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Increasing evidence has indicated that microRNAs (miRNAs) are associated with

numerous human diseases. Studying the associations between miRNAs and diseases

contributes to the exploration of effective diagnostic and treatment approaches for

diseases. Unfortunately, the use of biological experiments to reveal the potential

associations between miRNAs and diseases is time consuming and costly. Therefore,

it is very necessary to use simple and efficient calculation models to predict potential

disease-related miRNAs. Considering the limitations of other previous methods, we

proposed a novel computational model of Symmetric Nonnegative Matrix Factorization

for MiRNA-Disease Association prediction (SNMFMDA) to reveal the relation of

miRNA-disease pairs. SNMFMDA could be applied to predict miRNAs associated with

new diseases. Compared to the direct use of the integrated similarity in previous

computational models, the integrated similarity need to be interpolated by symmetric

non-negative matrix factorization (SymNMF) before application in SNMFMDA, and

the relevant probability of disease-miRNA was obtained mainly through Kronecker

regularized least square (KronRLS) method in our model. What’s more, the AUC of global

leave-one-out cross validation (LOOCV) reached 0.9007, and the AUC based on local

LOOCV was 0.8426. Besides, the mean and the standard deviation of AUCs achieved

0.8830 and 0.0017 respectively in 5-fold cross validation. All of the above results

demonstrated the superior prediction performance of SNMFMDA. We also conducted

three different case studies on Esophageal Neoplasms, Breast Neoplasms and Lung

Neoplasms, and 49, 49, and 48 of the top 50 of their predicted miRNAs respectively were

confirmed by databases or related literatures. It could be expected that SNMFMDAwould

be a model with the ability to predict disease-related miRNAs efficiently and accurately.
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INTRODUCTION

MicroRNAs (miRNAs) are a class of endogenous non-coding
RNAs with regulatory functions found in eukaryotes, which
are approximately 20–25 nucleotides in length (Ambros, 2001).
There are evidences manifesting that miRNAs are one of themost
abundant gene regulatory molecules in multicellular organisms,
which might affect the expression of many protein-coding
genes and play an important regulatory role in animals and
plants (Bartel, 2004).With more and more researchers being
interested in miRNAs, the researches on miRNAs have been
further deepened, and the number of discovered miRNAs is
gradually increasing in recent years. The latest database records
24,521 microRNA loci in 206 species and 30,424 mature miRNAs
after processing (Kozomara and Griffiths-Jones, 2014). Recently,
it has been verified that miRNAs are crucial constituent in
cells and may make an important impact in many important
biological processes, including proliferation (Cheng et al., 2005),
development (Karp and Ambros, 2005), differentiation (Miska,
2005), viral infection (Miska, 2005) and so on. So it is taken
for granted that there are associations between miRNAs and the
generation as well as development of a number of human diseases
(Alvarez-Garcia and Miska, 2005). For instance, by targeting
BCL6 corepressor like BCORL1, the migration and invasion of
hepatocellular carcinoma (HCC) cells are restrained by mir-876-
5p, which provides a new idea for the treatment of HCC (Xu
et al., 2018). And it has been confirmed that miR-485-5p inhibits
the development and improves the chemosensitivity of breast
cancer by regulating survivin, which provides a potential method
for addressing the chemoresistance of breast cancer (Wang
et al., 2018). Therefore, it is of great significance to research the
relations between diseases and miRNAs, which contributes to
study the pathogenesis of the disease at the molecular level and
makes a big difference in the early diagnosis of human diseases
(Jiang et al., 2010). Using biological experiments to identify
potential disease-related miRNAs is time-consuming and costly
(Jiang et al., 2013), so it is imperative to use low-cost, high-
efficiency methods to predict miRNAs associated with diseases.
In recent years, since a large amount of biological data has been
collected and organized into different databases, it is feasible and
necessary to develop computational model to reveal potential
disease-miRNA associations based on these databases (Chen,
2015).

In the last couple of years, more and more computational

models for miRNA-disease associations prediction have been

developed (Chen et al., 2017b). In the view of that miRNAs with
similar functions tend to be involved with phenotypically similar

diseases and vice versa, numerous computational methods have
been proposed recently (Bandyopadhyay et al., 2010). Chen et al.

(2016b) presented the model of Within and Between Score for
MiRNA-Disease Association prediction (WBSMDA) to predict
potential miRNAs associated with diseases. In this method,
Within-Score and Between-Score about miRNAs and diseases
were calculated by integrating miRNA functional similarity,
disease semantic similarity, known miRNA-disease associations
and Gaussian interaction profile kernel similarity, and then these
two scores were combined to acquire the relation probability

