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East Coast fever (ECF) is a fatal sickness affecting cattle populations of eastern, central,

and southern Africa. The disease is transmitted by the tickRhipicephalus appendiculatus,

and caused by the protozoan Theileria parva parva, which invades host lymphocytes

and promotes their clonal expansion. Importantly, indigenous cattle show tolerance to

infection in ECF-endemically stable areas. Here, the putative genetic bases underlying

ECF-tolerance were investigated using molecular data and epidemiological information

from 823 indigenous cattle from Uganda. Vector distribution and host infection risk were

estimated over the study area and subsequently tested as triggers of local adaptation

by means of landscape genomics analysis. We identified 41 and seven candidate

adaptive loci for tick resistance and infection tolerance, respectively. Among the genes

associated with the candidate adaptive loci are PRKG1 and SLA2. PRKG1 was already

described as associated with tick resistance in indigenous South African cattle, due to

its role into inflammatory response. SLA2 is part of the regulatory pathways involved into

lymphocytes’ proliferation. Additionally, local ancestry analysis suggested the zebuine

origin of the genomic region candidate for tick resistance.

Keywords: local adaptation, landscape genomics, species distribution modelling, indigenous cattle, East Coast
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INTRODUCTION

East Coast fever (ECF) is an endemic vector-borne disease
affecting the species Bos taurus in eastern and central Africa.
ECF etiological agent is the emo-parasite protozoan Theileria
parva Theiler, 1904, vectored by the hard-bodied tick vector
Rhipicephalus appendiculatus Neumann, 1901. The disease is
reported to cause high morbidity and mortality in susceptible
indigenous populations coming from outside endemic areas and
among exotic breeds, thus undermining the livestock sector
development in the affected countries (Norval et al., 1992;
Olwoch et al., 2008; Muhanguzi et al., 2014).

Cape buffalo (Syncerus caffer Sparrman, 1779) is T. parva
native host, being its wild and asymptomatic reservoir (Oura
et al., 2011). The primordial contact between buffalo-derived
T. parva and domestic bovines probably occurred ∼4500
years before present (YBP), following B. taurus migration into
T. parva areal (Epstein, 1971). However, it is hard to define
if the host jump affected taurine- or indicine-like B. taurus
first, since no consensus can easily be reached to define
who among the subspecies B. t. taurus and B. t. indicus
was present in East Africa at that time (Freeman, 2006;
Hiendleder et al., 2008; Decker et al., 2014; Magee et al., 2014;
Mwai et al., 2015). In particular, African taurine migration
might have occurred sometime between ∼8,000 and 1,500
YBP (Magee et al., 2014; Mwai et al., 2015), and the most
ancient zebuine colonization wave is estimated to have occurred
between ∼4,000 and 2,000 YBP from the Asian continent,
as suggested by the first certain archaeological record dated
1,750 YBP (Freeman, 2006). Once T. parva spread to domestic
populations, coevolution between the parasite and the new
hosts likely led to the divergence between buffalo- (T. p.
lawracei) and cattle-specific (T. p. parva) parasite strains
(Hayashida et al., 2013; Sivakumar et al., 2014), and to the
appearance of indigenous herds able to survive and recover
from infection (Kabi et al., 2014; Bahbahani and Hanotte,
2015).

Most likely, such populations appeared (and still inhabit)
areas where environmental conditions guaranteed the constant
coexistence between vector, parasite, and domestic host. Such
a combination, together with the evolution of some sort of
resistance and/or tolerance (i.e., the capacity of reducing parasite
burden or attenuating the symptoms caused by a given parasite
burden, respectively), plausibly prompted the establishment of an
epidemiological state referred to as endemic stability, a condition
where hosts become parasite reservoirs while showing negligible
clinical symptoms (Kivaria et al., 2004; Råberg et al., 2007;
Gachohi et al., 2012; Laisser et al., 2017). However, to our

Abbreviations: Cd, Cattle density; D, Likelihood-ratio test statistic; |r|,
Absolute Pearson’s product-moment correlation coefficient; r2, Global linkage
disequilibrium decay; γ , Theileria parva parva infection risk in cattle; γc, Average
γ in the c sampling cell; πi, Genotype occurrence probability in the i-th individual;
ψ , Species occurrence probability;ψx , Species occurrence probability in the x pixel
of the landscape; ψR, Rhipicephalus appendiculatus occurrence probability; ψRx ,
Rhipicephalus appendiculatus occurrence probability in the x pixel of the landscape;
ψRc , Average ψR in the c sampling cell; ψS, Syncerus caffer occurrence probability;
ψSx , Syncerus caffer occurrence probability in the x pixel of the landscape.

knowledge no clear indication has been provided for a genetic
control prompting survival and recovery from ECF (Bahbahani
and Hanotte, 2015), although previous research identified the
role of host genetics on both tolerance and resistance strategies in
animals (Råberg et al., 2007), as in the case of B. taurus resistance
to tropical theileriosis (Glass and Jensen, 2007; Chaussepied
et al., 2010) and tick burden (Kim et al., 2017). Furthermore,
the identification of adaptive variation responsible for survival to
ECF would undoubtedly represent a sensible step forward toward
sustainability and productivity of local agroecosystems.

Here, we explicitly test the hypothesis that indigenous
host populations living in ECF-endemically stable areas are
locally adapted to ECF burden, and investigate for selection
signatures involved with ECF-tolerance/resistance. In particular,
local adaptation is known to be promoted by spatially varying
(i.e., divergent) natural selection (Kawecki and Ebert, 2004),
leading a population at its native site to present higher fitness
“than any other population introduced to that site” (Savolainen
et al., 2013). Such conditions appear to be met in East Africa,
where R. appendiculatus distribution is reported to be wide but
patchy (implying a spatially heterogeneous ECF burden on local
host populations; Olwoch et al., 2003, 2008), B. taurus presence
is long-standing and its distribution wide (Robinson et al., 2014),
and the introduction of allochthonous B. taurus populations into
ECF-endemic areas proved unsuccessful, with mortality rates
ranging 40–100% (Rubaire-Akiiki et al., 2006; Olwoch et al., 2008;
Gachohi et al., 2012).

By testing for significant associations between environmental
and genetic features of individuals (or populations) at
their sampling sites, landscape genomics aims to detect the
environmental drivers of divergent selection triggering adaptive
variation (Rellstab et al., 2015). Here, we relied on a landscape
genomics approach to search for signatures of local adaptation in
the genomes of indigenous B. taurus populations from Uganda,
where the concomitant occurrence of endemically stable areas
in the South-West and in the East of the country (Kivaria et al.,
2004; Rubaire-Akiiki et al., 2006), spatially varying selection
due to regional climatic differences (Kabi et al., 2014), and host
populations connected by high rates of gene flow (Kawecki and
Ebert, 2004; Stucki et al., 2017) is likely to have promoted local
adaptation to the disease even over short time scales, i.e., from
thousands of years to few decades (Stockwell et al., 2003; Crispo
et al., 2010; Fraser et al., 2011).

