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Emerging fungal pathogens are a growing threat to global health, ecosystems, food
security, and the world economy. Over the last century, environmental change and
globalized transport, twinned with the increasing application of antifungal chemical
drugs have led to increases in outbreaks of fungal diseases with sometimes catastrophic
effects. In order to tackle contemporary epidemics and predemic threats, there is
a pressing need for a unified approach in identification and monitoring of fungal
pathogens. In this paper, we discuss current high throughput technologies, as well
as new platforms capable of combining diverse data types to inform practical
epidemiological strategies with a focus on emerging fungal pathogens of wildlife.
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genomics, next generation sequencing

INTRODUCTION

Emerging fungal pathogens (EFPs) present an increasing threat to public health, food security,
and ecosystems. Despite the risk that mycoses pose, a review of United Kingdom investment by
philanthropic and public funding institutions found that between 1997 and 2010, research relating
to mycoses was the focus of under 3% of funded studies, or an underwhelming 1.9% of the financial
investment in all infectious disease research (Brown et al., 2012a,b; Fisher et al., 2012; Head et al.,
2014). Poor investment in surveillance, diagnosis, and reporting makes assessing the true burden
of fungal pathogens difficult (Brown et al., 2012a; Bongomin et al., 2017), but mycoses exert heavy
morbidity. Over a billion people are directly affected by mycoses globally, 150 million of whom
have a serious or life threatening infection (Brown et al., 2012a,b; Head et al., 2014; Gow and
Netea, 2016; Bongomin et al., 2017). Furthermore, reports of EFPs are rising worldwide (Brandt
and Park, 2013; Vallabhaneni et al., 2016; Benedict et al., 2017), driven through a combination of
geographic expansion of pathogenic fungi, climate change, modified land use and increased use
of immunosuppressive and antifungal drugs (Brandt and Park, 2013; Benedict et al., 2017). More
overlooked is the spread of disease in wildlife where a broad range of species have experienced
extirpations or even extinctions due to EFPs (Fisher et al., 2012).

It is estimated that up to 98% of all fungi remain unclassified (Hawksworth and Lucking,
2017) and there is a shortage of classically trained mycologists with the expertise to isolate and
characterize novel species (Steinbach et al., 2003; Kozel and Wickes, 2014). Even the challenge of
identifying a pathogenic fungus to species level may not be sufficient – hybridisation and local
adaptation can lead to cryptic speciation and the evolution of intraspecies lineages which may vary
in their level of virulence, such as in the case of Batrachochytrium dendrobatidis, the amphibian skin
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pathogen (Farrer et al., 2011). Many fungi cannot easily be
grown under lab conditions, and culturing is time consuming
and requires specialist training (Irinyi et al., 2016). Therefore,
there is a need for diagnostics that can be widely applied
by epidemiologists lacking traditional fungal typing skills.
While methods for diagnosing human mycoses have been well
reviewed in the literature (Kozel and Wickes, 2014), there
has been little focus on diagnosis in wild animals. This is
surprising given that over 60% of emerging infectious diseases
in humans are of zoonotic origin, and the impact EFPs have on
biodiversity worldwide (Jones et al., 2008). We discuss current
and prospective methods available to researchers and personnel
working in the field of wildlife diseases with a particular emphasis
on rapid, high throughput diagnostics suited to disease outbreak
scenarios.

MINION AND SMIDGION

In 2014 Oxford Nanopore Technologies unveiled the MinIon,
the first and currently only portable real-time DNA and
RNA sequencer (Oxford Nanopore Technologies, Oxford,
United Kingdom). Weighing just under 100 g, the MinIon is
able to generate 10–20 Gb of DNA sequence data for the
relatively cheap price of $1000 per starter pack (pricing as of
June 2018). The data is immediately accessible and long reads
make it ideal for sequencing the large, complex genomes of
fungi. This technology was tested in a resource limited setting
in 2015, when researchers rapidly generated sequence data for
Ebola PCR amplicons in Guinea, (Quick et al., 2016) and again
in the Americas when MinIon was used to track the spread of
the Zika virus (Quick et al., 2017). In a clinical setting during the
United Kingdom’s largest outbreak of Candida auris, MinIon’s
rapid processing time enabled researchers to quickly identify
multiple antifungal resistance alleles in some of the patient
samples, and demonstrate the outbreak’s Asian origin (Rhodes
et al., 2018). Now, Oxford Nanopore is developing the SmidgIon.
The aim is to further simplify preparation requirements and
shrink the technology, enabling a 10 min library preparation and
a sequencer that can be plugged into a smartphone1.