of miRNA-disease pair. Unfortunately, how to more reasonably
integrate Within-scores and Between-score to calculate relevant
probabilities remained unresolved. What’s more, Chen et al.
(Chen and Yan, 2014) also proposed Regularized Least Squares
for MiRNA-Disease Association (RLSMDA) to reveal the
unknown relations between miRNAs and diseases. RLSMDA
was a semi-supervised method, so it didn’t need negative
samples. However, the optimal values of parameters in RLSMDA
had not yet been obtained, which might affect the prediction
performance. By implementing random walk on the miRNA–
miRNA functional similarity network, Chen et al. (2012)
developed another model named RandomWalk with Restart for
MiRNA–Disease Association (RWRMDA) to identify miRNAs
related with diseases. The outstanding prediction performance
of RWRMDA had been confirmed by a number of experiments,
but there was still a main limitation in this model. RWRMDA
couldn’t be applied to predict the relations between miRNAs and
new diseases without any known associatedmiRNAs. Later, Chen
et al. (2017a) introduced a novel model called Ranking-based
KNN for miRNA-Disease Association prediction (RKNNMDA)
to uncover the potential associations between miRNAs and
diseases by applying K-Nearest Neighbors (KNN) algorithm
to obtain k-nearest-neighbors both for miRNAs and diseases.
After resorting the k-nearest-neighbors based on the Support
Vector Machine (SVM) ranking model, they got the ranking of
association probability of disease-miRNA pairs by implementing
weighted voting. RKNNMDA was capable of being implemented
on new diseases, which overcame the biggest limitation of
RWRMDA. It was a pity that there were also some limitations
in this method. RKNNMDA could not be used to score all
miRNAs based on the same criteria, especially for miRNAs with
more known related diseases. Mørk et al. (2014) proposed a
reliable calculation model of miRNA-Protein-Disease (miRPD)
which didn’t directly predict the miRNAs related with diseases
but through proteins. The relations between miRNAs and
diseases were uncovered by integrating the predicted and known
miRNA–protein associations with the associations of protein–
disease text mined from the literature. And the prediction
performance of miRPD would be further improved if more
involved datasets were taken into account. Xuan et al. (2015)
developed a novel method of MIRNAs associated with Diseases
Prediction (MIDP) to reveal the associations between miRNAs
and diseases by implementing random walk on a miRNA
functional similarity network where the similarity scores of
miRNAs pairs were obtained through their related diseases.
What’s more, Xuan et al. also presented its extension method
MIDPE to predict the miRNAs related with new diseases. In
addition, by constructing a high-dimensional vector space to
store the distribution information on miRNAs and diseases,
Pasquier et al. (Pasquier and Gardes, 2016) proposed MiRAI
to identify the miRNAs associated with diseases based on the
similarity of the high-dimensional vectors composed of the
distribution information on miRNAs and diseases. Xuan et al.
(2013) presented an effective model named Human Disease-
related MiRNA Prediction (HDMP) where the calculation
method of miRNA functional similarity was improved by taking
more related information into account. miRNAs in the same
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family or cluster were assigned higher weights since they were
more likely to be associated with diseases with phenotype
similarity. In this method, the sub-scores of the miRNA’s k
neighbors were equal to the product of the neighbor’s weight and
the miRNA functional similarity, and then by adding the sub-
scores of k neighbors, the relevance score of a miRNA-disease
pair was obtained. In addition, Chen et al. (2018a) proposed
Network Distance Analysis for MiRNA-Disease Association
prediction (NDAMDA) to detect the miRNAs associated with
diseases. Compared to other methods, the improvement of
NDAMDA lied in that in addition to the direct network
distance between two studied diseases (miRNAs), the respective
mean distances for each of them and all the rest of diseases
(miRNAs) were taken into consideration. By implementing the
matrix completion algorithm to update the adjacency matrix
which recorded the known associations of disease-miRNA
pairs in HMDD and then uncovering the unknown relations,
Li et al. (2017) developed a method of Matrix Completion
for MiRNA-Disease Association prediction model (MCMDA)
without the need of negative samples. Compared with other
computational models, the biggest advantage of MCMDA was
that it only required known miRNA-disease associations, which
also led to that MCMDA couldn’t be introduced to predict
potential associated miRNAs for new diseases or potential
associated diseases for new miRNAs. Furthermore, the optimal
parameters of this method were still unknown. In addition,
by integrating miRNA functional similarity, disease semantic
similarity, Gaussian interaction profile kernel similarity, and
miRNA-disease associations confirmed by experiments into a
heterogeneous graph, Chen et al. (2016c) presented a model of
Heterogeneous Graph Inference for MiRNA-Disease Association
prediction (HGIMDA) to reveal the unknown relations of
miRNA-disease pairs by incorporating related data into a
heterogeneous graph and summarizing all paths with the length
equal to three to calculate the association probability of disease-
miRNA pair. Unfortunately, limitations also existed in this
method that for those miRNAs with more known related
diseases, scores made by HGIMDA were generally higher than
those miRNAs with less. Later, Chen et al. (2018b) proposed
another method called Graph Regression for MiRNA-Disease
Association prediction (GRMDA). In this method, by using two
matrix decomposition methods to extract important correlation
properties and filter noise, graph regression was performed
synchronously in three potential spaces including the associated
space, miRNA similarity space, and disease similarity space
to reveal the potential disease-miRNAs associations. However,
there were still some problems of GRMDA to be settled. For
example, according to the size of the matrix, how to choose
the optimal parameters in SVD and PLS remained unsolved.
By optimizing the existing method for maximizing the flow
of information, which was mainly used to prioritize disease-
associated protein-coding genes, Yu et al. (2017) developed a
combinatorial prioritization algorithm to predict the miRNA-
disease associations. This method didn’t require negative
samples, which solved the problem that negative microRNA-
disease associations were difficult to obtain.

In this paper, we proposed Symmetric Nonnegative Matrix
Factorization for MiRNA-Disease Association prediction

(SNMFMDA) to predict potential miRNA-disease associations.
The process was mainly divided into two steps. Firstly, we used
symmetric non-negative matrix factorization (SymNMF) to
interpolate the integrated similarity matrix. Secondly, based on
interpolated integrated similarity matrix, we utilized Kronecker
regularized least square (KronRLS) method to obtained disease-
miRNA association score matrix. We implemented global and
local Leave-One-Out Cross Validation (LOOCV) and 5-fold cross
validation to assess the prediction performance of SNMFMDA.
As shown in the results, the AUC values of global LOOCV, local
LOOCV, and 5-fold cross validation of SNMFMDA reached
0.9007, 0.8426, and 0.8830 ± 0.0017 respectively, which verified
the excellent prediction performance of SNMFMDA.

MATERIALS AND METHODS

Human miRNA-Disease Association
In this paper, we obtained known human disease-miRNA
associations from HMDD v2.0, which recorded 5430
experimentally verified associations between 383 diseases
and 495 miRNAs. To better represent whether there were
known associations between diseases and miRNAs, we defined a
nd × nm adjacency matrix A, where nd and nm corresponded to
the number of diseases and miRNAs respectively. If the relation
between disease d(i) andmiRNAm(j) had been verified, the value
of the element A(d (i) , d(j)) of the matrix was 1, otherwise 0.

miRNA Functional Similarity
On the basis of the assumption that functionally similar
miRNAs tend to be associated with similar diseases and vice
versa, miRNA functional similarities were calculated in this
paper (Wang et al., 2010), and we could download them
from http://www.cuilab.cn/fles/images/cuilab/misim.zip. For the
sake of better describing the functional similarity between
miRNAs, we defined the miRNA functional similarity matrix
FS, where the element FS(m (i) ,m(j)) represented the functional
similarity score between miRNA m(i) and m(j) (For the specific
calculation process of miRNAs functional similarity, please see
Supplementary Material).

