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The term “field cancerisation” describes the formation of tissue sub-areas highly
susceptible to multifocal tumourigenesis. In the earlier stages of cancer, cells may
indeed display a series of molecular alterations that allow them to proliferate faster,
eventually occupying discrete tissue regions with irrelevant morphological anomalies.
This behaviour recalls cell competition, a process based on a reciprocal fitness
comparison: when cells with a growth advantage arise in a tissue, they are able to
commit wild-type neighbours to death and to proliferate at their expense. It is known
that cells expressing high MYC levels behave as super-competitors, able to kill and
replace less performant adjacent cells; given MYC upregulation in most human cancers,
MYC-mediated cell competition is likely to pioneer field cancerisation. Here we show
that MYC overexpression in a sub-territory of the larval wing epithelium of Drosophila
is sufficient to trigger a number of cellular responses specific to mammalian pre-
malignant tissues. Moreover, following induction of different second mutations, high
MYC-expressing epithelia were found to be susceptible to multifocal growth, a hallmark
of mammalian pre-cancerous fields. In summary, our study identified an early molecular
alteration implicated in field cancerisation and established a genetically amenable model
which may help study the molecular basis of early carcinogenesis.

Keywords: MYC, field cancerisation, multifocality, Drosophila, TSGs, cell competition

INTRODUCTION

The molecular events underlying cancer initiation are largely unknown. It is commonly accepted
that most cancers are monoclonal in origin, evolving from a single cell whose lineage accumulates in
time multiple molecular insults (Michor et al., 2004; Vogelstein et al., 2013; Feinberg et al., 2016). In
particular, driver mutations, which provide cells with a growth advantage and are positively selected
during lineage evolution, are generally associated with clonal expansion and are frequently found
in pre-malignant lesions (Maley et al., 2004; Lawrence et al., 2014; Curtius et al., 2017). In the 1950s,
Slaughter introduced the concept of “field cancerisation”: while studying oral cancers, he observed
that they recurred more frequently adjacent to a resected tumour (Slaughter et al., 1953). Therefore,
field cancerisation was defined as the process leading to the formation of a tissue sub-territory
which, despite a normal appearance, bears a series of alterations that make cells more susceptible
to malignant transformation than wild-type neighbours, giving rise to multifocal cancers (Wodarz
et al., 2004). Successive studies, also fostered by the development of post-genomic technologies
(Metzker, 2010), have demonstrated that this phenomenon is not specific to the oral mucosa,
being rather a common feature of epithelial organs (Braakhuis et al., 2003; Dakubo et al., 2007;
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Nonn et al., 2009; Zeki et al., 2011; Jakubek et al., 2016; Lu et al.,
2016; Park et al., 2016; Abdalla et al., 2017; Castven et al., 2017).

Although the interest in deciphering cancer’s molecular
signature is obvious, it may be quite difficult to understand
what mutations favour and maintain the malignant phenotype:
a surprising number of driver mutations is indeed present in
pre-cancerous tissues, also in those that are not likely to evolve
into a frank malignancy (Hofstad et al., 1996; Martincorena
et al., 2015; Kato et al., 2016). This suggests that several
alterations are evolutionarily neutral and do not impact cell’s
phenotype, maybe depending on their temporal occurrence (de
Bruin et al., 2014), the tissue context (Galandiuk et al., 2012;
Gagneur et al., 2013; Vermeulen et al., 2013) and the genetic
background (Chandler et al., 2013). In human tissues, a number
of genetic alterations have been associated with field cancerisation
(Papadimitrakopoulou et al., 1996; Braakhuis et al., 2002; Santos-
Garcia et al., 2005; Haaland et al., 2009; Trujillo et al., 2011;
Mohan and Jagannathan, 2014), and genetic/genomic instability
(Ellsworth et al., 2004; Zaky et al., 2008; Giaretti et al., 2012),
mitochondrial defects (McDonald et al., 2008; Maggrah et al.,
2013; Parr et al., 2013), production of reactive oxygen species
(ROS) (Bongers et al., 1995; Jaloszynski et al., 2003; Chan
et al., 2017), increased expression of proliferation and apoptosis
markers (Birchall et al., 1997; Bascones-Martinez et al., 2013)
and epigenetic modifications (Grady, 2005; Lee et al., 2011;
Kamiyama et al., 2012; Luo et al., 2014) are also repeatedly
found in regions adjacent to malignant tumours from a variety
of organs. Whatever the cause of these modifications, from
DNA replication errors to mutagenic injuries, the ongoing pre-
cancerous field will most likely be composed of a number of
genetically different clones, with the fittest one expected to
colonise the entire territory over time (Driessens et al., 2012).
This process of selection based on fitness comparison is a
distinctive trait of cell competition (CC), a phenomenon first
observed and characterised in Drosophila (Morata and Ripoll,
1975), and then demonstrated to be conserved in mammals
(Penzo-Mendez and Stanger, 2014; Di Gregorio et al., 2016).