MinIon’s portability is its key advantage as well as, like
other sequencing technologies, requiring no prior knowledge
of the pathogen genome, enabling a faster response time and
the detection of ‘unknown unknowns’ (Juul et al., 2015). The
biggest barriers to widespread adoption of MinIon for wildlife
epidemics are cost and expertise in interpreting results and
genome assembly. However, as the technology becomes more
widely and routinely used, it is likely that these barriers will be
reduced.

It is not currently possible to culture many fungi in vitro
(Jeewon and Hyde, 2007), but DNA sequencing also has the
potential to address this issue. The Known Media Database
(KOMODO) is a novel web-based platform that collates
information on over 20,000 organism-media pairings relating
to approximately 18,000 bacteria and archaea species and over

1https://nanoporetech.com/products/smidgion

3,000 media variants. The database predicts a suitable culture
medium for an archaea or bacteria given the 16S rDNA sequence
(Oberhardt et al., 2015). A similar database for fungi could reduce
time required to isolate an unknown fungus for the first time.

LOOP MEDIATED ISOTHERMAL
AMPLIFICATION (LAMP)

Polymerase Chain Reaction based applications are still often
viewed as the gold standard for rapid pathogen diagnosis,
but require an expensive and cumbersome thermocycler,
refrigeration of costly reagents, and trained personnel.

Loop Mediated Isothermal Amplification is a one-step
isothermal amplification reaction involving a number of target
specific primers (Mori and Notomi, 2009). No thermocycler is
required, so it is substantially cheaper and more portable than
traditional PCR based techniques, and is suitable for use in a field
setting (Mori and Notomi, 2009). LAMP is highly specific, at least
as sensitive as conventional PCR, and is rapid (a 109 yield in DNA
copy achievable in under an hour) (Notomi et al., 2000; Niessen,
2015). Real-time quantification is possible, for example by using
a photometer to detect changes in turbidity that occurs through
the generation of a reaction by-product (insoluble magnesium
pyrophosphate) (Mori and Notomi, 2009).

There are two major, but not insurmountable, drawbacks to
LAMP as a diagnostic. Firstly, although the assay itself is simple
to operate, the primer design requires expertise, and knowledge of
the target pathogen genome. Secondly, the primers must be kept
cool in the field. Despite this, LAMP is still much more flexible
than PCR based approaches and its speed, sensitivity, simplicity,
low cost and portability make it an ideal candidate method for
use in future and ongoing wildlife epidemics.

CHEMICAL CHARACTERIZATION

Analysis of the chemical composition of microbial cells
for taxonomic identification is routine in microbiological
laboratories. Common approaches utilize mass spectrometry
methods that ionize chemical compounds into charged molecules
and measure their mass to charge (m/z) ratio.

The m/z ratio is determined by measuring the mass and
charge of a chemical feature when it is detected by a mass
spectrometer. Each microbe has a characteristic mass spectrum
enabling identification by comparison to databases of known
microbe spectra (Singhal et al., 2015). Strain level identification
is possible, for example of pathogenic fungi such as Candida sp.
(Qian et al., 2008; Pulcrano et al., 2012; Aslani et al., 2018).

A frequently applied mass spectrometry based diagnostic for
pathogen detection is matrix assisted laser desorption ionization
time of flight mass spectrometry (MALDI-ToF MS) which
detects microbe specific proteins. MALDI-ToF MS is especially
popular owing to its congruence with DNA sequencing methods
(Marklein et al., 2009; Thouvenot et al., 2018) and low cost (Tran
et al., 2015).
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While MALDI-ToF offers rapid results in a laboratory setting,
its application as a diagnostic for outbreaks of unknown fungal
pathogens is limited since microbial culture and reference
spectra are required. Direct analysis of microbes from biological
samples have yielded significant improvements in diagnosis time
(Lockwood et al., 2016), though in some cases with reduced
sensitivity (Singhal et al., 2015; Íñigo et al., 2016; Zboromyrska
et al., 2016). Culture independent methods also often require
additional sample preparation to remove cellular debris (Íñigo
et al., 2016). Finally, while the test time is rapid and the
analysis cost per sample is cheap, initial equipment acquisition
is expensive (Tran et al., 2015).