Disease Semantic Similarity Model 1
To describe the association between diseases, the Directed
Acyclic Graphs (DAGs) were built. DAG (D) = (D,T (D) ,E(D))
was applied to indicate disease D, where T(D) was a set of nodes
composed of node D itself and its ancestor nodes and E(D) was
a set consisting of edges directly from parent nodes to the child
nodes (Wang et al., 2010). The contribution of disease d to the
semantic value of diseaseD in DAG(D) and the semantic value of
disease D were defined as follows:

{

D1D
(

d
)

= 1 ifd = D

D1D
(

d
)

= max
{

△∗D1D

(

d
′
)
∣

∣

∣
d
′
∈ children of d

}

if d 6= D

(1)

DV1 (D) =
∑

d∈T(D)

D1D
(

d
)

(2)

where △ is the semantic contribution factor. The contribution of
disease D to its own semantic value was 1, and the contribution
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of other diseases to the semantic value of diseaseDwas negatively
related to the distance between the disease and disease D, so the
diseases in the same layer might have the same contribution to
the semantic value of disease D.

Here, based on the model in the paper (Xuan et al., 2013),
we constructed disease semantic similarity matrix SS1, whose
element SS1

(

d (i) , d
(

j
))

indicated the semantic similarity score
between disease d(i) and d

(

j
)

. Based on the assumption that
the more DAGs the two diseases overlapped, the greater their
semantic similarity would be. The disease semantic similarity
between disease d(i) and d

(

j
)

was calculated as follows:

SS1
(

d (i) , d
(

j
))

=

∑

t∈T(d(i))∩T(d(j)) (Dd(i) (t) + Dd(j)(t))

DV1
(

d (i)
)

+ DV1(d(j))
(3)

Disease Semantic Similarity Model 2
For these diseases that appeared in the same layer of the
DAG(A), according to the above definition of the disease
semantic similarity model 1, they had the same contribution
to the semantic value of the disease A. However, they might
appear in different number of disease DAGs. For example, for
two diseases d (i) and d

(

j
)

that appeared in the same layer of
DAG(A), disease d(i) occurred in more disease DAGs, while d(j)
appeared in less. It was clear that the contributions of the two
diseases to the semantic value of disease A were different and
the disease d (i) should have a less contribution to the semantic
value of the disease A than d(j). Therefore, it was unreasonable to
simply calculate the contribution to the semantic value of disease
according to the definition of the disease semantic similarity
model 1. Here, according to the model in the paper (Xuan et al.,
2013), we defined the disease semantic similarity model 2 to
supplement model 1. In the second model, diseases appeared in
the same layer of DAG(A) might not necessarily ensure that they
had the same contribution to the semantic value of diseaseA. The
contribution of disease D to the semantic value of disease A was
calculated as follows:

D2A (D) = − log
the number of DAGs including D

the number of diseases
(4)

The semantic value of disease A was calculated as follows:

DV2 (A) =
∑

t∈T(A)
D2A(t) (5)

Similar to the disease semantic similarity matrix SS1, the element
SS2(d (i) , d(j)) of the disease semantic similarity matrix SS2 was
calculated as follows:

SS2
(

d (i) , d
(

j
))

=

∑

t∈T(d(i))∩T(d(j)) (D2d(i) (t) + D2d(j)(t))

DV2
(

d (i)
)

+ DV2(d(j))
(6)

Here, SS2(d (i) , d(j)) was the disease semantic similarity between
disease d(i) and d

(

j
)

. Combining the two models of disease
semantic similarity, we could calculate the final disease semantic
similarity matrix SS as follow:

SS =
SS1+ SS2

2
(7)

Gaussian Interaction Profile Kernel
Similarity
On the basis of the assumption that functionally similar miRNAs
were more likely to be associated with similar diseases and
vice versa, by taking the topological information of known
miRNA-disease association network into account, we defined
Gaussian interaction profile kernel similarity for diseases to
describe the similarities between diseases based on the model
in the paper (van Laarhoven et al., 2011). Here, we applied
binary vector IP(d(i)) to represent the ith row of the adjacency
matrix A, which recorded the association information of disease
d(i) with all miRNAs. The Gaussian interaction profile kernel
similarity matrix for diseases was defined as KD. The element
KD

(

d (i) , d
(

j
))

indicated the Gaussian interaction profile kernel
similarity between disease d(i) and d

(

j
)

and could be calculated
as follows:

KD
(

d (i) , d
(

j
))

= exp
(

−γd
∥

∥IP(d(i))− IP(d(j))
∥

∥

2
)

(8)

Here, the role of parameter γd is to control the kernel bandwidth
and it could be obtained by normalizing another new bandwidth

parameter γ
′

d
by the average number of associated miRNAs for all

the diseases.

γd =
γ

′

d

1
nd

∑nd
u=1 ‖IP

(

d (u)
)∥

∥

2
(9)

Here, we set the value of γ
′

d
to 1. Similarly, the Gaussian

interaction profile kernel similarity matrix KM was defined as
follows:

KM
(

m (i) ,m
(

j
))

= exp
(

−γm
∥

∥IP(m(i))− IP(m(j))
∥

∥

2
)

(10)

The binary vector IP(m(i)) represents the ith column of the
adjacency matrix A. Similar to γd, parameters γm was calculated
as follows:

γm =
γm

′

1
nm

∑nm
u=1 ‖IP (m (u))‖2

(11)

Here, the value of γm
′ was set to 1.