Competitive interactions are typically triggered when cells
with different proliferation rates are found in close proximity:
the fittest cells (winners) commit less fit neighbours (losers)
to death and overgrow to replace them in the tissue (Levayer
and Moreno, 2013, 2016; Tamori and Deng, 2013; Tsuboi et al.,
2018). A number of molecules and signalling pathways have to
date been found to play a role in CC (Moreno et al., 2002;
Tyler et al., 2007; Vincent et al., 2011; Rodrigues et al., 2012;
Akai et al., 2018): among these, the MYC protein was shown
to be the most powerful inducer of CC (named in this case
MYC-Mediated Cell Competition, MMCC) from Drosophila to
mammals (Johnston, 2014), paving the way to studies that
found this process implicated in a number of seemingly distant
contexts, from organ development (de la Cova et al., 2004;
Moreno and Basler, 2004; Claveria et al., 2013; Sancho et al.,
2013; Villa del Campo et al., 2014; Villa Del Campo et al.,
2016) to tissue regeneration (Oertel et al., 2006; Gogna et al.,
2015; Rosen et al., 2015; Villa Del Campo et al., 2016; Shakiba
and Zandstra, 2017), cell stemness (Rhiner et al., 2009; Diaz-
Diaz et al., 2017) and cancer (Froldi et al., 2010; Ziosi et al.,

2010; Eichenlaub et al., 2016; Suijkerbuijk et al., 2016). Of
note, we and others recently demonstrated that MMCC is also
active in human cancer cells (Patel et al., 2016; Di Giacomo
et al., 2017). MYC upregulation is sufficient as to transform
cells into super-competitors (Moreno and Basler, 2004), able to
kill and replace suboptimal neighbours, and this capability has
opened to speculations about a possible role for MMCC in field
cancerisation (Rhiner and Moreno, 2009; Johnston, 2014). MYC
family proteins are long investigated for their essential functions
in cell physiology and in cancer (Stine et al., 2015); the Drosophila
genome bears a single locus (diminutive, dm) encoding the MYC
protein, which exerts the same functions as the mammalian
orthologues (Gallant, 2013). MYC overexpression in wild-type
cells may provoke a series of contradictory responses: on the one
hand, it supports cell growth by accelerating biosynthesis, cell
metabolism and cell cycle (Evan and Littlewood, 1993; Grewal
et al., 2005; Meyer and Penn, 2008); on the other hand, it
promotes potentially harmful reactions such as ROS production
and genetic instability (Vafa et al., 2002; Greer et al., 2013;
Kuzyk and Mai, 2014), and increases propensity to apoptotic
cell death (Montero et al., 2008; McMahon, 2014). Cancer cells
upregulating MYC are contrariwise protected from untimely
death, primarily due to relevant changes in metabolic pathways
leading to MYC addiction (Gabay et al., 2014). MYC seems thus
to elicit in normal cells a number of biological responses similar
to those found in mammalian pre-cancerous fields (Mohan and
Jagannathan, 2014). Moreover, MYC upregulation is an early
event in human prostate cancer (Gurel et al., 2008), and MYC
overexpression is sufficient to transform luminal epithelial cells
into pre-malignant derivatives in the mouse prostatic gland (Kim
et al., 2009; Iwata et al., 2010). MYC upregulation has also been
observed in cytologically normal bronchial epithelial cells of mice
with pre-neoplastic lung squamous cell carcinoma lesions (Xiong
et al., 2017), and it was reported to initiate gastric tumourigenesis
following Hippo pathway deregulation in the pyloric stem cell
(Choi et al., 2018). These observations led us to speculate that
high MYC levels may be sufficient for an epithelial tissue to
become responsive to the effect of second mutations that would
otherwise be irrelevant when occurring in a wild-type epithelium.

