were ambiguously aligned,
and over two-thirds of the analyzed datasets having at least
18% of the reads multi-mapped. Panicum virgatum exhibited
the highest overall proportions—ranging from 17 to 33%—of
MMRs over all analyzed datasets, while Arabidopsis thaliana
displayed the lowest proportion, ranging from 8 to 17%. The
other analyzed species had similar percentages of MMRs. More
details of the MMR analyses over these 95 datasets can be found
in Supplementary File 1.

The general solution of the MMR problem in previous studies
is to discard or evenly distribute to all potential locations,
leading to severe, biased underestimation or overestimation
of the gene expression levels, respectively (Kim et al., 2013).
More commonly, a proportional assignment of ambiguous
reads, in which the read is segmented in smaller portions
based on the number of possible mapping locations and
uniquely mapped reads to each of them (Li et al., 2009).
Recently, additional methods have been employed to attempt
remediation of mapping uncertainty after initial alignment (Li
and Dewey, 2011; Kahles et al., 2015; Bray et al., 2016). However,
even these realignment strategies do not provide a thorough
method for evaluation of the alignment quality. While RNA-Seq
pipelines traditionally begin with read-level quality control using
FastQC (Andrews, 2010), no such method currently exists for
controlling the quality of gene expression estimation after read
alignment.

If researchers continue processing RNA-Seq data with such
high levels of mapping uncertainty, all downstream analyses will
have skewed and biased results. Just as raw reads require quality
control (Andrews, 2010) so do gene expression estimates based
on mapping results. Even with tools that are specifically designed
to address mapping uncertainty, such as MMR (Kahles et al.,
2015), the quality of the derived gene expression estimates based
on mapping results still requires investigation, especially in real
datasets not simulated datasets. Without some quality control
for gene expression estimation, researchers could potentially be
using unreliable data, and blindly doing so.
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TABLE 1 | Multi-mapped reads.

Species Arabidopsis

thaliana

Vitis

vinifera

Solanum

lycopersicum

Panicum

virgatum

Triticum

aestivum

Homo sapiens

Genome

Homo sapiens

Transcriptome

Mus musculus

Genome

Mus musculus

Transcriptome

Total

Datasets 10 10 10 10 13 11 11 10 10 95

Size(GB) 153.7 152.3 151.8 385.7 348.1 249.9 249.9 129.9 129.9 1,951

Unique-mapped 69–89% 55–82% 52–88% 47–66% 61–69% 56–71% 59–70% 41–73% 41–75% 55%

Multi-mapped 8–17% 9–25% 5–34% 17–33% 17–25% 16–27% 15–24% 9–37% 9–36% 22%

Un–mapped 2–17% 8–23% 4–16% 13–25% 9–18% 12–21% 12–22% 3–31% 2–31% 23%

(Multi-mapped)/

(total mapped)

8–18% 10–31% 6–39% 22–39% 21–28% 19–32% 19–28% 11–47% 11–47% 29%

The alignment statistics for the 95 analyzed datasets across seven species, indicating the ranges of percentages for the uniquely aligned, multi-mapped, and un-mapped reads, as well

as the proportion of multi-mapped out of the total mapped reads.

One promising method for addressing the issue of gene
expression-level quality control is the implementation of
machine learning. It uses or relates to following concepts or
algorithms including statistics, artificial intelligence, philosophy,
information theory, biology, cognitive science, computational
complexity and control theory to give computers and algorithms
the ability to learn and improve performance on a specific
task without being explicitly programmed (Mitchell, 1997).
Machine learning has two main categories: supervised and
unsupervised learning. The majority of practical studies use
supervised learning methods to train the relationship from
the input to the output, using provided category labels or
resultant values to develop a mapping function for the prediction
of unlabeled data. Specifically, Elastic-net regularization, a
supervised method, was used in this research. Meanwhile,
machine learning can also be used to train a model from
unlabeled data through the unsupervised learning, aiming to
model the underlying structure or distribution in the training
data for clustering and association problems. Two unsupervised
learning algorithms were used in this study, i.e., K-means
clustering and the Expectation-Maximization algorithm (EM-
algorithm).