Since endemic areas are currently inhabited by indigenous
B. t. indicus and the B. t. indicus x African B. t. taurus crosses
sanga and zenga (Hanotte et al., 2002; Mwai et al., 2015), two
main hypotheses can be associated with the origin of local
adaptation to ECF: (i) at first adaptation appeared in local African
B. t. taurus populations and was then introgressed into zebu and
derived sanga and zenga crossbreds; alternatively, (ii) it appeared
in B. t. indicus, and then either evolved independently in zebuine
populations of eastern Africa, or was imported from the Indian
continent, where similar selective pressures are recorded (Singh
et al., 1993; Boulter and Hall, 1999).

To search for ECF-specific signatures of selection, we first
modelled R. appendiculatus potential distribution and T. p. parva
infection risk in Uganda to define the spatially varying selective
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pressure over the host genomes, and then used this information
to search for single-nucleotide polymorphisms (SNPs) potentially
involved into local adaptation to ECF through genotype-
environment association analysis. Subsequently, we annotated
candidate genes, and studied the ancestral origin of the identified
candidate genomic regions by means of local ancestry analysis to
shed light on the possible evolutionary origins of local adaptation.

MATERIALS AND METHODS

Ecological Modelling
R. appendiculatus occurrence probability (ψR) and T. p. parva
infection risk in cattle (γ ) were modelled and used as
environmental predictors into landscape genomics models.
Geographical variability in both ψR and γ was assumed to
describe the spatially heterogeneous selective pressure on cattle
genomes. Further, S. caffer occurrence probability (ψS) was
estimated and used in combination with ψR to model γ , as the
geographical proximity between Cape buffaloes and cattle herds
constitutes a factor for explaining ECF incidence. The following
three sections will describe data and methods used to estimate
ψR, ψS, and γ .

Raster Data
Bioclimatic variables (BIO) referring to the time span between
1960 and 1990 were collected from the WorldClim database
(v.1.4. release3) (Hijmans et al., 2005) at a spatial resolution of
30 arc-seconds and in the un-projected latitude/longitude
coordinate reference system (WGS84 datum). Altitude
information was collected from the SRTM 90m Digital
Elevation Database (v.4.1) (Jarvis et al., 2008), which provides
tiles covering Earth’s land surface in the WGS84 datum, at 90m
resolution at the equator. Altitude was used to compute terrain
slope through the function terrain implemented in the R package
raster (Hijmans, 2016). The 10-year (2001–2010) averaged
Normalized Difference Vegetation Index (NDVI) was derived
for 72 ten-day annual periods from the “eMODIS products”
(Supplementary Text 1) (US Geological Survey1), in theWGS84
datum, and at a resolution of 250m at the equator. A raster file
describing cattle density (number of animals/km2) was acquired
from the Livestock Geo-Wiki database (Robinson et al., 2014),
in the WGS84 datum, at a resolution of 1 km2 at the equator. A
raster file describing each pixel distance from the nearest water
source was obtained with the function distance within the R
package raster. The “Land and Water Area” dataset from the
Gridded Population of the World collection (GPV v.4) (CIESIN,
2016) was used to define water bodies in Uganda at a resolution
of 30 arc-seconds with WGS84 datum.

All raster files were transposed into Africa Albers Equal Area
Conic projection to guarantee a constant pixel size and meet
the main assumption of the statistical technique used to model
ψR and ψS, i.e., that each pixel presents the same probability to
be randomly sampled in order to detect the species occurrence

1US Geological Survey (USGS). Earth Resources Observation and Science (EROS)
Center - Famine Early Warning Systems Network (FEWS NET). Available at:
https://earlywarning.usgs.gov/fews.

(Merow and Silander, 2014). Raster files were standardised to the
same resolution (∼0.85 km2), origin, and extent. To avoid the
inclusion of potentially misleading background locations while
characterizing the occurrence probability of terrestrial species,
inland water surfaces were masked prior toψR andψS estimation
(Barve et al., 2011). QuantumGIS (v.2.16.2) (QGIS Development
Team, 2016) and the R package raster were used for raster files
manipulation.

Species Distribution Models
The R package Maxlike (Royle et al., 2012) was used to
model ψR and ψS over Uganda. Maxlike is able to estimate
species occurrence probability (ψ) from presence-only data, by
maximizing the likelihood of occurrences under the logit-linear
model (Merow and Silander, 2014):

ln

(

ψx

1− ψx

)

= β0 + βz (x)

where ψx denotes the species occurrence probability in the
x pixel of the landscape, β0 the model intercept (i.e., the
expected prevalence across the study area), β the vector of slope
parameters, and z(x) the vector of environmental variables for x.
Occurrence probability in x is derived from the inverse logit:

ψx =
eβ0+βz(x)

1+ eβ0+βz(x)

Fifty-one and 61 spatial records of R. appendiculatus and
S. caffer (Figures 1A,B) were obtained from a tick occurrence
database previously collected (Cumming, 1999b), and the Global
Biodiversity Information Facility (GBIF, 2012), respectively.

The most relevant environmental variables affecting
tick and Cape buffalo distributions were identified from
the literature. Specifically, the BIO variables representing
temperature/precipitation interaction in the most extreme
periods of the year were used to model R. appendiculatus
occurrence (Table 1 and Supplementary Figure 1) (Cumming,
1999a, 2002), while altitude, terrain slope, NDVI, distance to
water sources (Wd), and annual precipitation (BIO12) were
used to model the Cape buffalo distribution (Pettorelli et al.,
2011; Matawa et al., 2012; Naidoo et al., 2012). A Maxlike
regression analysis was applied to individuate the NDVI
values best predicting the available S. caffer occurrences, and
the period April 6–15 was retained for subsequent analyses
(Supplementary Figure 2). No variable depicting the top-down
regulatory effect of predators on buffalo populations was
considered, as bottom-up ecological mechanisms (like quantity
and quality of food resources) are argued to play the main role in
determining large herbivores distribution (Winnie et al., 2008).

Collinearity was checked prior to analyses by computing
pairwise absolute correlations (|r|) between variables, which were
considered collinear when |r| exceeded the suggested threshold
of 0.7 (Dormann et al., 2013). High collinearity was found
among BIO variables, which were then subjected to principal
components analysis (PCA) to obtain orthogonal predictors
for ψR.
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FIGURE 1 | Species occurrences and NextGen sampling scheme. Red crosses represents the spatial records used to estimate Rhipicephalus appendiculatus (A) and
Syncerus caffer (B) distributions over Uganda, as derived from Cumming (1999b) and GBIF (2012), respectively. Farms where cattle have been sampled to be

genotyped and tested for Theileria parva parva infection are represented with red circles (C). The grid scheme used to sample farms during the NextGen project is

shown on the background of each map (see main text), together with elevation.

TABLE 1 | Predictors used to model Rhipicephalus appendiculatus distribution.