More recently other mass spectrometry methods have been
developed that hold potential as fungal diagnostics. Rapid
evaporative ionization mass spectroscopy (REIMS) identifies
microbes based on their lipid content and was able to
identify cultured pathogenic Candida species with 98% accuracy
(Strittmatter et al., 2014). Infrared spectroscopy (Quintelas et al.,
2017) and Raman spectroscopy (Lorenz et al., 2017) are also
promising and require minimal sample preparation. Refinements
for direct sample analysis and high sensitivity in discriminating
pathogens in complex microbial communities would benefit the
diagnosis of fungal pathogen outbreaks.

LATERAL FLOW ASSAYS AND
BIOSENSORS

The Lateral Flow Assay (LFA) is widely used and usually comes in
a portable dipstick format. LFAs are normally designed to detect
antigens or host-produced antibodies specific to a pathogen of
interest and are often used to generate rapid test results in human
clinical settings (Marot-Leblond et al., 2004; Thornton, 2008;
Kozel and Wickes, 2014). LFAs have also been developed to test
for several wildlife diseases such as amphibian chytridiomycosis
(Dillon et al., 2017) and mammalian sylvatic plague (Abbott et al.,
2014). Recently, LFA based diagnostics have diversified to include
nucleic acid detection. Detection of a pathogen is indicated by a
color change as the target DNA or antigen is bound by the LFA
antibody or probe. The intensity of color change is proportional
to the amount of target present, enabling the development of
semi-quantitative tests using smartphone devices which have
been used in a range of applications including detection of fungal
toxins and antifungal resistance alleles (Lee et al., 2013). LFAs are
particularly attractive diagnostics for wildlife disease outbreaks
due to ease of use by non-specialists, minimally invasive sample
collection, portability and rapid result generation (∼10–30 min)
(Kozel and Wickes, 2014). The low cost of LFAs makes them
an ideal front line diagnostic. LFA drawbacks include long
development time, false positives and lower sensitivity compared
to other methods (Kozel and Burnham-Marusich, 2017). It is
therefore generally recommended that test results should be
corroborated using more sensitive lab-based diagnostics.

Microfluidic biosensors are also increasingly being applied
for point of care diagnosis of human pathogens, and could be
excellent candidates for application to wildlife epidemiology.
“Biosensor” applies to a wide range of devices which are able

to identify and quantify the amount of a target species or
biomolecule (Prakash et al., 2012). Microfluidic devices are often
chip based, and channel samples through a series of miniaturized
components including those for sample preparation, target
detection and data processing (Jayamohan et al., 2013; Pandey
et al., 2017). An ideal microfluidic biosensor diagnostic should
be cheap [for example, it is possible to make microfluidic devices
from wax and paper (Nilghaz et al., 2016)], easy to use by a non-
specialist, fast, and utilize non-invasive sample collection. This
has been demonstrated for several human pathogens, including
for Plasmodium falciparum (Fraser et al., 2018) and Escherichia
coli (Altintas et al., 2018) but requires further development and
validation for wildlife pathogens (Ray et al., 2017).

DATA COLLECTION AND COLLATION

New technology has enabled collection of greater quantities
of field data. The question then follows – how to manage,
interrogate and visualize it all? Wildlife epidemiological fieldwork
often takes place in resource poor environments and under time
sensitive conditions. It may be necessary to have multiple teams
sampling in different places, requiring easily collatable, consistent
sample collection and recording. EpiCollect (Aanensen et al.,
2009) [and, more recently developed, EpiCollect+ (Aanensen
et al., 2014)] is a novel open source data management
platform, compatible with any smartphone. Multiple phones
can be linked to a project, with geotagging capabilities.
Users, regardless of location, can view, edit, analyze or
download data with a smartphone. EpiCollect and EpiCollect+
are increasingly widely applied, including for: research into
controlling schistosomiasis in Mozambique (Phillips et al.,
2018); modeling malaria transmission patterns across four sub-
Saharan African countries (Marshall et al., 2016); mapping
the distribution of B. dendrobatidis in Taiwan (Fisher et al.,
2018); and investigating HIV infections in Zimbabwe (Gregson
et al., 2017). However so far, aside from its application to
B. dendrobatidis mapping in Taiwan, EpiCollect has not been
utilized for wildlife epidemiology or fungal pathogen research
despite presenting an excellent opportunity to greatly increase the
scope of epidemiological projects at minimal cost.

