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In recent years, it has been increasingly clear that long noncoding RNAs (lncRNAs)

play critical roles in many biological processes associated with human diseases.

Inferring potential lncRNA-disease associations is essential to reveal the secrets

behind diseases, develop novel drugs, and optimize personalized treatments. However,

biological experiments to validate lncRNA-disease associations are very time-consuming

and costly. Thus, it is critical to develop effective computational models. In this study,

we have proposed a method called BPLLDA to predict lncRNA-disease associations

based on paths of fixed lengths in a heterogeneous lncRNA-disease association network.

Specifically, BPLLDA first constructs a heterogeneous lncRNA-disease network by

integrating the lncRNA-disease association network, the lncRNA functional similarity

network, and the disease semantic similarity network. It then infers the probability of

an lncRNA-disease association based on paths connecting them and their lengths

in the network. Compared to existing methods, BPLLDA has a few advantages,

including not demanding negative samples and the ability to predict associations

related to novel lncRNAs or novel diseases. BPLLDA was applied to a canonical

lncRNA-disease association database called LncRNADisease, together with two popular

methods LRLSLDA and GrwLDA. The leave-one-out cross-validation areas under

the receiver operating characteristic curve of BPLLDA are 0.87117, 0.82403, and

0.78528, respectively, for predicting overall associations, associations related to novel

lncRNAs, and associations related to novel diseases, higher than those of the two

compared methods. In addition, cervical cancer, glioma, and non-small-cell lung cancer

were selected as case studies, for which the predicted top five lncRNA-disease

associations were verified by recently published literature. In summary, BPLLDA exhibits

good performances in predicting novel lncRNA-disease associations and associations

related to novel lncRNAs and diseases. It may contribute to the understanding of

lncRNA-associated diseases like certain cancers.

Keywords: disease similarity, lncRNA similarity, path with limited length, Gaussian interaction profile kernel

similarity, leave-one-out cross validation, ROC curve
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INTRODUCTION

It is known that there are about 20,000 protein-coding genes,
consisting of less than 2% of the human genome (Bertone et al.,
2004; Claverie, 2005). Most DNA regions in the human genome
are either not transcribable or transcribed into noncoding RNAs
(ncRNAs), which are deemed to be transcriptional noises in

a long period of time. However, many recent studies have
suggested that ncRNAs play key regulatory roles in many
important biological processes such as cell proliferation (Esteller,
2011). Based on their sizes, ncRNAs can be divided into long
ncRNAs (lncRNAs) (Pauli et al., 2011) and small ncRNAs
such as microRNAs (miRNAs) (Farazi et al., 2013), transfer
RNAs (tRNAs) (Birney et al., 2007), and Piwi-interacting RNAs
(piRNAs) (Li et al., 2013). LncRNAs are ncRNAs of lengths
greater than 200 nucleotides (Mercer et al., 2009; Mitchell
Guttman et al., 2013). Compared to protein-coding, RNAs,

lncRNAs are less conservative among species (Harrow et al., 2012;
Cabili et al., 2016), and have a relatively low expression level,
more tissue-specific patterns (Guttman et al., 2010), and longer
but less exons (Chen, 2015). Recently, more and more lncRNAs
have been identified in eukaryotes from nematodes to human
beings due to the advancement in sequencing technologies and
computational methods (Awan et al., 2017).

Previous studies have suggested that lncRNAs are critical
in cell proliferation, cell differentiation, chromatin remodeling,
genome splicing, epigenetic regulation, transcription, and many