Bioclim

variable

Definition

BIO8 Mean temperaturea of the wettest 3 months (quarter) of the year

BIO9 Mean temperature of the driest quarter

BIO10 Mean temperature of the warmest quarter

BIO11 Mean temperature of the coldest quarter

BIO16 Precipitationb of the wettest quarter

BIO17 Precipitation of the driest quarter

BIO18 Precipitation of the warmest quarter

BIO19 Precipitation of the coldest quarter

aTemperature was transformed from dC◦ to C◦ prior analyses.
bPrecipitation is expressed in millimetres.

Obtained components were tested into univariate and
multivariate R. appendiculatus distribution models. Particularly,
components explaining up to 95% of the original variance
(Jolliffe, 2002) were individuated and tested with different
combinations into multivariate models, leading to a total of 12
candidate R. appendiculatus distribution models. Conversely, all
the combinations of environmental variables were tested into
univariate up to penta-variate Cape buffalo distribution models,
resulting in a total of 31 candidate models for predicting S. caffer
potential distribution.

In both cases, Bayesian Information Criterion (BIC) was
used to select the best models (Aho et al., 2014). Bring’s
standardization (Bring, 1994; Cade, 2015) was applied on
predictors before parameters’ estimate, and the delta method was
implemented to compute the 95% confidence intervals around
the fitted ψRx and ψSx.

Infection Risk Model
In the context of the European Project NextGen2, 587 blood
samples from Ugandan indigenous B. taurus were tested for the
presence/absence of T. p. parva p104 antigen DNA sequence
(Kabi et al., 2014). Samples were collected and georeferenced
in correspondence of 203 farms distributed over a grid of 51

2http://nextgen.epfl.ch

cells covering the whole Uganda, with an average of 12 (±4 s.d.)
animals/cell, and three (±1 s.d.) animals/farm (Figure 1C).

ECF epidemiology is complex and determined by both
biotic and abiotic factors (Norval et al., 1992). Particularly,
R. appendiculatus occurrence (ψR) (Magona et al., 2008, 2011;
Gachohi et al., 2011; Muhanguzi et al., 2014), cattle density
(Cd) (Billiouw et al., 2002; Olwoch et al., 2008), potential
proximity with S. caffer (ψS) and the maximal temperature in the
warmest month of the year (BIO5) were considered to predict
γ . BIO5 was used to account for the possible limiting effect
of high temperatures on the parasite development into the tick
(Young and Leitch, 1981). Predictors’ values were obtained at
the geographical position of each animal (i.e., at farm locations),
checked for the presence of collinearity (as done for the species
distributionmodels) and outliers (Supplementary Figure 3), and
subsequently standardized following Bring’s procedure prior to
parameters’ estimation.

Infection risk for any i-th animal was modelled using a
binary mixed-effects logistic regression, whereψR, BIO5, Cd, and
ψS were specified as fixed effects, and random intercepts were
estimated for each farm to account for the possible influence of
local environmental conditions and management practices (e.g.,
differential use of acaricides), as well as unmeasured biological
features (e.g., breed- or individual-specific response to tick
burden) (Gachohi et al., 2012). Since geographical position of
samples was recorded at the farm-level, all the animals coming
from a given farm were characterized by equal environmental
values. Thus, the model can be written as:

ln

(

γij

1− γij

)

=
(

β0 + b0j
)

+ βz
(

j
)

b0j ∼ N
(

0, σ 2
b0

)

where γij represents T. p. parva infection risk for the i-th animal
in the j-th farm, β0 is the population intercept (Zuur et al., 2009),
β0+b0j is the j-th farm random intercept, β the vector of slope
parameters, and z(j) the vector containing the predictors’ values
as derived from the pixel where the j-th farm is located, equal
for all the animals in j. In this way, animals in j are expected
with the same predicted γ , so that infection risk in the j-th farm
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can be calculated using the population model from the previous
equation:

γj =
eβ0+βz(j)

1+ eβ0+βz(j)

Estimates of the parameters were obtained through the
Maximum Likelihood criterion using the glmer function
included in the R package lme4 (Bates et al., 2015).

Landscape Genomics
Molecular Datasets
The NextGen project genotyped 813 georeferenced indigenous
B. taurus from Uganda using the medium-density BovineSNP50
BeadChip (54,596 SNPs; Illumina Inc., San Diego, CA, USA).
Landscape genomics analyses were carried out on this set of
animals, which will be referred to as the “landscape genomics
dataset” (LGD). Samples were collected according to the spatial
scheme represented in Figure 1C, and encompassed 503 of the
individuals tested for T. p. parva infection. Quality control
(QC) procedures were carried out with the software PLINK

v.1.7 (Purcell et al., 2007). LGD was limited to autosomal
chromosomes and pruned for minor allele frequency (MAF)
<0.01, genotype call rates <0.95, and individual call rate
<0.9. Pairwise genome-wide identity-by-descent (IBD) values
were estimated, and one individual per pair showing IBD>0.5
was excluded from analyses to reduce the risk of spurious
associations due to unreported kinship (Turner et al., 2011).
To avoid excluding too many individuals from nearby areas,
spatial positions of the highlighted pairs were considered prior
to removal.

Population genetic structure of Ugandan cattle was studied
on the landscape genomics dataset merged with molecular data
from other European taurine, African taurine, zebuine, and sanga
populations retrieved from various sources and for different
geographical areas worldwide (Supplementary Table 1). This
extended dataset will be referred to as the “population structure
dataset” (PSD). PLINK was used to prune PSD for linkage
disequilibrium (LD) >0.1 with sliding windows of 50 SNPs
and step size of 10 SNPs (option –indep-pairwise 50 10

0.1), and to filter for the QC thresholds previously reported.

Population Structure Analysis
PSD was analysed with ADMIXTURE v.1.3.0 (Alexander
et al., 2009) for a dual purpose. Firstly, to provide genotype-
environment association tests with population structure
predictors in order to reduce the risk of false positive detections
(Schoville et al., 2012; Rellstab et al., 2015). To this aim, we
decided to use membership coefficients for the four-cluster
solution (K=4), as this was reported to be the best partition
based on the ADMIXTURE cross-validation index for the same
set of Ugandan individuals undergoing landscape genomics in
the present study (Stucki et al., 2017). Due to strong collinearity
(|r|>0.7) (Dormann et al., 2013) among the membership
coefficients of two ancestral components, a PCA was performed
trough the R function prcomp to obtain synthetic and orthogonal
population structure predictors. Secondly, to identify the main

gene pools present in Uganda in the context of a worldwide-
extended dataset, and therefore guide selection of proper
reference populations for local ancestry analysis.

Genotype-Environment Associations
We used the software SAMβADA v.0.5.3 (Joost et al., 2007;
Stucki et al., 2017) to test for associations between B. taurus
genotypes and ψR and γ at sampling locations. Given diploid
species and biallelic markers, SAMβADA runs three models per
locus, one for each possible genotype. Each model estimates the
probability πi for the i-th individual to carry a given genotype,
as a function of the considered environmental and population
structure variables:

ln

(

πi

1− πi

)

= β0 + βz (i)

and thus:

πi =
eβ0+βz(i)

1+ eβ0+βz(i)

Genotype-environment association tests were carried out
through a likelihood-ratio test comparing a null and an
alternative model for each genotype (Stucki et al., 2017).
Particularly, null models comprised the population structure
predictors alone, while alternative ones included population
structure predictors plus either ψR or γ . A genotype was
considered significantly associated with ψR and/or γ if the
resulting p-value associated with the likelihood-ratio test statistic
(D) was lower than the nominal significance threshold of
0.05 after Benjamini-Hochberg (BH) correction for multiple
testing (H0: D=0, αBH=0.05; Supplementary Texts 2–3). The R
function p.adjust was used to perform p-values corrections, and
predictors were centred prior to analysis to ease estimation of
model parameters.