The question of how to visualize and present large volumes
of complex data has also become pressing. Genomic data in
particular can appear intimidating to non-experts, and yet in
the context of an epizootic it is important for a wide range
of personnel to be able to access and understand information
on pathogen evolution and genomes (Argimón et al., 2016).
Originally, sequence data from large distributed genotyping
projects was databased, analyzed and distributed through online
multilocus sequence typing (MLST) databases such as MLST2

and PubMLST3. Now, MLST databases are being superseded
by the next generation of online genotyping databases that
upload, map, analyze and display genome sequence data. In tools
such as WGSA4, the sequence data can be directly uploaded

2http://www.mlst.net
3http://www.pubmlst.org
4http://www.wgsa.net
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FIGURE 1 | Outline of tools applicable to different stages of a pathogen outbreak. Database integration: R packages include TransPhylo and TreeBreaker; online
databases include Microreact, EpiCollect, WGSA.net. Abbreviations: LAMP, loop mediated isothermal amplification; LFA, lateral flow assay; qPCR, quantitative
polymerase chain reaction.

via the web application along with metadata and interrogated
via an interactive user-friendly interface. While the number of
pathogens that can be analyzed in this manner is currently
limited, it is only a matter of time before online databases
for more, including key mycoses, are developed. Even if such
databases have not been created, the phylogeographic output of
pathogen genomic analyses can be displayed within the context
of its metadata in flexible online resources such as Microreact5.

Microreact is not alone in presenting a novel way of
approaching the management and visualization of genomic
and epidemiological data. TransPhylo is an R package that
computes the probability of an observed transmission tree
for a pathogen given the phylogenetic tree (even under
circumstances of incomplete sampling or an ongoing
epidemic) (Didelot et al., 2017). TreeBreaker has been built
for the evolutionary inference of phenotype distribution
and has already been used to investigate the association
between HIV genetic variation and human leukocyte
antigens (Ansari and Didelot, 2016; Didelot et al., 2017).
It is clear that fungal disease outbreak analysis increasingly
occupies an informatic space where the development
of open source toolkits that facilitate rapid analysis and
dissemination of diverse data types are central to effective disease
management.

5http://www.microreact.org

CONCLUSION

It is more urgent to monitor EFPs in wildlife now than ever
before. In recent years mycoses have ravaged swathes of species,
sometimes with catastrophic effects on biodiversity (Fisher et al.,
2012; O’Hanlon et al., 2018). Globalization resulting in species
redistribution and increased contact between hosts will inevitably
enhance disease transmission, posing environmental and public
health challenges on a worldwide scale. Specialists from a diverse
range of fields including veterinary professionals, researchers
and public health workers will need to work cooperatively and
vigilantly to mitigate future disease outbreaks. Fundamental
to any successful action plan will be the implementation
of rapid and reliable diagnostics to identify the aetiological
agent of disease, and subsequently monitor the spread of an
epidemic.

Effective monitoring of a disease outbreak will require a range
of diagnostic methods generating diverse data that subsequently
facilitates a holistic view of an epidemic, or epizootic (Figure 1).
Diagnostics should be reproducible, straightforward to use,
generate rapid results and be cost-effective. The choice of
diagnostic is also dependent on the stage of an outbreak
(Table 1). For example, in a scenario where the pathogen is
unknown, common methods that require a priori reference
data (e.g., reference spectra for mass spectrometry methods)
would not be informative. In such instances, rapid and culture-
free sequence based methods such as MinIon may be the
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TABLE 1 | Examples of proposed workflow applied to known emerging fungal pathogens of wildlife.

Pathogen (phylum) Host Emergence context Diagnostic workflow

Batrachochytrium
dendrobatidis
(Chytridiomycota)

Amphibians Worldwide emergence of a highly destructive and
undescribed pathogen, identified by isolation from infected
amphibians (Longcore et al., 1999; Skerratt et al., 2007;
Olson et al., 2013; Berger et al., 2016).