To address issue of mapping uncertainty, we present
the machine learning-based tool GeneQC (Figure 1), which
uses extracted multi-level features combined with novel
applications of regularized regression and mixture model
fitting approaches to quantify the mapping uncertainty issue
(McDermaid et al., 2018b). This tool can determine the genes
having reliable expression estimates and those require further
analysis, along with a statistical significant evaluation of the
mapping uncertainty level. GeneQC develops a novel score,
referred to as D-score, to represent the level of mapping
uncertainty for each annotated gene and groups genes into
several categorizations with different reliability levels, through
integration and modeling of three genomic and transcriptomic
features. Specifically, (i) sequence similarity between a particular
gene and other genes is collected to give an insight into the
genomic characteristics contributing to the MMR problem;
(ii) the proportion of shared MMR between gene pairs
provides information regarding the transcriptomic influences
of mapping uncertainty within each dataset; and (iii) the
degree of each gene, representing the number of significant

gene pair interactions resulting from calculating (i) and/or (ii).
More details of the procedure can be found in the Methods
section.

METHODS

GeneQC Implementation
GeneQC is designed to fit into computational pipelines for RNA-
Seq data immediately following read alignment, acting as a
supplement to most current pipelines. GeneQC is composed of
two distinct processes: feature extraction and statistical modeling.
The feature extraction process is implemented using a Perl
program and the statistical modeling is performed on the
feature extraction output using an R package, which provides
the final output for GeneQC (http://bmbl.sdstate.edu/GeneQC/
download.html). More details on the implementation of GeneQC
can be found at http://bmbl.sdstate.edu/GeneQC/tutorial.html.

Required Inputs
GeneQC takes as inputs three pieces of information that are easily
found in most RNA-Seq analysis pipelines: (1) the read mapping
result SAM file; (2) the fasta reference genome corresponding
to the to-be-analyzed species; and (3) the species-specific
annotation general feature format (gff/gff3) file (Figure 1B).
Example datasets can be found on the GeneQC webserver at
http://bmbl.sdstate.edu/GeneQC/result.html.

Feature Extraction
From input information, GeneQC first performs feature
extraction, in which the three characteristics are calculated for
each annotated gene (Figure 1C). The first extracted feature
(D1) is derived from genomic level information and involves
the similarity between two genes (Figure 2A). For each gene,
this is calculated as the maximum of the sequence similarity
multiplied by the match length, where the match length is
the longest continuous string of matching base pairs. More
specifically, D1 = max

y
{ssi,y∗li,y}, where ssi,y is the base pair

sequence similarity of gene i and gene y and li,y is the match
length of these two genes.

The second feature (D2) comes from transcriptomic
level information and represents the proportion of shared
MMRs (Figure 2B). This value is calculated as the maximum
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FIGURE 1 | Mapping Uncertainty and GeneQC. (A) The MMR percentages for the 95 datasets across seven species. More detailed information is showcased in

Table 1; (B) GeneQC takes a read alignment, reference genome, and annotation file as inputs; (C) The first step of GeneQC is to extract features related to mapping

uncertainty for each annotated gene; (D) Using the extracted features, elastic-net regularization is used to calculate the D-score, which represents the mapping

uncertainty for each gene; (E) A series of Mixture Normal and Mixture Gamma distributions are fit to the D-scores; and (F) The mixture models are used to categorize

the D-scores into different levels of mapping uncertainty along with a statistical alternative likelihood value for each gene.

FIGURE 2 | Genomic, transcriptomic, and network feature development. (A) Genes with significant similarity are displayed, with D1 being the maximum value of

ssi,y*li,y . In this situation, genes y2, y3,&y4 all have the same ssi value, but gene y3 has a longer consecutive string of matching base pairs (li ) than the other values,

making it the more similar genomic location. (B) Graphical representation of the sets of reads aligned to each gene. D2 is the largest overlapping proportion of shared

ambiguous or multi-mapped reads between the target gene, gene i, and all other genomic locations that have at least one read potentially aligned to both locations.

(C) This graph displays the significant interactions of gene i with other genomic locations. Each node represents a genomic location, with the red edges representing

sequence similarity scores and black edges representing multi-mapping proportions. In this situation, D1 = 310,D2 = 0.24, and D3 = (3+ 1) = 0.602.

proportion of shared MMRs between the gene of interest

and another gene. In other words, D2 =
|Gi∩X|
|Gi|

, where

Gi = {all reads aligned to gene i} and X = |Gi ∩ Y|.