other important biological processes (Guttman et al., 2009).
The dysregulation of lncRNAs has also been associated with
the development of many diseases, including diabetes (Pasmant
et al., 2011), cardiovascular diseases (Congrains et al., 2012),
HIV (Zhang et al., 2013), neurological disorders (Johnson,
2012), and several cancers such as lung cancer (Ji et al., 2003;
Zhang et al., 2003), breast cancer (Barsyte-Lovejoy et al., 2006;
Gupta et al., 2010), and prostate cancer (Kok et al., 2002; Szell
et al., 2008). As a result, it has become a hot topic recently
to identify lncRNA-disease associations, and many important
disease-associated lncRNAs have been discovered. For example,
breast cancer metastasis patients have about 100 to 2,000 times
higherHOTAIR expression than that of the healthy people, based
on a quantitative PCR study (Gupta et al., 2010). HOTAIR is also
related to metastasis and progression of other cancers, such as
liver cancer (Hrdlickova et al., 2014), lung cancer (Li et al., 2014),
colorectal cancer (Res, 2011; Maass et al., 2014), gastric cancer
(Li et al., 2014; Liu et al., 2014), and so on. Therefore, HOTAIR
is deemed to be a potential biomarker for cancers (Maass et al.,
2014). In addition, the dysfunction of lncRNA H19 is found in
several diseases, such as bladder cancer (Ariel et al., 2000). The
downregulation of H19 also significantly reduces the clonogenic
and anchored nondependent growth of breast cancer cells based
on a knock-down study (Barsyte-Lovejoy et al., 2006).

Known lncRNA-disease associations have been stored in a
few databases, including LncRNADisease (Chen et al., 2013),
Lnc2Cancer (Ning et al., 2016), MNDR (Wang et al., 2013), and
so on, which are the basis for predicting novel associations using
efficient computational methods. The computational models to
predict lncRNA-disease associations are generally divided into

two categories including machine learning-based models and
network-based models (Chen et al., 2017). Machine learning-
based models usually train predictors from features based on
training samples and test their performances based on cross-
validation or independent data. For example, Chen et al.
developed Laplacian Regularized Least Squares for LncRNA-
Disease Association (LRLSLDA) for inferring candidates of
disease-associated lncRNAs by applying a semisupervised
learning framework (Chen and Yan, 2013). LRLSLDA assumes
that similar diseases tend to correlate with functionally
similar lncRNAs, and vice versa. Thus, known lncRNA-disease
associations and lncRNA expression profiles are combined to
prioritize disease-associated lncRNA candidates by LRLSLDA,
which does not require negative samples (i.e., confirmed
uncorrelated lncRNA-disease associations). However, LRLSLDA
faces difficulty in optimizing the best model parameters. Zhao T.
et al. (2015) proposed a naïve Bayesian classifier, which exploits
various information related to cancer-associated lncRNAs,
including regulome, genome, transcriptome, andmultiomic data.
As a result, 707 potential cancer-related lncRNAs were identified.
However, this method requires negative samples, which are
usually unknown. In contrast, network-based methods take the
advantage of the lncRNA-disease association network, the disease
similarity network, and the lncRNA similarity network to study
the connectivity of lncRNAs and diseases. For instance, Sun et al.
(2014) developed RWRlncD, which infers potential lncRNA-
disease associations by a random walk with restart (RWR) on
the lncRNA functional similarity network. However, the method
cannot predict lncRNAs related to novel diseases (i.e., diseases
with no known associated lncRNA). Gu et al. (2017) provided
a global network random walk model for predicting lncRNA-

disease associations (GrwLDA), which performs RWR on both
lncRNA functional similarity network and disease similarity
network. However, GrwLDA also faces a dilemma in optimizing
model parameters.

In this study, we have proposed a novel method BPLLDA to
predict lncRNA-disease associations based on paths connecting
them with limited lengths in a heterogeneous network.
Specifically, BPLLDA first establishes a heterogeneous network
consisting of the known lncRNA-disease association network, the
disease similarity network, and the lncRNA similarity network. It
then calculates the association between a disease and an lncRNA
by the paths connecting them and their lengths. BPLLDA does
not require negative samples and is capable of predicting novel
diseases and novel lncRNAs.

MATERIALS AND METHODS

lncRNA-Disease Associations
The lncRNA-disease association data were retrieved from
the database LncRNADisease (Chen et al., 2013; Sun et al.,
2014). After eliminating identical lncRNA-disease entries from
distinct pieces of evidence, there were 352 experimentally
confirmed lncRNA-disease associations, containing 156
lncRNAs and 190 diseases (see Supplementary Figure 1

and Supplementary Tables 2, 3). We summarize some basic
characteristics (e.g., the average degree) of the dataset in Table 1.
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TABLE 1 | The basic characteristics of the lncRNA-disease association dataset.