Gene Annotation
Global linkage disequilibrium (LD) decay was estimated using
SNeP v.1.11 (Barbato et al., 2015) to define LD extent around
marker loci. A window of ±25 kbp (r2≈0.2) was then selected
around those SNPs associated with ψR and/or γ to annotate
genes in the Ensembl database release 87 (Aken et al., 2016).
Annotated genes were investigated for known biological function
according to the literature, and candidate genes identified based
on their pertinence with ECF local adaptation.

Local Ancestry
Molecular Dataset
Target population for local ancestry analysis comprised 102
indigenous Ugandan B. taurus individuals collected during
the NextGen sampling campaign (two animals sampled
per cell; Figure 1C), and genotyped with the BovineHD
BeadChip (777,961 SNPs; Illumina Inc., San Diego, CA, USA).
Reference populations (see Results section) were selected in
coherence with the major Ugandan gene pools identified by
the ADMIXTURE analysis (Supplementary Text 4). Target
and reference populations were pooled in a “local ancestry
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dataset” (LAD). Only autosomal SNPs passing the same filtering
parameters applied to LGD were retained for analysis.

PCAdmix Analysis
Local ancestry investigation allows to assign the ancestral origin
of a chromosomal region (window) given two or more reference
populations, and have been used to infer the admixture history of
closely related groups (Pasaniuc et al., 2009), identify signals of
adaptive introgression (Barbato et al., 2017), and highlight target
regions of recent selection (Tang et al., 2007). Here, PCADMIX

v.1.0 (Brisbin et al., 2012) was used to infer local genomic
ancestry of the Ugandan samples. Given the SNPs density present
in LAD (i.e., one SNP every ∼3.4 kbp, on average), we used 20
SNPs per window to obtain a window size comparable to the
optimal one suggested in Brisbin et al. (2012).

Beta Regression Analysis
Genomic windows hosting SNPs in linkage with the candidate
genes for local adaptation were identified and their ancestry
proportions computed per sampling cell (Figure 1C). Average
ψR and γ per cell values (hereafter ψRc and γc, respectively)
were derived using the zonal.stats function included in the R
package spatialEco (Evans, 2017). In order to test for significant
associations between ancestry proportions and ψRc and γc, a
beta regression analysis was performed using the R package
betareg (Cribari-Neto and Zeileis, 2010), according to the
model:

ln

(

µi

1− µi

)

= β0 + β1xi

ai ∼ (µi,φ)

where ai is the ancestry proportion observed in cell i, which is
assumed to derive from a beta distribution B(µi, φ) with mean
µi=E(ai) and precision parameter φ, xi is either average ψR or
γ in cell i, β0 and β1 are intercept and regression coefficient,
respectively. Expected ancestry proportion in i was calculated
through the inverse logit:

µi =
eβ0+β1xi

1+ eβ0+β1xi

Ancestry proportions were transformed prior to analysis
(Smithson and Verkuilen, 2006), and the Maximum Likelihood
criterion was used to estimate model parameters.

Ethics Statement
The NextGen sampling campaign was carried out during years
2011 and 2012, before Directive 2010/63/EU came into force
(i.e., 1 January 2013). Thus, all experimental procedures were
compliant with the former EU Directive 86/609/EEC, according
to which no approval from dedicated animal welfare/ethics
committee was needed for this study. The permission to carry
out the study was obtained from the Uganda National Council
for Science and Technology (UNCST) reference number NS 325
(Kabi et al., 2014). The permission to carry out the sampling at
each farm was obtained directly from the owners.

TABLE 2 | Maxlike results for Rhipicephalus appendiculatus distribution model.

Coefficient Estimate SE p-value ORa ORlow
b ORup

c

β0 −2.905 0.561 2.24E−07*** 0.055 0.018 0.164

PC1 0.796 0.303 8.56E−03** 2.217 1.224 4.014

PC2 0.822 0.37 2.62E−02* 2.275 1.102 4.698

PC3 −1.799 0.629 4.27E−03** 0.165 0.048 0.568

Point estimates (Estimate) of the standardized regression coefficients (Coefficient) are
reported on the logit scale together with their standard errors (SE), p-values and the
associated odds ratios (OR). A significant effect is reported with ***when the p-value (p)
associated to a regression coefficient is ≤ 0.001; **when 0.001 < p < 0.01; *when 0.01
< p < 0.05.
aOdds ratios associated with regression coefficients express the expected change in the
ratio ψR/(1–ψR), for a one standard deviation increase of the concerned predictor, holding
all the other predictors fixed at a constant value.
bOdds ratio 95% confidence interval (CI), lower bound.
cOdds ratio 95% CI, upper bound.

RESULTS

Ecological Modelling
Species Distribution Models
The first three principal components (PC1, PC2, and PC3)
accounted for more than 95% of the variance among the BIO
predictors, and were subsequently tested into multivariate
Maxlike models to estimate ψR. Particularly, PC1 (61%) was
mainly correlated with BIO variables linked to temperature
(BIO8, BIO9, BIO10, and BIO11), PC2 (19%) with precipitation
(BIO16, BIO17, BIO18, and BIO19), and PC3 (15%) with
both temperature and precipitation (BIO19 and BIO8)
(Table 1 and Supplementary Figure 5). The model employing
PC1, PC2, and PC3 was selected based on the BIC metric
(Supplementary Figure 6), with PC1, and PC2 showing a
significant positive effect on the tick distribution, and PC3 a
significant negative effect (Table 2) (H0: βi=0, α=0.05). The
model predicts low habitat suitability in the regions North of the
Lakes Kwania, Kyoga and Kojwere (0<ψR<0.1), and favourable
ecological conditions around Lake Victoria (0.4< ψR<1) and
South-West of Lake Albert (0.4<ψR<0.8), these latter separated
by a corridor of lower suitability (0<ψR<0.3) (Figure 2A and
Supplementary Figure 7).

No excessive collinearity was recorded among the predictors
for ψS. The best model according to the BIC metric included:
altitude, annual precipitation, average NDVI, and distance from
the nearest water source (Table 3 and Supplementary Figure 8).
The model predicts the highest habitat suitability (0.2<ψS<0.8)
in the near proximity of the water bodies (especially along
the White Nile in the North-West, the south-eastern
coasts of Lake Édouard, and the northern coasts of Lake
George), and in small areas near the Katonga Game Reserve
(Supplementary Figure 9).