The third feature (D3) is a network factor that represents the

number of alternate gene locations with significant interactions

with the gene of interest based on the previous two parameters
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(Figure 2C) and is calculated asD3 = log10 (|S ∪M| + 1) , where
S = {genomic locations with D1 > 0} and M =

{genomic locations with D2 > 0}.
In addition to understanding the severity of the MMR

problem in each sample, GeneQC provides species- or
sample-specific insight into each feature’s impact on mapping
uncertainty. This is done by developing a linear model to
determine the significance and degree of impact for each feature.

GeneQC Modeling
Dependent Variable Construction
To perform the modeling, a dependent variable is constructed.
The dependent variable D4 is an approximation of the
proportion of ambiguous reads based on the two most
extreme approaches to dealing with multi-mapped reads, the
unique alignment approach and the all-matches approach. If
we consider Gi = {reads mapped to gene i} and Ui =
{

reads uniquely mapped to gene i
}

, the true alignment Ri must
fall somewhere between these two values, with |Ui| ≤ |Ri| ≤ |Gi|.

Thus, we approximate the true alignment as
∣

∣

∣
R̂i

∣

∣

∣
=

|Gi|+|Ui|
2 .

Using this approximation, we calculate

D4 = 1−

∣

∣

∣
R̂i

∣

∣

∣

|Gi|
= 1−

|Gi| + |Ui|

2|Gi|

Elastic-Net Regularization
To develop a model evaluating the severity of mapping
uncertainty and thus expression estimation quality, a
regression approach is utilized. Ordinary least squares has
been demonstrated to have particular issues when dealing
with real world data, especially data that does not fit linearity,
homoscedasticity, lack of serious multi-collinearity, or other
requirements (Dempster et al., 1977). Because of this, alternative
approaches were explored. Ridge regression, which develops a
model based on an L2-norm penalization, has better predictive
results than ordinary least squares regression (Hoerl and
Kennard, 1970; Dempster et al., 1977). However, this approach
tends to retain all included variables to achieve such high
predictive power, in turn reducing the interpretability of the
model (Zou and Hastie, 2005). Another approach with potential
application in GeneQC is the least absolute shrinkage and
selection operator, also known as lasso. This method uses
an L1-norm penalization, while simultaneously performing
continuous shrinkage and variable selection (Tibshirani, 1996).
While this is an appealing feature in generating a model, lasso has
shortcomings when it comes to dealing with variables exhibiting
high pairwise correlation (Zou and Hastie, 2005). Elastic-net
regularization—sometimes referred to simply as elastic net—has
the potential to overcome the shortcomings of both ridge and
lasso regression methods by implementing a combination of the
two approaches.

Take the set of n response variables y =
(

y1, y2, . . . , yn
)T
,

a set of p predictor variables xi =
(

xi,1, xi,2, . . . , xi,p
)

, i ∈

{1, . . . , n}, a set of p coefficients β = (β1,β2, . . . ,βp), and matrix

of predictor variables

X= (x1, x2,. . .,xn)
T =







x1,1 · · · x1,p
...

. . .
...

xn,1 · · · xn,p







For a given λ1, λ2 ≥ 0, elastic-net regularization uses a criterion
based on

L (λ1, λ2,β) =
∥

∥y− Xβ
∥

∥

2

2
+ λ2 ‖β‖

2
2 + λ1 ‖β‖1

‖β‖2 =

√

√

√

√

p
∑

j=1

βj

‖β‖1 =

p
∑

j=1

∣

∣βj

∣

∣

Thus, the set of coefficient estimates β̂ are calculated as

β̂ = argmin
β

{L (λ1, λ2,β)} = argmin
β

{
∥

∥y− Xβ
∥

∥

2

2
+ λ2 ‖β‖

2
2

+λ1 ‖β‖1}

Given α = λ1
λ1+λ2

, solving for β̂ is equivalent to optimizing

β̂ =
∥

∥y− Xβ
∥

∥

2

2
, for α ‖β‖22 + (1− α) ‖β‖1 ≤ k, for some k.

In the construction of this elastic net, α ‖β‖22 + (1− α) ‖β‖1 is
considered as the elastic net penalty, representing a combination
of the penalties used in ridge and lasso regressionmethods. In the
situation where α = 1, the elastic net is equivalent to basic ridge
regression. For α = 0, the approach becomes lasso regression
(Zou and Hastie, 2005).