Integrated Similarity for miRNAs and
Diseases
As we know, many diseases can be described by a DAG. Based
on the assumption that two diseases with large overlapping parts
of their DAGs are considered to have large semantic similarity,
we could calculate the semantic similarity between diseases, but
we could not get DAG for all diseases, so for those diseases
without DAG, we could not calculate the semantic similarity
between them and other diseases. Therefore, we constructed
integrated similarity matrix SD for diseases by integrating disease
semantic similarity matrix and Gaussian interaction profile
kernel similarity matrix in the following way according to the
model in this paper (Chen et al., 2016b):

SD
(

d (i) , d
(

j
))

=
SS

(

d (i) , d
(

j
))

+ KD(d (i) , d(j))

2
(12)
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Similar to disease, the integrated similarity matrix SM was
calculated as follow:

SM
(

m (i) ,m
(

j
))

=
FS

(

m (i) ,m
(

j
))

+ KM(m (i) ,m(j))

2
(13)

SNMFMDA
Motivated by the paper (Chen and Li, 2017), in this paper,
we proposed SNMFMDA to predict potential miRNA-disease
associations and the flow chart of the algorithm is shown
in Figure 1. First step, we used SymNMF to interpolate the
integrated similarity matrix SM and SD. Second step, based
on interpolated integrated similarity matrix SM, SD, we utilized
KronRLS method to obtained score matrix S with the same
dimension as the adjacency matrix A, and each element of S was
the associated probabilities of the corresponding disease-miRNA
pairs. The two-step process was as follows:

SymNMF
As an unsupervised learning method, non-negative matrix
factorization (NMF) was extremely versatile and it had gradually
become one of the most popular multidimensional data
processing tools in signal processing, semantic analysis of
documents and image engineering (He et al., 2011). In ourmodel,
we improved the integrated similarity by introducing SymNMF,
which was a special kind of nonnegative matrix factorization. For
the matrix SD, our purpose was to find a matrix P with the same
size as the integrated similarity matrix SD, which also satisfied the
following requirement:

SD ≈ PPT (14)

The specific process was as follows: The first step was
initialization and we constructed a random matrix P0 whose
elements were all positive as the initialization of the matrix P. Pi

indicated the matrix corresponding to P in the beginning of the
ith update, and the norm Ei in ith update could be computed as
follow:

Ei =
∥

∥

∥
SD− PiPi

T
∥

∥

∥

2

F
(15)

The second step was update. Here, we temporarily marked P as
Pnew after each update. The specific process was as follows:

Ri =
(

(SD)Pi
)

· /(PiPi
T
Pi) (16)

Pnew = Pi.∗
(

1− α + α·Ri
)

(17)

Enew =

∥

∥

∥
SD− Pnew(Pnew)T

∥

∥

∥

2

F
(18)

where A.∗B and A./B were the entrywise product (i.e., Hadamard
product) and entrywise division respectively. The value of α

should be less than 1 but close to 1, here, we set α = 0.999. Then

compared Enew to Ei, if EN was smaller, update process ended,
otherwise, updated P as follows:

Pnew = Pi.∗
(

Ri
)
1
3 (19)

Enew =

∥

∥

∥
Pnew(Pnew)T

∥

∥

∥

2

F
(20)

Pnew → Pi+1 (21)

Enew → Ei+1 (22)

i = i+ 1 (23)

After that, the procedure went back to formula (15) and started
the next update. Using SymNMF to perform interpolation on the
similarity matrix SM was similar to SD.

KronRLS
First of all, we needed to build a list D = [d (1) , d (2) , . . . d(nd)]
for diseases. Similarly, list M = [m (1) ,m (2) , . . .m(nm)]
was constructed to denoted nm miRNAs. All the columns
of adjacency matrix A were stitched together to form a n-
dimensional column vector Y where n = nd × nm indicated the
total number of disease-miRNA pairs. And then we built another
n-dimensional column vectors X whose element Xi represented
the disease-miRNA pair corresponding to the ith element in Y .
The purpose of the RLS algorithm was to find the mapping
function f from vector X to score matrix S by minimizing the
following function.

J
(

f
)

=
1

2n

n
∑

i=1

(Yi − f (Xi))
2
+

λ

2

∥

∥f
∥

∥

2

K
(24)

where
∥

∥f
∥

∥

K
is a norm of function f on the Hilbert space related

with the kernel K. λ is a regularization parameter that determine
the trade-off between prediction error and model complexity,
here, we set it to 1. The representative theorem ensured that the
Equation (23) had a closed form solution:

f (X) =

n
∑

i=1

aiK(X,Xi) = Ka (25)

Here, a is also an n-dimensional vector and it could be get by
solving the following equation:

(K + λI) a = Y (26)

where I is the identity matrix and K is named as the pairwise
instance kernel to represent the similarity of two data points
in the Hilbert space. To be specific, for two disease-miRNA
pairs (di,mj) and (dw,mz), K

((

di,mj

)

,
(

dw,mz

))

indicates the
similarity between the two disease-miRNA pairs. And the kernel
could be calculated as follow:

K
((

di,mj

)

,
(

dw,mz

))

= SD(i,w)SM(j, z) (27)

K = SD⊗ SM (28)

Frontiers in Genetics | www.frontiersin.org 5 August 2018 | Volume 9 | Article 324

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. miRNA-Disease Association Prediction

FIGURE 1 | The flowchart of SNMFMDA included three steps: the integration of data; the calculation of the score matrix; the sorting of samples.

where SD ⊗ SM is the Kronecker product of SD and SM, and
the relation probabilities of all disease-miRNA pairs could be
obtained according to the kernel as follow:

vec(S) = f (X) = K (K + λI)−1 Y (29)

Here, vec (·) is a vectorization operator that combine all the
columns of a matrix into a column vector.

In order to solve the problem more effectively, we introduced
spectral decomposition of the matrix to speed up the calculation.
The decompositions of integrated similarity SD, SM and K were
defined as follow:

SD =
∨

d

∧

d

∨T
d (30)

SM =
∨

m

∧

m

∨T
m (31)

K =
∨ ∧ ∨T (32)

Here, the dimension of the matrix
∨

d(
∨

m,
∨

) is the same
as SD(SM,K), and each of its columns is the eigenvector
of the matrix SD(SM,K). Matrix

∧

d(
∧

m,
∧

) is a diagonal
matrix whose diagonal element

∧

dii
(
∧

mii
,
∧

ii) is the eigenvalue
of SD(SM,K) corresponding to the ith column [i.e., the ith
eigenvector of SD(SM,K)]. Then, the Kronecker product of SD
and SM could be calculated as follows:

K = SD⊗ SM =
∨ ∧ ∨T (33)

K(K + λI)−1 =
∨ ∧

(
∧

+λI
)−1 ∨T (34)

where:

∨

=
∨

d ⊗
∨

m (35)
∧

=
∧

d ⊗
∧

m (36)