Total of

lncRNAs

Total of

diseases

Total of

associations

Average degree of

lncRNAs

Average degree of

diseases

Max degree of

lncRNAs

Max degree of

diseases

Min degree of

lncRNAs/diseases

156 190 352 2.3 1.9 41 15 1

We then established the lncRNA-disease association network,
whose adjacency matrix is denoted by LD. That is, LD

(

i, j
)

is
set to 1 if lncRNA l (i) is associated with disease d

(

j
)

, and 0 if
otherwise. Before presenting the details of BPLLDA, we first
introduced two important notations, namely, disease semantic
similarity and lncRNA functional similarity.

Disease Semantic Similarity
The Disease Ontology (DO) is an open source ontology of human
diseases (http://www.disease-ontology.org/). The terms in DO
are diseases or disease-correlated concepts, which are organized
in a directed acyclic graph (DAG). On the basis of Disease
Ontology, Li et al. (2011) provided an R package called DOSim
to calculate the disease semantic similarity, and we adopted this
method in this study. Specifically, we used a symmetric matrix
SS to record semantic similarity values among diseases, in which
SS
(

i, j
)

represents semantic similarity between disease d (i) and
d
(

j
)

as calculated by DOSim. We plot the distribution of SS in
Figure 1A. There are overall 36100 (190 × 190) values, among
which 21148 values (58.58%) are 0 s.

lncRNA Functional Similarity
We adopted a similar method to Sun et al. for measuring the
functional similarity between two lncRNAs (Wang et al., 2010;
Sun et al., 2014). Specifically, suppose lncRNA l (i) is associated
with a disease set Di =

{

dik
∣

∣ 1 ≤ k ≤ m} and lncRNA l
(

j
)

is
associated withDj =

{

djl
∣

∣ 1 ≤ l ≤ n}. Themethod first calculates
the semantic similarity between a disease, say di1, and a disease
group, say Dj, as

SIM
(

di1,Dj

)

=
(

SS
(

di1, d
))

.

Then, the functional similarity between l (i) and l
(

j
)

is calculated
as

FS
(

l (i) , l
(

j
))

=

∑

1≤k≤m SIM
(

dik,Dj

)

+
∑

1≤l≤n SIM
(

djl,Di

)

m+ n
.

It is clear that the lncRNA functional similarity matrix FS is
symmetric. Similarly, we plot the distribution of FS in Figure 1B.
There are 24336 (156× 156) values, among which 8662 (35.59%)
are 0 s.

Gaussian Interaction Profile Kernel
Similarity for lncRNAs
There are many zeros in FS due to the fact that lncRNA-disease
associations are rather incomplete. To avoid such scenario, we
introduced the Gaussian interaction profile kernel similarity
between lncRNA l (i) and l (i) as

GL
(

l (i) , l
(

j
))

= exp
(

−γl
∥

∥IP
(

l (i)
)

− IP
(

l
(

j
))∥

∥

2
)

,

where IP
(

l (i)
)

and IP
(

l
(

j
))

are the vectors in the ith and jth
row of the lncRNA-disease association matrix LD. The parameter
γl is a regulation parameter of the kernel bandwidth with

γl = γ ′
l/

(

1
ln

∑ln
i=1

∥

∥IP
(

l (i)
)∥

∥

2
)

, where ln is the number of

all lncRNAs studied and γ ′
l is usually set to 1 according to van

Laarhoven et al. (2011).

Gaussian Interaction Profile Kernel
Similarity for Diseases
Similarly, we defined the Gaussian interaction profile kernel
similarity for diseases as

GD
(

d (i) , d
(

j
))

= exp
(

−γd
∥

∥IP
(

d (i)
)

− IP
(

d
(

j
))∥

∥

2
)

with γd = γ
′
d/

(

1
dn

∑dn
i=1

∥

∥IP
(

d (i)
)
∥

∥

2
)

, where IP
(

d (i)
)

and

IP
(

d (i)
)

are the binary vectors in the ith and jth column of the
adjacency matrix LD and dn is the numbers of diseases. Clearly,
GD is also symmetric.