GeneQC utilizes the elastic-net regularization method (Zou
and Hastie, 2005) with default α = 0.5 to develop a
regression model for the calculation of D-scores. Here, elastic-
net regularization is used to properly perform the variable
selection, while simultaneously fitting a sufficient model to the
provided data (Figure 1D). This approach also accounts for
potential serious multicollinearity issues which were detected in
some of the test data and prevents overfitting of the regression
model (Zou and Hastie, 2005). The set of calculated D-scores
represents the mapping uncertainty for each annotated gene
and is provided to give researchers an idea of how reliable
their initial read mappings are. A higher D-score represents
more mapping uncertainty, and thus a less reliable expression
estimate.

Mixture Model Fitting
Based on the calculated sets of D-scores through above
investigations during GeneQC development, there are apparent
underlying distributions for these scores, intuitively representing
levels of mapping uncertainty. For this purpose, extensive
mixture model fitting is included within GeneQC to best fit a
mixture model distribution with three sub-distributions to each
set of D-scores (Figure 1E).

Our mixture model fitting process involves k-means
initialization with randomized initial grouping. Cluster means,
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µi, are then calculated for each of the k clusters, followed by two
iterative steps: (1) reassignment of data points to the cluster with
the lowest distance between a data point and cluster mean, and
(2) recalculation of cluster centers. This process is continued
until achieving the minimum within-cluster sum of squares:

argmin
k

k
∑

i=1

∑

x∈Ki

‖x− µi‖
2

After initialization using the k-means process defined above,
the EM-algorithm is implemented to find the best fitting
distributions. Based on our preliminary investigations into
the D-score development, we have selected two underlying
distributions for this purpose: Gamma andGaussian. Specifically,
it is assumed that each set of D-scores can be expressed as a
mixture model distribution given by

P (X|θ) =
∑

k

βkYk(X|θk)

with βk representing the weighting parameter of the kth

component, Yk representing the probability density function of
the kth component of the mixture model, and θk representing
the parameters of the kth component. Considering the Gaussian
distribution scenario, Yk (X|θk) is N(X|µk, σ 2

k
). In this case,

MLE(µk) = µ̂k =

∑Nk
j xj,k

Nk

MLE
(

σ 2
k

)

= σ̂ 2
k =

∑Nk
j

(

xj,k − µk

)2

Nk

βk =
Nk

N

where xj,k is the jth data point in component k, Nk is the number
of data points in cluster k and N is the total number of data
points (i.e.,

∑

k Nk = N). After this initialization step, the
algorithm proceeds to the Expectation (E) step. In this step, for
each data point (i.e., each D-score from this dataset) the posterior
probability of containment within each cluster ki is generated by

P
(

xj ∈ ki
∣

∣xj
)

=
P
(

xj
∣

∣xj ∈ ki
)

P
(

ki
)

P
(

xj
) =

N
(

xj
∣

∣µ̂k, σ̂
2
k

)

(

Nk
N

)

∑

k βkN
(

xj
∣

∣µ̂k, σ̂
2
k

)

=
βkN

(

xj
∣

∣µ̂k, σ̂
2
k

)

∑

k βkN
(

xj
∣

∣µ̂k, σ̂
2
k

)

After this Expectation step, the Maximization step again
calculates parameters µ̂k, σ̂

2
k
for each component k. Based on the

previous step,

µ̂k =

∑N
j=1 P

(

xj ∈ ki
∣

∣xj
)

xj
∑N

j=1 P
(

xj ∈ ki
∣

∣xj
)

σ̂ 2
k =

∑N
j=1 P

(

xj ∈ ki
∣

∣xj
) (

xj − µ̂k

)2

∑N
j=1 P

(

xj ∈ ki
∣

∣xj
)

βk =

∑N
j=1 P

(

xj ∈ ki
∣

∣xj
)

N

These parameter estimates are then used as the parameters for
the next Expectation step, through which this process iteratively
continues until convergence, i.e., no significant improvement in
the log-likelihood is achieved from the previous iteration. This
process is implemented iteratively to quickly generate a series
of mixture model distributions for both Gamma and Gaussian
distributions.