Here, we introduced a property of the Kronecker product:

(A⊗ B) vec (Y) = vec
(

BYAT
)

(37)

By integrating the above formulas, the score matrix S could be
calculated as follows:

S = VdZ
TVT

m (38)

where:

vec (Z) = (3d ⊗ 3m) (3d ⊗ 3m + λI)−1 vec(VT
mY

TVd) (39)

RESULTS

Performance Evaluation
In this study, based on the 5,430 confirmed associations between
383 diseases and 495 miRNAs recorded in HMDD v2.0, local and
global LOOCV were applied to test the prediction performance
of SNMFMDA. In LOOCV, each of the 5,430 known associations
(positive samples) was left out in turn as the test sample
and the remaining 5,429 known associations were considered
as training samples, while the miRNA-disease pairs without
verified association were viewed as candidate samples (unknown
samples), and then we applied SNMFMDA to calculated the
association probability of candidate samples and test sample. In
global LOOCV, the score of test sample was ranked with all of the
candidate samples, while we sort it with all the unknown samples
that contained the studied diseases in local LOOCV. When the
ranking of test sample was higher than the given threshold, we
affirmed that SNMFMDAhad correctly predicted the sample.We
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set the true positive rate (TPR, sensitivity) as the vertical axis and
the false positive rate (FPR, 1-specificity) as the horizontal axis.
When the thresholds took different values, they correspond to
different points in the coordinate system. The bight composed
of all these points was the Receiver operating characteristics
(ROC) curve. Here, Sensitivity was the ratio of the number of
correctly predicted test samples to the total number of positive
samples, and specificity was the percentage of candidate samples
whose ranking were lower than the given threshold to all of the
unknown samples. The area under the ROC curve (AUC) was
calculated to evaluate the reliability of SNMFMDA. The AUC
value of 0.5 meant that the computational model was equivalent
to random prediction, and AUC=1 indicated that the prediction
performance of the calculation model was excellent. In other
words, when the value of AUC was greater than 0.5 and less than
1, the larger the value, the better the prediction performance.

The comparison of the prediction performance between a
couple of computational methods based on the AUC value of
global and local LOOCV respectively was shown in Figure 2.
As a consequence, the AUC of SNMFMDA was 0.9007, while
the AUC values of HGIMDA (Chen et al., 2016c), MCMDA (Li
et al., 2017), MaxFlow (Yu et al., 2017), RLSMDA (Chen and Yan,
2014), HDMP (Xuan et al., 2013), WBSMDA (Chen et al., 2016b)
were respectively 0.8781, 0.8749, 0.8624, 0.8426, 0.8366, 0.8030
in global LOOCV. In local LOOCV, SNMFMDA obtained AUC
of 0.8426, which were clearly better than HGIMDA (0.8077),
MCMDA (0.7718), MaxFlow (0.7774), RLSMDA (0.6953),
HDMP (0.7702), WBSMDA (0.8031), MiRAI (0.6299), MIDP
(0.8196), and RWRMDA (0.7891). Both RWRMDA and MIDP
weren’t capable to predict potential related miRNAs for all
diseases at the same time, so we could only evaluate their
prediction performance with local LOOCV instead of global
LOOCV. Besides, the association probabilities of candidate
samples calculated byMiRAI had a high-positive correlation with
the number of known associations of corresponding diseases.
The more known miRNAs associated with a disease, the greater
the disease-related candidate samples’ association probabilities
would be. Thus, it wasn’t reasonable to compare the association
probabilities of candidate samples corresponding to different
diseases. Therefore, we couldn’t apply global LOOCV to evaluate
the prediction performance of RWRMDA, MIDP, and MiRAI.
What’s more, as could be seen from Figure 2, the value of the
AUC for local LOOCV of MiRAI was relatively small. This
was because that the core of MiRAI was collaborative filtering
which caused its prediction accuracy to heavily depend on the
number of known miRNA-disease associations. The database
used in our method had 383 diseases but there were few known
miRNAs associated with each disease. Therefore, the predictive
performance of MiRAI based on this database was far worse
than that in the original literature where the training database
contained more verified associations for each disease.

In addition, we also applied 5-fold cross-validation to evaluate
the predictive performance of SNMFMDA. All known miRNA-
disease associations were randomly divided into five equal parts,
and each part was in turn treated as the test sample while
the other four parts were treated as the training samples.
Besides, in order to reduce the influence of the division of

known associations on prediction accuracy, we performed 100
random divisions. It could be seen from the results that the
mean and standard deviation of the AUC in 5-fold cross
validation respectively reached 0.8830 and 0.0017, which was
obviously better than MCMDA (0.8767 ± 0.0011), MaxFlow
(0.8579 ± 0.001), RLSMDA (0.8569 ± 0.0020), HDMP (0.8342
± 0.0010), and WBSMDA (0.8185 ± 0.0009). In summary, all
cross-validation results further proved the superior prediction
performance of SNMFMDA.

Case Studies
In addition to cross-validation, we also used case studies to
evaluate the prediction accuracy of our computational model.
Here, we applied three different case studies on Esophageal
Neoplasms (EN), Breast Neoplasms (BN), and Lung Neoplasms
(LN) to test the prediction performance from different aspects.
In the first kind, we could obtain 5,430 known miRNA-disease
associations (positive samples) from HMDD v2.0 (Li et al.,
2014) for 383 diseases and 495 miRNAs, and the remaining
184,155 samples were unknown samples. In order to predict the
potential associations of miRNA-disease pairs from unknown
samples, we scored them by SNMFMDA and ranked them.
Finally, we verified the top 50 potential associated miRNAs for
the investigated disease by two other databases dbDEMC (Yang
et al., 2010) and miR2Disease (Jiang et al., 2009) that recorded
a number of verified miRNA-disease associations. In order to
assess SNMFMDA’s prediction power for new diseases without
any known associatedmiRNAs, the second kind of case study was
implemented. Here, when we studied a disease, we first removed
all its known associations based on the HMDD v2.0 that was, all
the 1 s in the row corresponding to this disease in the adjacency
matrix were turned to 0. After that we used SNMFMDA to score
all miRNAs for the investigated disease and then sorted these
miRNAs. Finally, we verified whether the associations between
the disease and the top 50 miRNAs were verified by the three
databases dbDEMC, miR2Disease and HMDD v2.0. Because
there are a number of databases in which knownmiRNA-diseases
associations were recorded, when the prediction accuracy of
computation method based on a certain database was good, it
couldn’t explain that the prediction performance of the method
was superior. To prove the applicability of our model to different
databases, we carried out the third type of case studies. The third
case study was similar to the first, and the difference between
them was that the dataset on which SNMFMDA was based was
not the same. There were 1895 verified associations between 137
diseases and 271 miRNAs recorded in the database HMDD v1.0
used in the third case study. Finally, we applied three databases
(HMDD v2.0, miR2Disease and dbDEMC) to verify the top 50
predicted miRNAs for the investigated disease after utilizing our
calculation model.