In Drosophila, the tumour suppressor genes (TSGs) are
historically subdivided into two classes, called “hyperplastic”
and “neoplastic” according to the mutant phenotype (Hariharan
and Bilder, 2006), most of which have in time been found to
encode different components of the Hippo pathway (Grusche
et al., 2010), a highly conserved signalling cascade central in
cell growth and organ size modulation (Halder and Johnson,
2011). Broadly speaking, loss-of-function (LOF) mutants of these
hyperplastic TSGs (fat, ft; dachsous, ds; expanded, ex; warts, wts;
and hippo, hpo) show a substantial overgrowth of the larval
epithelial organs, called imaginal discs (Aldaz and Escudero,
2010), and premature death at the pupal stage (Hariharan and
Bilder, 2006), whereas LOF mutants of neoplastic TSGs do not
survive beyond embryogenesis (Menut et al., 2007). An exception
is made for scribble (scrib), discs large (dlg), and lethal giant larvae
(lgl) neoplastic mutants which, given the abundant maternal
transcript released into the zygote, survive up to the end of the
larval life, showing abnormal growth of the imaginal discs with
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a complete loss of the epithelial structure (Bilder et al., 2000;
Bilder, 2004). In case single mutant cells are created in a wild-
type background through clonal analysis techniques (del Valle
et al., 2012), those bearing hyperplastic LOF mutations survive
and overgrow in the target tissue (Xu et al., 1995; Buratovich and
Bryant, 1997; Udan et al., 2003; Maitra et al., 2006), whereas those
bearing neoplastic LOF mutations are usually eliminated during
development (Agrawal et al., 1995; Enomoto and Igaki, 2011).
We and others demonstrated these opposite behaviours are
dictated by MMCC: while hyperplastic mutant cells upregulate
MYC and behave like winners in the wild-type tissue, killing the
surrounding neighbours and growing at their expense (Neto-
Silva et al., 2010; Ziosi et al., 2010), neoplastic mutant cells do
not upregulate MYC and behave like losers in the context, being
themselves out-competed by adjacent wild-type cells (Froldi et al.,
2010; Menendez et al., 2010). We previously showed that a MYC-
overexpressing background strengthens the super-competitive
behaviour of ft, ds and ex mutant clones, which were found to
kill the surrounding cells with increased efficiency and to grow
more rapidly, although it did not provide mutant cells with the
capability to evolve into a malignant mass (Ziosi et al., 2010).

Here we expanded on previous work by first identifying
in Drosophila MYC-overexpressing epithelial organs a series of
morphological and molecular markers typically found in human
pre-cancerous fields. Moreover, we investigated the impact of
a MYC-overexpressing background on the cellular phenotypes
consequent to mutations in neoplastic TSGs, showing it is
in this case sufficient to make mutant cells able to initiate
multifocal malignant transformation, a peculiar trait of human
pre-neoplastic fields.