The optimally fitted mixture model is determined using a
Bayesian Information Criterion (BIC) with a penalization based
on the number of distributions is used to determine the best-
fitting distribution. The BIC for a mixture distribution K is based
on the number of sub-distributions k, the number of data points
n, and the log likelihood L̂.

BIC (K) = −2klog (n) − 2L̂

Mapping Uncertainty Categorization
The best fitting mixture model is then used to separate
each D-score into a category representing the severity of
mapping uncertainty, thus indicating the mapping uncertainty
categorization for each gene (Figure 1F). The categorizations are
based on the intersections of the density functions representing
the mixture model fitting. If the Gaussian distributions
provide the minimal BIC, the categorization cutoffs are
calculated as

x = −

(
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2
i − µiσ
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σ 2
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for i ∈ {1, 2}.
For Gamma distributions providing the minimal BIC, a closed

form solution of the density function intersections does not
exist. To accommodate this, an estimation approach is utilized.
The cutoffs are calculated as the mean value of the maximum
sequence element for which sub-distribution i has a higher
probability density value than it does for sub-distribution i + 1
and the minimum sequence element for which sub-distribution
i + 1 has a higher probability density value than it does for
sub-distribution i, i.e.,

mean

(

argmax
x

{

fi (x) > fi+1 (x)
}

, argmin
x

{

fi (x) < fi+1 (x)
}

)

x ∈ {an| argmax
x

fi(x) ≤ an ≤ an+1 ≤ argmax
x

fi+1(x)}

resulting in two cutoff values.
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TABLE 2 | GeneQC example output.

Gene ID D1 D2 D3 D-score Category Alternative likelihood

gene17958 1439.981 0.022727 1.041393 0.022765 Low 0.106445

gene29138 228 1 0.69897 0.509935 High 0.012702

gene17991 2560 1 0.477121 0.498094 High 0.015754

gene24080 321.9987 0.005017 2.060698 0.020863 Low 0.10397

gene23209 365 0.0224 1.78533 0.027916 Low 0.113361

gene420 157 0.04878 0.954243 0.033132 Low 0.120682

gene15973 691.9874 0.7809523 0.47712125 0.39143804 Medium 2.15E-54

gene24933 855 1 0.477121 0.499807 High 0.015276

gene26458 4864 1 0.477121 0.495779 High 0.016419

Due to the nature of mapping uncertainty and the lack of
current approaches to evaluate this concept, we have included
an alternative likelihood value, for the first time, as a proposed
method of evaluating the mapping uncertainty categorizations
computationally. This value based on the posterior probabilities
of the other distributions is provided to represent the certainty
of the gene ID belonging to that category. This value (sd) is
computed as the maximum posterior probability of the D-score
belonging to any other categorization distribution.

sd = max{1− Fi−1

(

d
)

, Fi+1

(

d
)

}

where i is the distribution for which d is categorized, and Fj
represents the cumulative distribution function of distribution j.

RESULTS

GeneQC Output
The final output of GeneQC includes the three extracted
features (named D1, D2, and D3), D-score, mapping uncertainty
categorization, and alternative likelihood for each annotated
gene. This information is combined into a concise table to
provide users with all relevant information related to the
mapping uncertainty of their read alignment data, allowing
them to make informed decisions about further and continued
analysis. An example of the output file from Vitis vinifera can be
found in Table 2. For each annotated gene, the D-score indicates
the severity of mapping uncertainty for that particular gene
in this particular RNA-Seq data. A higher D-score indicates a
higher level of mapping uncertainty, with maximum levels of
mapping uncertainty occurring around 0.5 for most samples.
Genes with relatively high D-scores have mapping uncertainty
issues resulting in potentially unreliable expression estimates (i.e.,
the High category). Whereas, genes with D-scores close to 0
have little to no mapping uncertainty, and therefore have reliable
expression estimates (i.e., the Low and Medium categories).

Source code and implementation instructions can be found
on the GeneQC web server at http://bmbl.sdstate.edu/GeneQC/
home.html. Additionally, example data for seven analyzed
species can be downloaded on this server, including all reference
genomes, annotations, original raw data, and outputs from both

TABLE 3 | GeneQC analysis of seven species.