Infection Risk Model
Following outliers inspection, ψR, Cd, and ψS were transformed
on the log10 scale to reduce the observed skewness in
the distributions (Supplementary Figure 3). No excessive
collinearity was observed among the model predictors (|r|<0.7).
All the explanatory variables except for Cd showed a significant
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FIGURE 2 | Predicted spatial distributions for ECF vector and infection risk in cattle. (A) Rhipicephalus appendiculatus occurrence probability (ψR) as predicted by the

selected distribution model. (B) Predicted Theileria parva parva infection risk (γ ). Colour from blue to red tones corresponds to increasing values of ψR and γ .

Sampled farms are represented with circles, and coloured according to ψR and γ values estimated at their geographical location.

TABLE 3 | Maxlike results for Syncerus caffer distribution model.

Coefficient Estimate SE p-value ORa ORlow
b ORup

c

β0 −9.130 0.790 6.46E−31*** 0.000 0.000 0.001

Altitude −1.095 0.293 1.90E−04*** 0.335 0.188 0.594

BIO12 −0.800 0.180 9.03E−06*** 0.449 0.316 0.639

NDVI 2.862 0.329 3.38E−18*** 17.499 9.181 33.343

Wd −1.996 0.434 4.23E−06*** 0.136 0.058 0.318

Point estimates (Estimate) of the standardized regression coefficients (Coefficient) are
reported on the logit scale together with their standard errors (SE), p-values and the
associated odds ratios (OR). Significant regression coefficients are highlighted with
***when their p-values (p) are ≤ 0.001; **when 0.001< p ≤ 0.01; *when 0.01< p ≤ 0.05.
aOdds ratios associated with regression coefficients express the expected change in the
ratio ψS/(1–ψS), for a one standard deviation increase of the concerned predictor, holding
all the other predictors fixed at a constant value.
bOdds ratio 95% confidence interval (CI), lower bound.
cOdds ratio 95% CI, upper bound.

effect (H0: βi=0, α=0.05) on infection risk. Particularly,
BIO5 and ψR showed a negative association with γ , while
ψS resulted positively associated (Table 4). Overall, northern
regions of Uganda present a low probability of infection
(0.1<γ<0.3). A similar range is observed southwards, in
the region comprised between Lake Kyoga, Lake Victoria,
Lake Albert and the eastern borders with Kenya. South-
westwards, infection probability increases following a positive
gradient from γ≈0.30 to γ≈0.70 in the most southern districts
(Figure 2B).

Landscape Genomics
Population Structure Analysis
After pruning for MAF, LD, genotype and individual call rates,
PSD counted 12,925 SNPs and 1,355 individuals, among which
743 fromUganda, 131 European taurine, 158 African taurine, 195
sanga from outside Uganda, and 128 zebu cattle.

Sanga and zebuine ancestries were the most represented
in Uganda. Particularly, on average the sanga component
constituted 76% (±13%) of the individual ancestries, whereas

TABLE 4 | Infection risk model results.

Coefficient Estimate SE p-value ORa ORlow
b ORup

c

βd0 −1.128 0.115 1.21E−22*** 0.324 0.258 0.406

log10(ψR) −0.219 0.105 3.72E−02* 0.803 0.654 0.987

BIO5 −0.432 0.104 3.18E−05*** 0.649 0.529 0.796

log10(Cd) 0.015 0.105 8.86E−01 1.015 0.826 1.247

log10(ψS) 0.246 0.111 2.67E−02* 1.279 1.029 1.590

Point estimates (Estimate) of the standardized regression coefficients (Coefficient) are
reported on the logit scale together with their standard errors (SE), p-values and the
associated odds ratios (OR). Significant regression coefficients are highlighted with
***when their p-values (p) are ≤0.001; **when 0.001 < p ≤ 0.01; *when 0.01 < p ≤ 0.05.
aOdds ratios associated with regression coefficients express the expected change in the
ratio γ/(1–γ), for a one standard deviation increase of the concerned predictor, holding all
the other predictors fixed at a constant value.
bOdds ratio 95% confidence interval (CI), lower bound.
cOdds ratio 95% CI, upper bound.
dPopulation intercept.

the zebuine counted 18% (±13%), with more than half of
the individuals showing a zebuine proportion >20%. Further,
∼3% of African and European taurine genomic ancestry
components was also observed (Supplementary Figure 4).
Genomic components showed spatial structure, the zebuine
gene pool being more present in the North-East of the
country, and the sanga in central and south-western Uganda
(Supplementary Figure 10) (Stucki et al., 2017). The African
taurine ancestry component was detectable as background signal
especially in the North-West and South-West, whereas European
introgression was mostly observed in the South-West.

The first three principal components (PC1, PC2 and PC3,
respectively) explained almost the totality of the variance within
ADMIXTURE Q-scores for K=4; PC1 split the dataset between
sanga and zebu gene pools, and PC2 and PC3 identified the
European and African taurine components, respectively. Thus,
these three PCs were used as population structure predictors to
account for population structure within LGD in the landscape
genomics models.
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Genotype-Environment Associations
After QC, LGD counted 40,886 markers and 743 animals (the
same in PSD) from 199 farms (4± 1 samples/farm), over 51 cells
(15± 5 samples/cell).

Sixty-three genotypes across 41 putative adaptive loci
resulted significantly associated with ψR (Figure 3A,
Supplementary Table 2, and Supplementary Figures 11–
12). Eight genotypes across seven loci resulted significantly
associated with γ (Figure 3B, Supplementary Table 3, and
Supplementary Figures 11–12).

Gene Annotation
Among the 41 loci significantly associated with ψR, 18 presented
at least one annotated gene in the Ensembl database in
close proximity (Table 5A and Supplementary Figure 12). Locus
BTA-113604-no-rs (hereafter BTA-113604) is located ∼12.5 kbp
apart from the Protein kinase, cGMP-dependent, type I (PRKG1)
gene on chromosome 26. PRKG1 was already proposed as a
candidate gene for tick resistance in South African Nguni cattle
(Mapholi et al., 2016).

Six out of the seven loci significantly associated with γ

presented at least one annotated gene within the selected window
size (Table 5B and Supplementary Figure 12). Two SNPs (ARS-
BFGL-NGS-110102 and ARS-BFGL-NGS-24867, hereafter ARS-
110102 and ARS-24867, respectively) were proximal to the Src-
like-adaptor 2 (SLA2) gene on chromosome 13. SLA2 human
orthologue encodes the Src-like-adaptor 2, a member of the
SLAP protein family which regulates the T and B cell-mediated
immune response (Holland et al., 2001). Given T. p. parva
known ability to promote the proliferation of T and B cells
(Baldwin et al., 1988; Dobbelaere and Küenzi, 2004), we
considered SLA2 as a second candidate gene for ECF local
adaptation.

Local Ancestry
PCAdmix Analysis
Based on the gene pools revealed by ADMIXTURE analysis in
Ugandan indigenous cattle, we performed PCADMIX analysis
using one zebuine (Tharparkar; THA) and one African taurine
(Muturu; MUT) reference (Supplementary Text 4). After QC,
LAD counted 689,339markers and 128 individuals (102Ugandan
cattle individuals, 13 THA, and 13 MUT).