Integrated Similarity Between lncRNAs and
Between Diseases
We integrated disease semantic similarity (lncRNA functional
similarity) with the Gaussian interaction profile kernel similarity
for diseases (lncRNAs) as follows:

DS
(

d (i) , d
(

j
))

=

{

GD
(

d (i) , d
(

j
))

if d(i) ∈ NS or d(j) ∈ NS

SS
(

d (i) , d
(

j
))

otherwise

LS
(

l (i) , l
(

j
))

=

{

GL
(

l (i) , l
(

j
))

if l(i) ∈ NF or l(j) ∈ NF

FS
(

l (i) , l
(

j
))

otherwise

where NS is the set of diseases with no sematic similarity with any
other disease, and NF is the set of lncRNAs with no functional
similarity with any other lncRNAs. By definition, DS and LS are
symmetric. We plot the distributions of DS and LS in Figure 2,
in which the numbers of 0 s are greatly reduced compared to SS
and FS.

BPLLDA
The general workflow of BPLLDA is illustrated in Figure 3, in
which a heterogeneous network is first constructed with nodes
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FIGURE 1 | The distributions of disease semantic and lncRNA functional similarity. (A) Disease semantic similarity (SS) distribution. (B) lncRNA functional similarity (FS)

distribution. The x-axis indicates the intervals of similarity values and the y-axis indicates the numbers of values in the interval. The actual values are also marked

above the histograms.

FIGURE 2 | The distributions of integrated similarities. (A) Distribution of the integrated similarity for diseases (DS). (B) Distribution of the integrated similarity for

lncRNAs (LS). The x-axis indicates the intervals of similarity values and the y-axis indicates the numbers of values in the interval. The actual values are also marked

above the histograms.

denoting lncRNAs or diseases. For any two diseases d (i) and d(j),
the weight of the edge between them is defined to be

WD
(

d (i) , d
(

j
))

=

{

0 if DS
(

d (i) , d
(

j
))

< T

DS
(

d (i) , d
(

j
))

otherwise
,

where T is a threshold value to avoid all diseases being connected
(You et al., 2017). Similarly, the weight of the edge between two

lncRNAs l (i) and l
(

j
)

is

WL
(

l (i) , l
(

j
))

=

{

0 if LS
(

l (i) , l
(

j
))

< T

LS
(

l (i) , l
(

j
))

otherwise
.

The weight of an edge between an lncRNA l (i) and a disease d
(

j
)

is LD
(

l (i) , d
(

j
))

, that is, the weight is 1 if they are associated
and 0 if otherwise. We tuned T from 0.1 to 0.5 with interval 0.1
by a leave-one-out cross-validation (LOOCV) process and finally
chose T to be 0.2.

For a given lncRNA node l (i) and a disease node d
(

j
)

, we
performed a depth-first search (Hopcroft and Tarjan, 1974) to
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FIGURE 3 | The flowchart of BPLLDA. It consists of three steps: (1) disease similarity measurement, (2) lncRNA similarity measurement, and (3) the BPLLDA algorithm.

identify all noncyclic paths between them. To avoid long paths,
we restricted the maximum number of edges in the path to be
τ . Similarly, we performed an LOOCV search for τ being 1
to 4 and decided τ to be 3. Intuitively, l (i) and d

(

j
)

tend to
be associated if there are many paths with high edge weights
connecting them. Therefore, a score measuring their association
confidence can be defined using the paths together with a decay
function Fdecay

(

pw
)

:

score(l(i), d(j))=

n
∑

w=1

(

∏

pw

)Fdecay(pw)

where p =
{

p1, p2, . . . , pn
}

is the set of paths connecting l (i) and
d
(

j
)

, and
∏

pw denotes the product of the weights of all edges

in the path pw. Generally speaking, long paths will have little
contribution to the total score. So the decay function Fdecay

(

p
)

is denoted as

Fdecay
(

pw
)

= α × len
(

pw
)

,

where the decay factor α is set to 2.26 based on a previous study
(Ba-Alawi et al., 2016; You et al., 2017) and len

(

pw
)

is the length
of the path pw. Clearly, the higher the score(l (i) , d

(

j
)

), the more
likely that l (i) and d

(

j
)

will be associated.