Species Sample ID Mean

D1

Mean

D2

Mean

D3

Mean

D-score

A. thaliana SRR3305038 0.02 0.58 0.01 0.29

V. vinifera SRR2080995 0.04 0.46 0.16 0.24

S. lycopersicum SRR5274891 0.06 0.66 0.04 0.33

P. virgatum SRR5188171 0.01 0.32 0.09 0.16

T. aestivum ATW_AAOSW_6_2

_B06BTABXX.IND12

0.02 0.60 0.15 0.31

H. sapiens SRR6029567 0.05 0.84 0.32 0.43

M. musculus SRR6111161 0.06 0.84 0.28 0.42

This table shows the sample ID and relevant metrics for each of the seven datasets

analyzed. Mean values for D1, D2, D3, and D-score are calculated based on the genes

that exhibit some level of mapping uncertainty, and D1, D2, and D3 were normalized for

comparison.

the feature extraction and modeling portions of GeneQC. An in-
depth tutorial for application instructions can also be found on
this site.

Implementation and Application of
GeneQC Results
GeneQC has four main applications in RNA-Seq analyses. (1)
Users can take the D-score and categorization results from an
entire dataset to evaluate the alignment quality of their data or to
determine how severe the overall mapping uncertainty is within
their RNA-Seq datasets. This process would involve displaying
the set of D-scores in some visualization technique, such as a
boxplot, violin plot, or histogram. Displaying the D-scores in
this format would allow for users to determine if the overall
alignment quality is sufficient to continue analysis or if it requires
further evaluation using a re-alignment method. It is expected
that there will be high D-scores for some genes; however, a
large portion of data having high D-scores would indicate severe
problems with alignment requiring further analysis. (2) Users
can use D-scores and mapping uncertainty categorizations to
evaluate the reliability of their downstream analyses, such as
differential gene expression results. If users have identified a
particular set of genes that are differentially expressed, it would
be of interest to evaluate the reliability of the expression estimates
from which those comparisons were made. Genes identified

Frontiers in Genetics | www.frontiersin.org 7 August 2018 | Volume 9 | Article 313

http://bmbl.sdstate.edu/GeneQC/home.html
http://bmbl.sdstate.edu/GeneQC/home.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


McDermaid et al. GeneQC: Gene Expression Quality Control

as differentially expressed having high mapping uncertainty
levels—either through D-scores or categorization—would be
less reliable than the differentially expressed genes that have
low mapping uncertainty. (3) GeneQC can be used to directly
compare the severity of mapping uncertainty between samples
or even between species. This application method is used in
sectionGeneQCApplication: Analysis of Seven Plant andAnimal
Species to demonstrate which species have relatively high levels of
mapping uncertainty and to determine which characteristics or
features could be affecting this issue. In particular, identification
of characteristics impacting mapping uncertainty for a single
species could provide information that would assist in re-
alignment processes. (4) GeneQC can be used to perform large-
scale comparisons of alignment tools using real data. Currently,
comparisons of alignment tools require either simulated data
which cannot accurately replicate the complexities within real
RNA-Seq data, or they rely on small-scale real data, which has
implicit biases that may favor one tool. GeneQC allows for the
large-scale comparisons of alignmentmethods with complex data
of any species.

GeneQC Application: Analysis of Seven
Plant and Animal Species
In order to display the use of GeneQC, one dataset from
each of the seven species were investigated for multi-mapping
issues (Table 3). Based on this analysis, it is evident that plant
samples tend to have higher proportions of genes with mapping
uncertainty than animal samples (Figure 3A). These results
correlate with the fact that plant genomes tend to have higher

levels of duplication, which is a strong contributing factor
to mapping uncertainty. While H. sapiens and M. musculus
have lower proportions of genes with mapping uncertainty
than the plant samples, the proportion of genes with high
mapping uncertainty of all the genes with mapping uncertainty
is much higher. Plant species exhibited mapping uncertainty in
an average of 12.6% of genes across the five species, whereas
animal species exhibited this issue in an average of 5% of genes
(Supplementary Files S2, S3). However, over half of the genes
with mapping uncertainty in the animal samples fall into the
“High” categorization, while only around one-fifth of genes with
mapping uncertainty from plant samples fall into this category.
The contributing factors to the higher proportion of “High”
categorized genes for animal samples can be seen when looking
at the three extracted features for each species.