Pathogen culture Isolation of undescribed pathogen
Field-based rapid diagnostics and Lab-based
diagnostics Ability to rapidly identify presence of novel
pathogen required Whole Genome Sequencing Further
analysis to identify evolutionary context of novel
pathogen

Fusarium sp. (Ascomycota) Sea turtles Isolates of Fusarium, a known opportunistic pathogen,
recovered globally in the wild from dead eggs of
endangered sea turtles (Sarmiento-Ramírez et al., 2010,
2014).

Pathogen culture Isolation and identification of known
pathogen in a novel host Whole Genome Sequencing
Rapid diagnostics for the known pathogen already
exist, so progress to WGS to investigate host jump
drivers

Ophidiomyces ophiodiicola
(Ascomycota)

Snakes Severe declines of wild snake populations in Northeastern
United States are associated with skin lesions.
O. ophiodiicola has previously been isolated from captive
snakes in Europe but has not been observed in the
United States, or previously been associated with
population declines (Allender et al., 2011; Clark et al., 2011;
Lorch et al., 2016; Franklinos et al., 2017).

MinIon/SmidgIon Molecular identification of pathogen
associated with skin lesions Pathogen culture Use
sequencing data to inform pathogen culture and
isolation Field-based rapid diagnostics Lab diagnostics
for known pathogen O. ophiodiicola exist, so develop
rapid diagnostics for field monitoring

Aspergillus sydowii
(Ascomycota)

Coral Isolates of A. sydowii, a known opportunistic pathogen,
isolated from diseased coral showing evidence of
aspergillosis driven mortality. Further investigation shows
some coral to be asymptomatically infected (Smith et al.,
1996; Nagelkerken et al., 1997; Soler-Hurtado et al., 2016)

Pathogen culture Identification of an opportunistic
pathogen in a new host Whole Genome Sequencing
Rapid diagnostics for the known pathogen already
exist, so progress to WGS to investigate host jump
drivers and variance in virulence

Nosema sp. (Microsporidia) Bees Multiple Nosema species found to be associated with
colony collapses of various bee species. A potential driver,
pathogen pollution via the importation and range expansion
of commercial bumblebees and managed honeybees,
exists but the role of Microsporidia in colony collapses is
not equivocal (Ratnieks and Carreck, 2010; Paxton, 2015;
Brown, 2017).

MinIon/SmidgIon Identification of multiple closely
related pathogens associated with bee declines
Field-based rapid diagnostics and Lab-based
diagnostics Development of diagnostics able to
distinguish between candidate pathogens required to
enable ongoing monitoring

first port of call in order to construct a reference genome
(Farrer and Fisher, 2017; Langner et al., 2018). Once sequence-
based pathogen identification is complete, it may be easier to
isolate the fungus by inferring ideal culture conditions. At this
point development of DNA based rapid diagnostics such as
LAMP assays would be possible using the assembled whole
genome sequence data. Once cultured, reference mass spectra
in addition to development of LFAs for the pathogen could
be developed. When a novel rapid diagnostic is validated to
meet sensitivity and reproducibility requirements it can be
rolled out to practitioners in the field. Effective modeling of
disease dynamics and subsequent management strategies will
be dependent on integrating multiple data types collected from
different geographic regions as well as clinical microbiology
laboratories. This is best implemented by uploading field data
in real time from smart phone devices to online databases such
as EpiCollect+. Once online, data can easily be disseminated for
downstream analysis.

While diagnostics for fungal pathogens have come a long way,
a great deal more could be done to improve preparation for
future outbreaks. Funding more projects that characterize the
huge unknown fungal diversity will provide better genomic and
mass spectrometry databases that may enhance the way in which
EFPs are first classified through identifying pathogen-associated
characteristics using comparative approaches (Farrer and Fisher,
2017; Farrer et al., 2017). In this way, pathogens or pathogen

hotspots can be identified alongside an assessment of where, and
where not, the pathogen occurs (O’Hanlon et al., 2018). These
data can then be integrated into a “predemic” assessment of
the potential risk that a novel pathogen poses which, in turn,
could inform trans-national organizations such as the World
Organization for Animal Health (OIE) or the World Health
Organization (WHO) that are able to coordinate biosecurity-
relevant policy actions (Voyles et al., 2014). The development
of standardized, cost-effective diagnostics combined with greater
collaboration and data sharing will yield faster, more reliable
information that is relevant to the rapid assessment and response
to outbreaks. This will in turn enable more effective mitigation
strategies to be implemented and in doing so help to stem future
outbreaks of EFPs.
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