Analysis of the Computational Complexity
We analyzed the time complexity and space complexity of
BPLLDA. Recall that there are m diseases and n lncRNAs with
m > n. The algorithm mainly consists of two steps. First, a
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heterogeneous network was constructed, for which two matrices
were established. So the time complexity and space complexity
are O

(

m2
)

respectively in this step. Then, BPLLDA infers the
probability of an lncRNA-disease association based on paths
with limited lengths in the network. We performed a depth-first
search to identify all noncyclic paths between nodes and the time
complexity is O((m+ n)2) on each node. Because there are m
diseases, the time complexity is O

(

m3
)

in this step. And the space
complexity is O (mn) because we need to only save the prediction
result. In summary, the time complexity and space complexity are
at most O

(

m3
)

and O
(

m2
)

, respectively, for BPLLDA.

RESULTS AND DISCUSSIONS

Performance of BPLLDA in Predicting
lncRNA-Disease Associations
We applied BPLLDA to a known lncRNA-disease association
data LD, together with two popular methods GrwLDA (Gu et al.,
2017) and LRLSLDA (Chen and Yan, 2013). The reason why
we selected the two methods for comparison is that they can
both predict novel lncRNAs and novel diseases. Specifically, two
LOOCV methods namely global LOOCV and local LOOCV
were adopted to evaluate their performances. Global LOOCV
sets each experimentally confirmed lncRNA-disease association
as a test sample once, but local LOOCV sets all associations of
an lncRNA or those of a disease as test samples once. Other
known lncRNA-disease associations are considered as training
samples. The performances of the methods were evaluated
by the area under the receiver operating characteristic (ROC)

curve (AUC).
As a result, we plotted the global LOOCV ROC curves and

their associated AUCs of BPLLDA, GrwLDA, and LRLSLDA,
respectively, in Figure 4. BPLLDA has an AUC of 0.87117,
and outperformed LRLSLDA (0.81952) and GrwLDA (0.78246).
Similarly, we plotted the local LOOCV ROC curves and AUCs
of the three methods on novel lncRNAs in Figure 5. As can
be seen, BPLLDA has an AUC of 0.82403, about 8 and 18%
higher than that of LRLSLDA (0.76542) and GrwLDA (0.69817),
respectively. Finally, the AUC of BPLLDA (0.78528) in predicting
novel diseases is significantly higher than that of LRLSLDA
(0.65812) with an increase of 19% andGrwLDA (0.65802) with an
increase of 20% (see Figure 6). In summary, our method is better
than LRLSLDA andGrwLDA in both lncRNA-disease association
prediction and prediction related to novel lnRNAs and diseases.

Meanwhile, we list in Table 2 the precision versus the
prediction scores in the global LOOCV. In general, the higher the
score, the more likely the disease is related to the lncRNAs. The
association confidence is greater than 0.9 when the prediction
score is larger than 21.58.

Effects of Parameters
There are two model parameters in BPLLDA, including the
maximum path length L and the weight threshold T. We tested
the effects of these parameters on AUCs for LOOCV with L (L =

2, 3, 4) and T (T = 0.2, 0.4, 0.5), and we list the results in
Table 3. As can be seen, the parameter L has significant effects
on the performance of BPLLDA, and the best AUC is achieved at

FIGURE 4 | Performance evaluation of BPLLDA, LRLSLDA, and GrwLDA in

predicting lncRNA-disease associations by global LOOCV.

FIGURE 5 | Performance evaluation of BPLLDA, LRLSLDA, and GrwLDA in

predicting novel lncRNA-associated diseases.