The analysis results for the three features and calculated D-
scores for genes with some level of mapping uncertainty are
displayed in Figures 3B,C, respectively. Both H. sapiens and
M. musculus display higher levels of sequence similarity (D1),
shared MMR proportion (D2), and degree (D3) than what is
generally exhibited in the analyzed plant species. These relatively
high values for each feature led the higher D-scores, translating
to a higher measure of mapping uncertainty in the animal
samples compared with the plant samples. Mean D-score for H.
sapiens and M. musculus are 0.43 and 0.42, respectively. These
average values are much higher than those for the analyzed
plant samples, which are 0.29, 0.24, 0.33, 0.16, and 0.31 for
A. thaliana, V. vinifera, S. lycopersicum, P. virgatum, and T.
aestivum, respectively.

FIGURE 3 | GeneQC application. The results related to the analysis of seven datasets representing five plant and two animal species. (A) Categorizations for the level

of mapping uncertainty per gene are shown relative to all categorizations. (B) Boxplots for the three extracted features of each gene are shown for each analyzed

sample. D1, D2, and D3 represent the sequence similarity, proportion of shared MMR, and degree weight, respectively. Each value is shown normalized between 0

and 1. Only genes with mapping uncertainty are displayed. (C) Derived D-scores for each gene are shown by species, as calculated from the three features in (B).

Higher D-scores represent higher levels of mapping uncertainty.
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CONCLUSION

GeneQC is a tool used to investigate the prominent issue
of mapping uncertainty in modern RNA-Seq analysis
through the combination of feature extraction and machine
learning methods. Oversight in the quality of derived gene
expression estimates based on mapping results can have
drastic consequences for all downstream analyses and read
mapping uncertainty is a significant cause of problems in
further analysis. While read mapping has been accepted as
sufficient, entirely ignoring the possibility of poorly mapped
reads used for further analysis can have detrimental effects
on all manner of RNA-Seq studies. As demonstrated in our
analysis of 95 RNA-Seq datasets, the problem of mapping
uncertainty is prominent and is displayed directly in the gene
expression estimates. GeneQC can provide insight into the
severity of this issue for each annotated gene along with a
statistical evaluation framework. It utilizes feature extraction,
elastic-net regularization, and mixture model fitting to provide
researchers with a sense of the quality of gene expression
estimates resulting from the read alignment step. GeneQC
provides sufficient information for researchers to make more
well-informed decisions based on the results of their RNA-Seq
data analysis and to plan further analyses to address mapping
uncertainty.

The application of GeneQC on the seven analyzed datasets
display some interesting differences between plant and animal
samples. Fewer genes displayed mapping uncertainty in the
animal samples, while a higher proportion of these genes were
categorized as “High.” Alternatively, a much higher proportion
of plant genes displayed mapping uncertainty, but more of these
genes had moderate to low mapping uncertainty, relative to
genes from animal samples. Both of these scenarios display the
severity of mapping uncertainty in modern RNA-Seq analyses.
High mapping uncertainty displayed in animal samples can
lead to very biased expression estimates over fewer genes, while
moderate levels of mapping uncertainty on a wider scale as
displayed in plant species can cause widespread expression
estimate biases on a lesser scale.

DISCUSSION

In addition to the direct provisions of GeneQC, interpretations
of the coefficients allow for a further examination of the specific
features contributing the mapping uncertainty. This will allow
for further analysis and re-alignment strategies to be developed
to the specific characteristics of the dataset. We are currently
using this information to develop a computational tool capable of
performing re-alignment of reads currently aligned to genes with
high D-scores with the purpose of assisting researchers in the
correction of mapping uncertainty. In the future, GeneQCwill be
integrated into a web server that applies this tool and associated
re-alignment tools to perform large-scale RNA-Seq analyses on
human, plant, and metagenome datasets. This application will

allow for ease-of-use and collection of more data to support
research with significant MMR issues.

Additionally, further exploration of machine learning
approaches, both supervised and unsupervised, will be explored
with respect to their applicability in detecting mapping
uncertainty. Large-scale use of simulated data for multiple
species will provide a direct indication of the actual expression
level, which can be compared with the expression estimate
from various high-performing and widely-used alignment tools.
The various machine learning methods can then be used to
detect mapping uncertainty for each tool, with performance
comparisons being derived from the correlation between
the predicted mapping uncertainty level from the machine
learning algorithm and the difference between actual and
estimated expression for each gene. A determination for the
best-performing method will be based on the highest correlation
and may be alignment tool-specific.
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