For the genomic window hosting BTA-113604 (i.e., window
13 on chromosome 26; Supplementary Figure 13), 79 out of
the 204 haploid individuals targeted showed MUT ancestry,
while 125 THA ancestry (Supplementary Figure 14). For the
genomic window hosting ARS-110102 and ARS-24867 (i.e.,
window 145 on chromosome 13; Supplementary Figure 13), 63
haploid individuals were assigned to MUT, while 141 to THA
(Supplementary Figure 14).

Beta Regression Analysis
Tharparkar ancestry at window 13 of chromosome 26 showed a
positive and significant association with ψRc (H0: βi=0, α=0.05)
(Table 6 and Figure 4), while no significant association was
found between the Muturu/Tharparkar ancestries at window 145
of chromosome 13 and γc (Supplementary Text 5).

DISCUSSION

East Coast fever represents a major issue for livestock health
in sub-Saharan countries (Nene et al., 2016), with over one
million cattle deceased every year, and an annual economic
damage of 168–300millionUSD (Norval et al., 1992;McLeod and
Kristjanson, 1999).

ECF incidence is highly correlated with the geographical
distribution of the tick vector R. appendiculatus, whose

FIGURE 3 | Manhattan plots of the genotype-environment associations. X-axis reports chromosomal position of the tested SNPs on B. taurus chromosomes. Y-axis
reports the test statistic p-values (p) for the associations with Rhipicephalus appendiculatus occurrence probability (A), and with Theileria parva parva infection risk

(B). P-values are displayed for each genotype after the Benjamini-Hochberg (BH) correction, and on the –log10 scale. Nominal significance threshold (αBH = 0.05) is

displayed as a red line, and significant p-values are highlighted in green.
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TABLE 5 | Gene annotation for the loci significantly associated with ψR (A) and γ (B).

SNP ID Genotype(s) Chr. Position Annotated gene Biological function

A

ARS-BFGL-NGS-110339 AA,AC 1 111,495,891 Uncharacterized (111,445,583–111,512,320) -

Hapmap34409-BES7_Contig244_858 AA 1 120,149,924 Glycogenin-1 (GYG1;
120,090,467–120,127,892)

Energy metabolism and angiogenesis

(Lancaster et al., 2014)

Hapmap34056-BES2_Contig421_810 AG,GG 1 138,178,130 DnaJ heat shock protein family (Hsp40)

member C13 (DNAJC13;
138,139,496–138,305,752)

Heat shock proteins (Kodiha et al.,

2012)

ARS-BFGL-NGS-32909 CC,AC 5 67,846,632 5′-nucleotidase domain containing 3 (NT5DC3;
67,791,379–67,850,986)

UP-regulated genes for iron content

in Nelore cattle (Wellison Jarles da

Silva, 2015)

Uncharacterized (67,852,917–67,930,472) –

ARS-BFGL-NGS-37845 AG,AA 5 48,633,731 Methionine sulfoxide reductase B3 (MSRB3;
48,563,806–48,743,354)

Affect ear floppiness and morphology

in dogs (Boyko et al., 2010)

BTA-46975-no-rs CG,GG 5 68,220,538 Thioredoxin reductase 1. cytoplasmic

(TXNRD1; 68,239,611–68,302,678)
Milk production and oocyte

developmental competence in cattle

(Gilbert et al., 2012; Ghorbani et al.,

2015)

Hapmap51626-BTA-73514 AA,AG 5 48,834,486 Inner nuclear membrane protein Man1

(LEMD3; 48,773,272–48,844,474)
Height in pigs and cattle (Frantz et al.,

2015)

UA-IFASA-6140 AG,AA 7 102,472,846 ST8 alpha-N-acetyl-neuraminide

alpha-2.8-sialyltransferase 4 (ST8SIA4;
102,456,175–102,555,855)

Metabolism of milk glycoconjugates in

mammals (Song et al., 2016)

BTB-00292673 AA 7 4,953,801 Phosphodiesterase 4C (PDE4C;
4,927,816–4,939,026)

Fertility (Glick et al., 2011)

Member RAS oncogene family (RAB3A;
4,944,325–4,950,010)

Calcium exocytosis in neurons

(Brondyk et al., 1995)

MPV17 mitochondrial inner membrane protein

like 2 (MPV17L2; 4,950,069–4,953,210)
Immune system (Brütting et al., 2016)

Hapmap31116-BTA-143121 AA 8 75,973,285 Epoxide hydrolase 2 (EPHX2;
75,908,165–75,977,482)

In vitro maturation. fertilization and

culture on bovine embryos (Smith

et al., 2009)

L-gulonolactone oxidase (GULO;
75,984,696–76,010,699)

Involved into vitamin C production in

pigs (Hasan et al., 2004)

ARS-BFGL-NGS-104610 AG 11 104,293,559 Surfeit 6 (SURF6; 104,296,135–104,302,894) Housekeeping gene (Magoulas et al.,

1998)

Mediator complex subunit 22 (MED22;
104,305,076–104,311,650)

Gestation length in Nelore cattle

(Matos et al., 2013)

Ribosomal protein L7a (RPL7A;
104,311,808–104,315,125)

Oocyte developmental competence

in cattle (Gilbert et al., 2012)

Uncharacterized (104,315,458–104,334,584) -

Small nucleolar RNA (SNORD24;
104,312,993–104,313,063)

May act as methylation guide for RNA

targets (Kiss-László et al., 1996)

Small nucleolar RNA (SNORD36;
104,314,558–104,314,622)

2’-O-ribose methylation guide

(Galardi et al., 2002)

Small nucleolar RNA (snR47;
104,313,768–104,313,828)

2’-O-methylation of large and small

subunit rRNA (Samarsky and

Fournier, 1999)

Small nucleolar RNA (SNORD24;
104,312,260–104,312,334)

As above

Small nucleolar RNA (SNORD36;
104,314,159–104,314,231)

As above

BTB-00839408 AG. AA 22 18,978,658 Metabotropic glutamate receptor 7 precursor

(GRM7; 18,740,484–19,647,747)
Might be related to parasite

resistance (Xu et al., 2016)

ARS-BFGL-NGS-39898 GG 22 1,319,636 Novel gene (1,310,943–1,311,505) –

ARS-BFGL-BAC-31319 AA 23 4,847,028 3-hydroxymethyl-3-methylglutaryl-CoA lyase

like 1 (HMGCLL1; 4,7 09,297–4,906,605)

Involved into ketogenesis (Tetens

et al., 2015)

(Continued)
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TABLE 5 | Continued

SNP ID Genotype(s) Chr. Position Annotated gene Biological function

Hapmap51155-BTA-11643 AA 24 38,086,180 DLG associated protein 1 (DLGAP1;
37,994,546–38,293,883)

Role in neurological development and

behavioral disorders (Sorbolini et al.,

2015)

Hapmap57868-rs29020458 AA 24 22,746,291 Dystrobrevin alpha (DTNA;
22,445,691–22,767,026)

Formation and stability of synapses

(Sjö et al., 2005)