L = 3. In contrast, T has only minor effects on the performance
of our method. To further illustrate this, we fixed L to be 3, and
let T vary from 0.1 to 0.5 with interval 0.1 (see Table 4). The
AUC values are between 0.85568 and 0.87117, only about 2%
difference.

Effects of Gaussian Interaction Profile
Kernel Similarity for lncRNAs and Diseases
Disease similarity and lncRNA similarity are calculated by
integrating disease semantic similarity, lncRNA functional
similarity, as well as the Gaussian interaction profile kernel
similarity for lncRNAs and diseases. We tested the effects of the
Gaussian interaction profile kernel similarity for lncRNAs and
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FIGURE 6 | Performance evaluation of BPLLDA, LRLSLDA, and GrwLDA in

predicting novel disease-associated lncRNAs.

TABLE 2 | Precision of BPLLDA on global LOOCV.

Prediction

scores

1.002∼9.929 10.028∼17.601 21.580∼24.391 25.778∼37.757

Precision >= 0.134 >= 0.446 >= 0.933 1

TABLE 3 | Tuning two model parameters: the maximum path length L and the

weight threshold T by LOOCV.

L 2 3 4

T = 0.2 0.83903 0.87117 *

T = 0.4 0.82043 0.85568 0.81205

T = 0.5 0.81761 0.85959 0.80830

The value in each cell represents LOOCV AUC.

*T = 0.2 and L = 4 was not calculated because it takes more than 48 h.

TABLE 4 | The effects of T on AUC when fixing L = 3.

T 0.1 0.2 0.3 0.4 0.5

AUC 0.87102 0.87117 0.86889 0.85568 0.85959

diseases on LOOCV with L = 3 and T = 0.2 with four settings:
(1) without using both the Gaussian interaction profile kernel
similarity for lncRNAs and diseases; (2) only using the Gaussian
interaction profile kernel similarity for lncRNAs; (3) only using
the Gaussian interaction profile kernel similarity for diseases; (4)
using both the Gaussian interaction profile kernel similarity for
lncRNAs and diseases. The results are summarized in Table 5.
As can be seen, the two similarities indeed have a significant
influence on the LOOCV AUC. The best AUC (0.87117) was
achieved when both similarities were adopted into our model.

TABLE 5 | The effects of the Gaussian interaction profile kernel similarity for

lncRNAs and diseases on LOOCV.

No GD and GL GL GD GL and GD

0.78718 0.79036 0.80924 0.87117

The value in each cell represents LOOCV AUC.

TABLE 6 | The top five lncRNA candidates predicted for cervical cancer, glioma,

and non-small-cell lung cancer.

Disease lncRNA Evidence

Cervical cancer MEG3 LncRNADisease

(Zhang J. et al., 2016)

Cervical cancer PVT1 LncRNADisease

(Yang et al., 2016)

Cervical cancer CDKN2B-AS1 LncRNADisease

(Zhang D. et al., 2016)

Cervical cancer HOTAIR LncRNADisease

(Huang et al., 2014)

Cervical cancer GAS5 LncRNADisease

(Cao et al., 2014)

Glioma H19 LncRNADisease

(Shi et al., 2014)

Glioma MALAT1 LncRNADisease

(Ma et al., 2015)

Glioma PVT1
(Zou et al., 2017)

Glioma HOTAIR LncRNADisease

(Ke et al., 2015)

Glioma GAS5 LncRNADisease

(Zhao X. et al., 2015)

Non-small-cell lung cancer H19 LncRNADisease

(Zhang E. et al., 2016)

Non-small-cell lung cancer MEG3 LncRNADisease

(Lu et al., 2013)

Non-small-cell lung cancer HOTAIR LncRNADisease

(Liu X. H. et al., 2013)

Non-small-cell lung cancer PVT1 LncRNADisease

(Yang et al., 2014)

Non-small-cell lung cancer CDKN2B-AS1 LncRNADisease

(Nie et al., 2015)