MATERIALS AND METHODS

Fly Stocks and Manipulation
The following fly lines were used in the study, built using
stocks obtained from the Bloomington Drosophila Stock
Center, Indiana: w; UAS-GFP(Bl−6874); hh-Gal4(Bl−67046) – yw,
PI3K92ECAAX(Bl−25908) – w; Ubi-GFPnls, FRT40A(Bl−5629)/CyO;
hh-Gal4(Bl−67046)/TM6b – w; l(2)gl4 P(neo-FRT)40A(Bl−36289)/
In(2-3)Gla,Bc; UAS-HAdm/TM6b – w; Rab52P(neo-FRT)
40A(Bl−42702)/In(2-3)Gla,Bc; UAS-HAdm/TM6b. UAS-HAdm
on III is a gift of P. Bellosta. Plain genotypes are given for each
experiment in the figure legends. For all experiments, flies were
kept at 25◦C. Larvae were heat-shocked once at 48 ± 4 h AEL
in a water bath at 37◦C for 10 min and dissected after additional
72 h development.

Immunofluorescence
Frozen or fresh larvae were prepared for immunofluorescence
by standard methods. The following antibodies and dilutions
were used: mouse α-MYC (1:5, P. Bellosta); rabbit α-Lgl
(1:400, D. Strand); rabbit α-active Caspase 3 (1:100, Cell
Signalling Technologies); rabbit α-aPKCζ (1:200, Santa
Cruz Biotechnology); rabbit α-pAKT (1:100, Cell Signaling
Technologies); rabbit α-PH3 (1:100, Upstate Technology);
mouse α-γH2Av (1:30, DSHB); mouse α-dIAP1 (1:100, B. A.

Hay); rabbit α-Pc (1:400, Santa Cruz Biotechnology); mouse
α-En (1:50, DSHB). Alexa Fluor 555 goat α-mouse and α-rabbit
(1:500, Invitrogen) and DyLight 649-conjugated goat α-mouse
and α-rabbit (1:750, Jackson ImmunoResearch Laboratories)
were used as secondary antibodies. Samples were analysed with
a Leica TSC SP2 laser confocal microscope and entire images
were processed with Adobe Photoshop software or ImageJ free
software from NIH. All the images represent a single confocal
stack unless otherwise specified. Image magnification is 400×
unless otherwise specified.

ROS Detection
Larvae were dissected in PBS1X and carcasses were incubated for
30 min at room temperature in PBS1X – DHE (Dihydroethidium,
Invitrogen Molecular Probes) at a final concentration of 30 µM
in gentle shaking before fixation. Wing discs were immediately
imaged under a Nikon 90i wide-field fluorescence microscope.

Statistical Analysis
For the experiments shown in Figures 3–7, the number of wing
discs analysed was 15÷25 from different larvae for each sample.
For each experiment, the data presented are the average of three
biological replicates. Multifocality was assessed on a total of 346
wing discs for l(2)gl4 clones (see Figures 9, 10), and on a total of
146 wing discs for Rab52 (see Figure 11). For the experiments
shown in Figures 2, 8, 13, the number of discs analysed is
indicated. Mean Fluorescence Intensity (MFI) (Figures 2, 5–
7), clone area (Figures 8, 13) and positive signals (Figures 3,
4) were calculated by ImageJ free software (NIH) on images
captured with a Nikon 90i wide-field fluorescence microscope
at a magnification of 200×. All measurements have been taken
inside the yellowish area highlighted in Figure 1A. P-values were
as follows: ∗∗p ≤ 0.01 and ∗∗∗p ≤ 0.001. Mean, SEM and the
t-Student test p-value were calculated by using GraphPad Prism
software, San Diego, CA, United States.