As one of the most common tumors in the world, Esophageal
Neoplasms (EN) has the top 10 morbidity and mortality in
all cancers (He et al., 2012). According to the latest estimates
of related departments in US, in 2018, there would be 12,850
patients dying from EN, accounting for 4% of all patients dying
of cancer (Siegel et al., 2018). Although the treatment method
have been improved, the damage of EN to human have not
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FIGURE 2 | Comparison of prediction performance between SNMFMDA and other computation models (HGIMDA, RLSMDA, HDMP, WBSMDA, MCMDA, MaxFlow,

MiRAI, MIDP) based on global (A) and local (B) cross validation results. As shown in the figure, the AUC value of global and local LOOCV of SNMFMDA reached

0.9007 and 0.8426, which fully proved the superior prediction performance of SNMFMDA.

been significantly reduced (He et al., 2012). The survival rate of
patients with EN was less than 25% in the last five years (Kim
et al., 2011). Research showed that if EN could be diagnosed early,
its mortality rate was expected to drop to 10% (Daly et al., 2000),
so finding better and more efficient diagnosis and treatment
was imperative (Xie et al., 2013). More and more researches
indicated that there was a close relationship between miRNAs
and the development of human diseases (Alvarez-Garcia and
Miska, 2005). A number of associations betweenmiRNAs and EN
had been verified. For instance, by spongingmiR-200a, which was
functionally similar to a competitive endogenous RNA, lncRNA
MALAT1 adjusted the expression of ZEB1 and ZEB2 to facilitate
the invasion and migration of EN cells by mean of inducing
epithelial-mesenchymal transition (Zhang et al., 2017). We used
SNMFMDA to perform the first case study on EN, and the results
showed that 47 of the top 50 predicted EN-related miRNAs
were verified by other two databases dbDEMC and miR2Disease.
For the remaining three miRNAs that had not been verified
by the above two databases, there were studies showing that
serum expression levels of mir-218 (15th in the prediction list)
in EN patients were significantly lower than those in healthy
people, and the levels were related to tumor differentiation,
staging, and lymph node metastasis. For this reason, mir-218 was
highly likely to be the target of the early diagnosis of EN, which
provided a new idea for the detection of this cancer (Jiang et al.,
2015). In EN cells, mir-122 (43th in the prediction list) targeted
pyruvate kinase M2 (PKM2), and Tanshinone IIA could limit the
expression of PKM2 by promoting the expression of mir-122,
which in turn restricted the growth of EN cells (Zhang et al.,
2016). As could be seen from the verification results, only one
of the top 50 predicted miRNAs had not been validated by the
database or literature (see Table 1).

In order to facilitate further validation and research, we
have provided the complete prediction list of potential miRNAs
associated with all the 383 human diseases in HMDD v2.0 (see
Supplementary Table 1).

Breast Neoplasms (BN) is a type of cancer with high
morbidity and mortality among women in the United States
(Kelsey and Horn-Ross, 1993). According to the prediction of
relevant departments, 40,920 women would die from BN in the
United States in 2018, accounting for 14% of the total cancer
deaths (Siegel et al., 2018). According to the current medical level,
the only way to improve the cure rate and reduce the mortality
rate of BN lies in the early detection and timely treatment
(Tao et al., 2015). In order to improve the diagnostic efficiency,
the researchers have put forward many methods including the
prediction of potential relevant miRNAs of BN. It has been
proved that the expression levels of mir-21 and mir-146a in
plasma samples of BN patients were obviously higher than that
of healthy volunteers and we could identify whether a patient
had BN based on the expression level of mir-21 and mir-146a
in plasma (Kumar et al., 2013). We implemented the second
case study on BN and 45 of the top 50 miRNAs potentially
associated with BNwere verified by databases (HMDD, dbDEMC
and miR2Disease). Among the remaining 5 miRNAs that were
not validated by the databases, the expression of mir-142 (12th
in the prediction list) was dysregulated in BN cells and mir-
142 could restricted the invasion of BN cells by simultaneously
targeting WASL, Integrin Alpha V, and Additional Cytoskeletal
Elements (Schwickert et al., 2015). The expression ofmir-378a-3p
(20th in the prediction list) was lower in BN tissues, and it acted
on the endocrine resistance mechanism of BN by regulating the
expression of GOLT1A (Ikeda et al., 2015). It was also verified
that there was excessive expression of mir-302f (48th in the
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TABLE 1 | Prediction of the top 50 predicted miRNAs associated with

Esophageal Neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-18a dbDEMC hsa-mir-29a dbDEMC

hsa-mir-200b dbDEMC hsa-mir-106a dbDEMC

hsa-mir-1 dbDEMC hsa-mir-10b dbDEMC

hsa-mir-17 dbDEMC hsa-mir-191 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-497 dbDEMC

hsa-mir-125b dbDEMC hsa-mir-9 dbDEMC

hsa-let-7d dbDEMC hsa-let-7f Unconfirmed

hsa-mir-142 dbDEMC hsa-mir-132 dbDEMC

hsa-let-7e dbDEMC hsa-mir-424 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-146b dbDEMC

hsa-mir-199b dbDEMC hsa-mir-224 dbDEMC

hsa-mir-125a dbDEMC hsa-mir-151 dbDEMC

hsa-mir-194 dbDEMC;

miR2Disease

hsa-mir-24 dbDEMC

hsa-mir-429 dbDEMC hsa-mir-182 dbDEMC

hsa-mir-218 PMID:

25812647

hsa-mir-106b dbDEMC

hsa-mir-221 dbDEMC hsa-mir-181b dbDEMC

hsa-let-7i dbDEMC hsa-mir-7 dbDEMC

hsa-mir-195 dbDEMC hsa-mir-122 PMID: 27040384

hsa-mir-30a dbDEMC hsa-mir-335 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-302c dbDEMC

hsa-mir-107 dbDEMC;

miR2Disease

hsa-mir-302b dbDEMC

hsa-mir-30c dbDEMC hsa-let-7g dbDEMC

hsa-mir-18b dbDEMC hsa-mir-181a dbDEMC

hsa-mir-133b dbDEMC hsa-mir-491 dbDEMC

hsa-mir-127 dbDEMC hsa-mir-32 dbDEMC

The first 25 miRNAs and the last 25 miRNAs were recorded in the first and third columns,

respectively. The second and forth columns recorded the database or literatures in

PubMed that verified the corresponding miRNAs associated with Esophageal Neoplasms.

prediction list) in HER2-postive BN (Kang et al., 2014). What’s
more, researches also confirmed that there was overexpression
of mir-744 (49th in the prediction list) in BN cell and mir-744
played a part in the drug resistance of BN (Chen et al., 2016a).
The above results (see Table 2) showed that 49 of the top 50
potential BN-associated miRNAs predicted by SNMFMDA were
validated, which indicated that the prediction performance of
SNMFMDAwas still reliable when it was applied to new diseases.

Lung Neoplasms (LN) is one of the most deadly cancers (Liu
and Wei, 2018), and its poor prognosis have also caused great
harm to human health (Zhao et al., 2018). According to the
estimation of the American Cancer Society, in 2018, new cases
of bronchus and LN would reach 121,680, accounting for 14%
of all newly diagnosed cancer patients, and it was estimated that
there would be 83550 patients dying from lung cancer, more
than a quarter of the total deaths (Siegel et al., 2018). The early
diagnosis and treatment of LN is very difficult, fortunately, more
and more studies have shown that miRNAs are closely related
to the development, progression, and progression of LN (Zhao
et al., 2018). For example, researches showed that there was

TABLE 2 | Prediction of the top 50 predicted miRNAs associated with Breast

Neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-21 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-200c dbDEMC;

miR2Diseaes;HMDD

hsa-mir-125b miR2Disease;HMDD hsa-mir-221 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-31 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-708 HMDD

hsa-mir-99a dbDEMC hsa-mir-218 dbDEMC;HMDD

hsa-mir-375 dbDEMC;HMDD hsa-mir-205 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-146a dbDEMC;

miR2Diseaes;HMDD

hsa-mir-629 dbDEMC;HMDD

hsa-mir-100 dbDEMC;HMDD hsa-mir-101 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-302b dbDEMC;HMDD hsa-mir-193b dbDEMC;

miR2Diseaes;HMDD

hsa-mir-302c dbDEMC;HMDD hsa-mir-197 dbDEMC;HMDD

hsa-let-7a dbDEMC;

miR2Diseaes;HMDD

hsa-mir-370 dbDEMC

hsa-mir-138 dbDEMC hsa-mir-148a dbDEMC;

miR2Diseaes;HMDD

hsa-mir-142 PMID: 26657485 hsa-mir-27a dbDEMC;

miR2Diseaes;HMDD

hsa-mir-486 dbDEMC;HMDD hsa-mir-34c dbDEMC;HMDD

hsa-mir-7 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-196a dbDEMC;

miR2Diseaes;HMDD

hsa-mir-203 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-503 dbDEMC

hsa-mir-302d dbDEMC;HMDD hsa-mir-34b dbDEMC;HMDD

hsa-mir-27b dbDEMC;HMDD hsa-let-7g dbDEMC;HMDD

hsa-mir-302a dbDEMC;HMDD hsa-mir-151a HMDD

hsa-mir-133b dbDEMC;HMDD hsa-mir-34a dbDEMC;HMDD

hsa-mir-378a PMID: 26255816 hsa-mir-642a Unfirmed

hsa-mir-145 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-663a HMDD

hsa-mir-9 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-151b HMDD

hsa-mir-499a HMDD hsa-mir-302f PMID: 24982406

hsa-let-7b dbDEMC;HMDD hsa-mir-744 PMID: 27746365

hsa-mir-574 dbDEMC hsa-mir-451a HMDD

Here, all known associations with Breast Neoplasms had been removed. The first 25

miRNAs and the last 25 miRNAs were recorded in the first and third columns, respectively.

The second and forth columns recorded the database or literatures in PubMed that verified

the corresponding miRNAs associated with Breast Neoplasms.

significantly higher expression of mir-221 in LN patients than
that in healthy people, and biological analysis indicated that
the target of mir-221 was most likely related to the formation
and development of LN (Zhu et al., 2017). Besides, mir-221
was very likely to become a non-aggressive biomarker for the
diagnosis of LN (Zhu et al., 2017). As an embryo-expressing lung
miRNA, mir-127 had been shown to be closely linked to the
poor prognosis of LN (Shi et al., 2017). Therefore, the prediction
of miRNAs associated with LN could enable us to understand
the pathogenesis of cancer and might provide novel diagnostic
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methods and treatment approaches. We applied SNMFMDA to
perform the third case study on LN to test the prediction power
of the model when it is applied to another database HMDD v1.0.
The prediction result showed that 44 of the top 50 potential LN-
associated miRNAs were verified by other databases (dbDEMC,
miR2Diseaes, HMDD v2.0). For the remaining 6 miRNAs that
weren’t verified by the three databases, studies showed that the
mir-92 (6th in the prediction list) family was less expressed in
cisplatin-resistant cells, which indicated that the mir-92 family
played a part in the regulation of cisplatin resistance in non-
small cell lung cancer (Zhao et al., 2015). Some researches
confirmed that the overexpression of mir-194 (20th in the
prediction list) produced an effect on the expression of Mpl/ERK
pathway proteins and restrained the mitosis and proliferation
of non-small cell lung cancer cells by targeting Human nuclear
distribution C (hNUDC), which provided a novel strategy for the
treatment of LN (Zhou et al., 2016). Studies confirmed that mir-
372-3p (38th in the prediction list) was obviously overexpressed
in lung squamous cell carcinoma cells and limited the expression
of FGF9 by binding to it, which contributed to the proliferation
of lung squamous cell carcinoma cells (LSCC). In contrast, the
low expression of mir-372-3p or high expression of FGF9 were
conducive to inhibit the growth and invasion of LSCC cells
(Wang et al., 2017). The expression level of mir-320 (46th in
the prediction list) in non-small cell lung cancer (NSCLC) cells
was lower than the level in normal cells, and mir-320 limited cell
growth in NSCLC cells through targeting fatty acid synthase (Lei
et al., 2016). Based on the above results (seeTable 3), 48 of the top
50 potential LN-associated miRNAs predicted by SNMFMDA
were validated, which indicated that the prediction performance
of the model based on other datasets was also very reliable.