Case Studies on Predicted
lncRNA-Disease Associations
It is known that lncRNAs play critical roles in the development
of many diseases. To further evaluate the ability of BPLLDA
in inferring novel lncRNA-disease associations, we used all
known lncRNA-disease associations in LD as training data and
assessed the potential of predicted associations by our model.
The novel lncRNA-disease associations were ranked according to
the predicted score of BPLLDA. To validate the predictions, the
newest LncRNADisease database was used, which curated 1766
distinct known lncRNA-disease associations among 888 lncRNAs
and 328 diseases. Specifically, we listed the top five lncRNAs
associated with three diseases, including cervical cancer, glioma,
and non-small-cell lung cancer (NSCLC), respectively, in Table 6
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and the paths of cervical cancer in Supplementary Table 1. For a
better view, we also plotted the associations of the three diseases
and their top 10 predicted lncRNAs in Figure 7.

Cervical cancer is a cancer in the cervix and its early symptoms
are hard to uncover. As the second common cancer among
women all over the world, cervical cancer causes numerous
incidents of death in developing countries (Forouzanfar et al.,
2011). It was reported that there are approximately 500,000
novel cases of cervical cancer diagnosed annually (Tewari
et al., 2014). Therefore, there is an urgent need to explore its
biological mechanisms and develop effective treatment strategies.
Interestingly, all of the top five novel cervical cancer-associated
lncRNAs predicted by BPLLDA were confirmed by the newest
updates of the LncRNADisease database. For example, the top
predicted lncRNA, MEG3, can inhibit tumor growth in cervical
cancer by regulating miR-21-5p, which is regarded as a tumor
suppressor (Zhang J. et al., 2016). Serum PVT1 can accurately
differentiate patients with cervical cancer from healthy controls
(Yang et al., 2016). The high expression of HOTAIR is involved
in cervical cancer progression and may be a potential target for
diagnosis and gene therapy (Huang et al., 2014).

Glioma is considered to be the most common malignant
tumor in the central nervous system and is characterized by
aggressive blood vessel formation (Khasraw et al., 2010). Despite
the continuous improvement of various treatments, including
surgery, radiotherapy, and chemotherapy, the overall survival of
patients with glioma is only about 12–14 months after diagnosis
(Wang et al., 2015). The poor treatment effect is mainly due to
the prominent tumor angiogenesis. Similarly, BPLLDA achieved
good performance in predicting glioma-associated lncRNAs as
all top five predicted lncRNAs were confirmed by the newest
LncRNADisease database and literature. For example, it was
shown that H19 regulates the development of glioma by deriving
miR-675 and offers an essential clue to understanding the
key role of the lncRNA-miRNA functional network in glioma
(Shi et al., 2014). The expression level of lncRNA MALAT1 is
significantly correlated with the overall survival of patients with
glioma and can be used as a convictive prognostic biomarker for
patients with glioma (Ma et al., 2015). In addition, Gas5 inhibits
tumor malignancy by downregulating miR-222, which may be a
promising treatment for glioma (Zhao X. et al., 2015).

FIGURE 7 | Network view of the top 10 predicted lncRNAs for cervical cancer,

glioma, and non-small-cell lung cancer.

NSCLC, including adenocarcinoma and squamous cell
carcinoma, is a predominant form of lung cancer (Siegel
et al., 2012). Despite the progress in clinical and experimental
oncology, the prognosis remains difficult. More and more
evidence indicates that ncRNAs could take part in the
pathogenesis of NSCLC. Similarly, the top five NSCLC-correlated
lncRNA candidates predicted by BPLLDA were validated by
literature. For example, HOTAIR is significantly upregulated in
NSCLC tissues and partly regulates cell invasion and metastasis
of NSCLC by HOXA5 downregulation (Liu X. H. et al.,
2013). So, HOTAIR is a potential therapeutic target for NSCLC
intervention. In addition, patients with NSCLC with high PVT1
expression have a significantly lower overall survival rate than
those with low PVT1 expression (Yang et al., 2014). Finally,
the expression of CDKN2B-AS1 (ANRIL) might damage cell
proliferation and leads to cell apoptosis in vitro and in vivo (Nie
et al., 2015), which is linked to the survival of patients with
NSCLC.