U6 spliceosomal RNA (U6;
22,759,777–22,759,879)

Participate into spliceosome

formation (Marz et al., 2008)

BTA-113604-no-rs AA 26 8,356,096 Protein kinase. cGMP-dependent. type I

(PRKG1; 6,906,081–8,343,629)
Tick resistance in South African Nguni

cattle (Mapholi et al., 2016)

ARS-BFGL-NGS-18933 GG 29 34,650,967 Opioid binding protein/cell adhesion molecule

like (OPCML; 34,554,780–35,085,038)
Role in opioid receptor function in

humans (Smith et al., 1993)

B

BTB-01298953 AA 4 54,930,726 Protein phosphatase 1 regulatory subunit 3A

(PPP1R3A; 54,866,421–54,906,096)
Glycogen synthesis in humans and

mice (Savage et al., 2008)

BTA-33234-no-rs GG 13 66,291,997 DLG associated protein 4 (DLGAP4;
66,204,671–66,292,988)

Neuronal membrane protein (Takeuchi

et al., 1997)

Myosin light chain 9 (MYL9;
66,306,260–66,314,230)

May participate in regulation of

muscle contraction (Kumar et al.,

1989)

ARS-BFGL-NGS-112656 AA 13 66,336,246 Myosin light chain 9 (MYL9;
66,306,260–66,314,230)

As above

TGFB induced factor homeobox 2 (TGIF2;
66,334,680–66,351,481)

Transcriptional repressor (Imoto et al.,

2000)

ARS-BFGL-NGS-110102 GG 13 66,370,867 TGFB induced factor homeobox 2 (TGIF2;
66,334,680–66,351,481)

As above

TGIF2-C20orf24 readthrough (C13H20orf24
alias RIP5; 66,362,562–66,369,978)

May promote apoptosis in humans

(Zha et al., 2004)

Src-like-adaptor 2 (SLA2;
66,368,694–66,395,549)

Downregulation of T and B

cell-mediated responses (Holland

et al., 2001)

ARS-BFGL-NGS-24867 AA 13 66,395,465 Src-like-adaptor 2 (SLA2;
66,368,694–66,395,549)

As above

NDRG family member 3 (NDRG3;
66,398,147–66,594,149)

Linked to prostate cancer cells

growth (Lee et al., 2016)

Hapmap39482-BTA-36746 CC,AC 15 40,279,014 TEA domain transcription factor 1 (TEAD1;
40,303,805–40,482,346)

Transcription, factor promoting

apoptosis in mammals (Landin Malt

et al., 2012)

Single-nucleotide polymorphisms in linkage disequilibrium with genes annotated in the Ensembl database are reported with the genotype(s) originally highlighted by SAMHβADA, the
membership chromosome (Chr) and physical position in base pairs on the chromosome, as well as the names and biological function of the annotated genes, as found for a reference
species. Physical position of the annotated genes is reported in brackets after the gene names (fifth column).

occurrence is an essential precondition for T. p. parva infection
in cattle (Olwoch et al., 2008). However, with the present study
we show that areas with predicted poor habitat suitability for
the tick can present higher infection rates when compared with
regions highly suitable for the tick (Figure 2 and Table 4). Such
observation suggests that additional factors may contribute in
explaining the observed T. p. parva infection patterns; here, we
suggest three possible hypotheses.

First, environmental temperature may play a pivotal role in
defining T. p. parva infection risk. Piroplasm development within
the tick vector appears to be hindered by temperatures >28◦C
persisting even for short time periods (as less as 15 days) (Young
and Leitch, 1981). Therefore, areas exceeding this temperature
threshold might present a reduced infection risk due to the low
success in parasite development and transmission. The presence

of such a temperature constraint might concur in explaining the
low infection risk predicted in the regions such as North-East
of Lake Victoria, where a highly suitable habitat is predicted
for R. appendiculatus, but where temperature can reach 30◦C
in the warmest month of the year (January) (Hijmans et al.,
2005). Coherently, in the south-western area, environmental
temperature ranges between ∼8 and 28◦C during the whole
year (Hijmans et al., 2005), and the predicted risk of infection
increases possibly reflecting a higher efficiency in the parasite
transmission despite the predicted decrease in tick occurrence
probability.

Second, the most suitable areas for the vector (Figure 2A)
overlap those regions where the highest levels of zebuine ancestry
were recorded (Supplementary Figure 10). B. t. indicus is known
to be more effective in counteracting tick infestation than

Frontiers in Genetics | www.frontiersin.org 10 October 2018 | Volume 9 | Article 385

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Vajana et al. Local Adaptation to East Coast Fever

TABLE 6 | Beta regression results.

Coefficient Estimate SE p-value ORa ORlow
b ORup

c

β0 0.144 0.194 4.56E−01 1.155 0.790 1.689

ψRc 1.663 0.768 3.04E−02* 5.275 1.171 23.767

φ 2.029 0.346

Association between the inferred proportion of THA ancestry at window 13 (chromosome
26) with average Rhipicephalus appendiculatus occurrence probability per sampling cell
(ψRc ). Point estimates (Estimate) of the intercept (β0 ), the regression coefficient associated
to ψRc and the precision parameter ψ are reported on the logit scale together with their
standard errors (SE). P-values and odds ratios (OR) are shown for β0 and ψRc. Significant
regression coefficients are highlighted with ***when their p-values (p) are ≤ 0.001; **when
0.001 < p≤ 0.01; *when 0.01 < p ≤ 0.05.
aOdds ratio 95% confidence interval (CI), lower bound.
bOdds ratio 95% CI, upper bound.

B. t. taurus (Brizuela et al., 1996; Wambura et al., 1998; Mattioli
et al., 2000; Jonsson et al., 2014), and is consequently less
affected by tick-borne micro-organisms (Mattioli et al., 2000),
including T. p. parva, whose effects are known to be dose-
dependent (Brossard and Wikel, 1997; Nene et al., 2016). The
core adaptive response to tick burden was identified as the
inflammatory reaction triggered by the tick bite at the cutaneous
level (Mattioli et al., 2000), which activates a strong white
cells-mediated cutaneous reaction (Willadsen, 1980) affecting
attachment, salivation, engorgement, and ultimately limiting the
inoculation of tick-borne microorganisms (Wikel and Bergrnan,
1997). Therefore, the low infection risk observed in the most
suitable areas for R. appendiculatus (e.g., north-eastern districts)
might be explained by the coexistence of putative tick-resistant
zebuine-like populations (Bahbahani et al., 2017), along with
a sub-optimal environmental niche for the parasite. Further,
we speculate that cattle populations living in regions suitable
for T. p. parva development, but with reduced predicted tick
burden (e.g., the southern districts; Figures 2A,B), could have
not undergone a tick-specific adaptation, and therefore show
higher infection rates.

Third, the R. appendiculatus distribution model does not
explicitly consider anthropogenic factors like tick-control
campaigns on a local and temporal basis. However, adequate tick-
control campaigns are rarely undertaken in Uganda (Ugandan
National Drug Authority), and evidence of R. appendiculatus
developing drug resistance has been recorded (Vudriko et al.,
2016).