DISCUSSION

As accumulating studies have demonstrated that miRNAs play
an extremely important role in human physiological processes,
researches on the association between miRNAs and diseases have
attracted more and more attention. Since it is time-consuming
and costly to use biological experiments to reveal potential
miRNA-disease associations, many computational models have
been proposed to predict disease-related miRNAs in recent years.
In the paper, we developed a novel model of SNMFMDA to reveal
the relation of miRNA-disease pairs by integrating the known
miRNA-disease associations recorded in HMDD v2.0, miRNA
functional similarity, disease semantic similarity, and Gaussian
interaction profile kernel similarity for diseases and miRNAs.
SNMFMDA overcame the limitation of many previous models
that they were incapable of predicting miRNAs associated with
new diseases. As shown in the prediction results, the AUC values
of global LOOCV, local LOOCV, and 5-fold cross validation
reached 0.9007, 0.8426, and 0.8830 ± 0.0017 respectively. As
we all know, models with global AUC value above 0.9 were
rare, so SNMFMDA is a model with higher credibility. In the
future, our model would be an effective tool to reveal potential
disease-related miRNAs, which is conducive to the diagnosis and
treatment of diseases.

TABLE 3 | Prediction of the top 50 predicted miRNAs associated with Lung

Neoplasms based on known associations in HMDD v1.0.

miRNA Evidence miRNA Evidence

hsa-mir-221 dbDEMC;HMDD hsa-mir-7 miR2Disease;

HMDD

hsa-mir-127 dbDEMC;HMDD hsa-mir-451 dbDEMC;

miR2Disease

hsa-mir-200b dbDEMC;

miR2Diseaes;HMDD

hsa-mir-99b Unfirmed

hsa-mir-16 dbDEMC;

miR2Disease

hsa-mir-93 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-222 dbDEMC;HMDD hsa-mir-18b HMDD

hsa-mir-92b PMID: 26482648 hsa-mir-196b dbDEMC

hsa-mir-195 dbDEMC;

miR2Disease

hsa-mir-100 dbDEMC;HMDD

hsa-mir-106b dbDEMC hsa-mir-200a dbDEMC;

miR2Diseaes;HMDD

hsa-mir-181b dbDEMC;HMDD hsa-mir-429 dbDEMC;

miR2Disease

hsa-mir-141 dbDEMC;

miR2Disease

hsa-mir-98 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-107 dbDEMC;HMDD hsa-mir-23b dbDEMC

hsa-mir-25 dbDEMC;HMDD hsa-mir-10b dbDEMC;HMDD

hsa-mir-15a dbDEMC hsa-mir-372 PMID: 28440022

hsa-mir-20b dbDEMC hsa-mir-135a dbDEMC;HMDD

hsa-mir-148a dbDEMC;HMDD hsa-mir-186 dbDEMC;HMDD

hsa-mir-15b dbDEMC hsa-mir-181a dbDEMC;HMDD

hsa-mir-133a dbDEMC;HMDD hsa-mir-22 miR2Disease;

HMDD

hsa-mir-152 dbDEMC hsa-mir-31 dbDEMC;

miR2Diseaes;HMDD

hsa-mir-148b dbDEMC hsa-mir-339 dbDEMC;

miR2Disease

hsa-mir-194 PMID: 27035759 hsa-mir-498 dbDEMC

hsa-mir-200c dbDEMC;

miR2Diseaes;HMDD

hsa-mir-320 PMID: 27277534

hsa-mir-206 HMDD hsa-mir-181d dbDEMC

hsa-mir-135b dbDEMC;HMDD hsa-mir-130b dbDEMC

hsa-mir-296 dbDEMC hsa-mir-103 Unfirmed

hsa-mir-373 dbDEMC hsa-mir-302c dbDEMC

The first 25 miRNAs and the last 25 miRNAs were recorded in the first and third columns,

respectively. The second and forth columns recorded the database or literatures in

PubMed that verified the corresponding miRNAs associated with Lung Neoplasms.

The superior prediction performance of the model was
mainly due to the following aspects. Firstly, the database on
which SNMFMDA was based was reliable and the model could
be used to predict miRNAs potentially associated with new
diseases by introducing the information of disease similarity.
Secondly, we used SymNMF to interpolate the integrated
similarity, while many of the previous methods used the
integrated similarity directly. Finally, we introduced spectral
decomposition to speed up the calculation of the Kronecker
product in our model. Certainly, there are still some limitations
to be resolved in the future. For example, SNMFMDA might
not score miRNAs using the same criteria, especially for those
with more known related diseases. Although the prediction
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accuracy of SNMFMDA is obviously higher than many previous
calculation methods, if the biological database on which
our model is based can be further improved, SNMFMDA’s
prediction performance would be better. The calculation of
disease similarity and miRNA similarity used in our model
may not be the most perfect method, and we expect to add
more biological data sets in future calculations to improve the
accuracy of similarity calculations. Besides, SNMFMDA involved
calculating the Kronecker product of two matrices. The solution
of the Kronecker product of two matrices was equivalent to
that each element of the previous matrix multiplied by the
next matrix, so the sizes of the Kronecker product was much
larger than the first two matrices. Therefore, calculating the
Kronecker product often led to memory problems in computer.
In addition, our model SNMFMDA did not consider miRNA-
protein association and miRNA-cellular pathway association,
which significantly affected the prediction performance of the
model.
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