Case Studies on Predicted Novel Diseases
and Novel lncRNAs
To test the ability of BPLLDA in predicting novel disease-
associated lncRNAs, all known lncRNA-disease associations
correlated with a disease were eliminated. We selected two
diseases: colorectal cancer and breast cancer (see Table 7). As can

TABLE 7 | The top five novel disease-correlated lncRNA candidates predicted for

colorectal cancer and breast cancer.

Disease lncRNA Evidence

Colorectal cancer H19 lncRNADisease (Tsang et al., 2010)

Colorectal cancer CDKN2B-AS1 lncRNADisease (Sun et al., 2016)

Colorectal cancer PVT1 lncRNADisease (Ping et al., 2018)

Colorectal cancer MEG3 lncRNADisease (Zhu et al., 2018)

Colorectal cancer MALAT1 lncRNADisease (Ji et al., 2014)

Breast cancer H19 lncRNADisease (Vennin et al., 2015)

Breast cancer CDKN2B-AS1 lncRNADisease (Xu et al., 2017)

Breast cancer PVT1 lncRNADisease (Guan et al., 2007)

Breast cancer MALAT1 lncRNADisease (Chou et al., 2016)

Breast cancer B2 SINE RNA Unconfirmed

TABLE 8 | The top five novel disease-correlated lncRNA candidates predicted for

H19 and HOTAIR.

lncRNA Disease Evidence

H19 Prostate cancer lncRNADisease (Zhu et al., 2014)

H19 Tumor (Matouk et al., 2007)

H19 Cancer lncRNADisease (DeBaun et al., 2002)

H19 Breast cancer lncRNADisease (Vennin et al., 2015)

H19 Decreased myogenesis Unconfirmed

HOTAIR Cancer lncRNADisease (Gupta et al., 2010)

HOTAIR Breast cancer lncRNADisease (Xue et al., 2016)

HOTAIR Hepatocellular carcinoma lncRNADisease (Yang et al., 2011)

HOTAIR Prostate cancer lncRNADisease (Zhang et al., 2015)

HOTAIR Tumor Unconfirmed
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be seen, all top five predicted lncRNAs associated with colorectal
cancer were confirmed by the newest LncRNADisease database,
whereas four of the top five lncRNAs associated with breast
cancer were also validated by the database or literature.

Similarly, to test the ability of BPLLDA in predicting
novel lncRNA-associated diseases, all known lncRNA-disease
associations correlated with an lncRNA were removed. As two
case studies, we selected two lncRNAs, H19, and HOTAIR (see
Table 8). In both cases, four of the top five associated diseases
were validated by the database and literature. In summary,
BPLLDA achieves favorable performances in predicting novel
disease-associated lncRNAs and novel lncRNA-associated
diseases.

CONCLUSIONS

Many studies have demonstrated that lncRNAs are essential in
many physiological processes related to human diseases. They
could be important biomarkers for the diagnosis, prognosis,
and treatment of these diseases. However, the biological
experiments to validate lncRNA-disease associations are not
only time consuming but also costly, which promotes the
need for developing computational prediction models. In this
study, we proposed BPLLDA, a novel computational method to
predict lncRNA-disease associations based on simple paths with
limited lengths in a heterogeneous network consisting of the
lncRNA similarity network, the disease similarity network, and
the lncRNA-disease association network. BPLLDA outperforms
two compared methods in prediction accuracy, and most top
predicted novel lncRNA-disease associations were validated by
literature. However, there are a few limitations of BPLLDA. First,

available experimentally validated lncRNA-disease associations

are rather incomplete. Secondly, lncRNA similarity is computed
on the basis of known lncRNA-disease associations. There is
a problem of sparseness in the disease semantic similarity and
lncRNA functional similarity, which is remedied by integrating
the Gaussian interaction profile kernel similarity for diseases
and lncRNAs, respectively. So, BPLLDA may result in biased
predictions. Finally, the distance-decay function in BPLLDA is
relatively simple and could be improved by machine learning
methods.
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