Despite T. p. parva infection being observed in the
northern farms of Uganda, a low tick occurrence probability
is predicted for the same regions (ψR<0.1; Figure 2A). A
possible explanation is the lack of R. appendiculatus records from
these areas, and the consequent bias in the tick distribution
model (Cumming, 1999b; Olwoch et al., 2003). Moreover,
predicted infection risk in the North (γ<0.3; Figure 2B) may
be inflated by the inverse relationship between γ and ψR as
estimated by the infection risk model (Table 4), and care is
recommended regarding the infection risk predictions for these
areas.

Local adaptation is prone to evolve in host-parasite systems,
given the strong (and often reciprocal) selection imposed by one

FIGURE 4 | Expected zebuine proportion of the genomic region candidate for

tick resistance. The association inferred through beta regression between

Tharparkar ancestry (THA) and average Rhipicephalus appendiculatus
occurrence probability per cell (Table 6) was used to generalize expected

zebuine ancestry over Uganda. Colour key corresponds to predicted THA

proportion, with increasing values from the blue to the red tones. Sampled

farms are represented with circles, and coloured according to the predicted

THA proportion at their geographical location.

species to the other, the reduced role of phenotypic plasticity, and
the small number of genes with strong effects usually involved
(Kawecki and Ebert, 2004). In a spatial context, a gradient of
selection intensity (i.e., spatially varying selection) is required
over the landscape, with coexistence areas showing higher
selective pressure being candidate for local adaptive responses
to evolve. In the present case, host distribution encompasses
regions having different selective pressure in terms of both
tick and parasite burdens (Figures 2A,B). Regions with higher
T. p. parva selective pressure (implying tick occurrence with
effective transmission) are those where the host population is
expected to be locally adapted to infection; whereas, regions
with higher tick burden (but lower infection risk) are those
where tick-resistant populations are expected to occur. Following
this rational, we suggest that the putative adaptive component
sustaining ECF-tolerance/resistance might be due to a synergic
mechanism involving specific adaptations to R. appendiculatus
and T. p. parva.

Specifically, adaptations to tick burden could be found along
the Lake Victoria coasts, where a higher selective pressure linked
to R. appendiculatus is predicted (Figure 2A). We identified 41
loci across 18 chromosomes significantly associated with ψR

(Figure 3A), with the majority of putative loci under selection
found on chromosomes 5 (nine loci), 1 (seven loci), and 15
(three loci). Interestingly, the large genomic region hosting the
associated SNPs on chromosome 5 (Supplementary Table 2)
overlaps a genomic region which has been previously associated
with several traits in tropical cattle, including parasite resistance
(Porto-Neto et al., 2014). Among the genes in LD with the
associated markers, we found PRKG1 on chromosome 26
(Table 5A and Supplementary Figure 13), a gene coding for
an important mediator of vasodilation, and already reported
as possibly involved in tick resistance in the South African
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Nguni breed (see Table 6 in Mapholi et al., 2016). Importantly,
vasodilatation is a classical feature of the inflammatory response
(Sherwood and Toliver-Kinsky, 2004; Surks, 2007), the core
mechanisms underlying tick resistance, as discussed before. None
of the remaining annotated genes was easily attributable to
adaptation to tick burden (Table 5A).

A specific adaptive response toward T. p. parva infection
may have evolved in south-western Uganda, possibly due
to ecological conditions more suitable for parasite survival
and successful transmission, and the presence of a more
tick-susceptible cattle population (Supplementary Figure 10).
Theileria parva pathogenicity is linked to its ability to invade
host lymphocytes, and promoting their transformation and
clonal expansion through the activation of several host-cell
signalling pathways (McKeever and Morrison, 1990; Dobbelaere
andKüenzi, 2004; Chaussepied et al., 2010). Here, we found seven
markers significantly associated with γ , two of which (ARS-
110102 and ARS-24867) included within SLA2 genic region
on chromosome 13 (Supplementary Figure 13). SLA2 is known
to be involved with signal transduction in B and T cells,
playing a role into downregulation of humoral and cell-mediated
immune responses, and thus contributing to a correct activation
and proliferation of lymphocytes (Holland et al., 2001; Kazi
et al., 2015; Marton et al., 2015). SLA2 antagonistic effect on
lymphocytes proliferation would suggest its putative involvement
in opposing the diffusion of T. p. parva in the organism.

Replication studies performed in areas with analogous host
characteristics and selective gradients, like Kenya or Tanzania
(Giblin, 1990; Gachohi et al., 2012; Laisser et al., 2017), and
following the same methodology applied here would allow to
validate the generality of the adaptive patterns highlighted,
as well as to further control for the confounding effects of
population structure and unconsidered collinear environmental
features (Rellstab et al., 2015). Further, experimental validation
will be essential to finally verify the physiological effect of
the identified genes, and thus considering targeted breeding
schemes.

Despite the genetic proximity between Muturu and some
tick resistant indigenous B. t. taurus breeds of western Africa
(i.e., N’Dama) Mattioli et al., 2000; Ibeagha-Awemu et al.,
2004, local ancestry of the genomic region candidate for
tick resistance was predominantly assigned to Tharparkar
(Figure 4, Table 6, and Supplementary Figure 14). This result
is in agreement with the known resistance of zebuine cattle
to ticks, and suggests the origin of tick resistance in eastern
Africa either from imported Indian populations or within
local zebuine-like populations after migration from India.
Conversely, no easily-interpretable indication was obtained for
the genomic region candidate for tolerance to T. p. parva
infection. Indeed, neither Tharparkar nor Muturu ancestries
displayed a significant association with infection risk, while
an additional local ancestry analysis revealed a positive
correlation with the European taurine Hereford ancestry when
tested versus Tharparkar (Supplementary Text 5). Although
surprising, this result would rather point toward a taurine origin
of infection tolerance/resistance. However, local ancestry results
are inherently reference-dependent (Barbato et al., 2017), and

further analyses with different African taurine and zebuine
references will be required to disentangle the evolutionary origin
of the genomic regions under scrutiny.

Besides the identification of candidate regions for local
adaptation, our results revealed allochthonous introgression
from Europe within the local gene pools of indigenous
Ugandan B. taurus populations (Supplementary Text 4 and
Supplementary Figure 10). This finding is consistent with
the generalized loss of agro-biodiversity reported worldwide
(FAO, 2015; Mwai et al., 2015), and stresses the importance
of monitoring local genetic resources to conserve unique
adaptations, including tolerance and/or resistance to tropical
endemic diseases.

Despite limitations in both epidemiological and species
occurrence data, the proposed methodological framework
allowed the identification of two candidate genes putatively
associated with local adaptation to East Coast fever. Overall, the
combination of ecological modelling (i.e., species distribution
and infection risk models) and landscape genomics showed
the potential of detecting candidate genomic regions showing
adaptive significance, and can assist in unravelling the adaptive
patterns underlying any kind of symbiotic relationship like host-
parasite interactions, mutualism, and commensalism, as well as
competition among species.
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