RESULTS

MYC-Overexpressing Tissues Show
Several Markers Repeatedly Found in
Human Pre-cancerous Fields
Pre-cancerous fields are defined as tissue areas composed of
histologically normal but genetically altered cells, shown to
be more susceptible than wild-type counterparts to the onset
of new mutations, promoting in time the development of
multifocal tumours (Slaughter et al., 1953; Dotto, 2014). Since
these areas are found to surround primary masses in several
epithelial malignancies (Nonn et al., 2009; Zeki et al., 2011;
Park et al., 2016), a pre-neoplastic field can be considered,
borrowing Paget’s hypothesis, a soil providing “bad seeds” with
the capacity to initiate malignant growth, including those that
would normally fail. The wide series of aberrations underlying
the process of field cancerisation can hardly be attributed to
a single cellular event, but deregulation of a gene piloting a
number of cell behaviours may greatly favour its formation.
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FIGURE 1 | MYC overexpression in the posterior compartment of the wing
disc does not cause morphological alterations. (A) Representation of an
imaginal wing disc from a wild-type late Drosophila larva. The
Posterior/Anterior (P/A) and the Dorsal/Ventral (D/V) boundaries are indicated
by dotted lines. All the measures for this study have been taken in the
yellowish area. (B–B2) Immunostaining for MYC (B, cyan) and Lgl (B2, red) on
wing discs from late yw; Ubi-GFPnls, FRT40A/+; hh-Gal4/UAS-dm larvae.
GFP is shown in B1. The basic genotype is indicated on the left of the figure
panel. P compartments are outlined in B1,B2, and disc axes are indicated in
B. Magnification is 400×.

MYC represents an excellent candidate, because its misexpression
does not account on gene mutation but is rather caused by
alterations in many, if not all, signalling pathways (Nussinov
et al., 2016). As an example, activated forms of RAS are
frequently found in human pre-neoplastic tissues (Braakhuis
et al., 2003), and it is known that activated RAS stabilises
MYC protein in Drosophila (Prober and Edgar, 2002) and
mammals (Sears et al., 2000). Stabilised MYC is in turn able
to remodulate cell growth and proliferation, metabolism and
stress response (Meyer and Penn, 2008). Moreover, a founder
cell upregulating MYC could easily expand into a MYC-
upregulating field through MMCC (Johnston, 2014). Therefore,
MYC could play a causative role both in driving the expansion
and in determining the intrinsic characteristics of a pre-
cancerous field. To investigate this issue we bypassed field
formation, since it is well established that Drosophila epithelial
cells upregulating MYC eliminate the wild-type neighbours
during development and colonise a large fraction of the tissue
through MMCC (de la Cova et al., 2004; Moreno and Basler,
2004).

We then took advantage of the UAS-Gal4 binary system
(Brand and Perrimon, 1993) to drive MYC overexpression
(hereafter referred to as MYCOVER) under the control of

FIGURE 2 | MYC and PI3KCAAX overexpression do not induce reciprocal
activation. (A–A2) Immunostaining for pAKT (A,A1, cyan) and MYC (A2, red)
on wing discs from late yw/yw, UAS-PI3KCAAX; hh-Gal4, UAS-GFP/+ larvae.
(B) Graph comparing the Mean Fluorescence Intensity Arbitrary Units
(MFI-AU) of MYC staining measured in the P (green bar) and A (grey bar)
compartments of 15 wing discs from different larvae. (C,C1) Immunostaining
for pAKT (cyan) on wing discs from late yw; hh-Gal4, UAS-GFP/UAS-dm
larvae. (D) Graph comparing the Mean Fluorescence Intensity Arbitrary Units
(MFI-AU) of pAKT staining measured in the P (green bar) and A (grey bar)
compartments of 15 wing discs from different larvae. Basic genotypes are
indicated on the left of the figure panel. P compartments are outlined in
A2,C1, and disc axes are indicated in A,C. Magnification is 400×.

the hedgehog (hh) promoter in the posterior compartment of
the wing disc, a Drosophila larval epithelial organ (Bryant,
1975). Figure 1A shows the Posterior/Anterior (P/A) and the
Dorsal/Ventral (D/V) axes of the larval wing disc, while the
yellowish region represents the area subjected to measurements
and P vs. A comparisons, being the notum mostly composed
of anterior cells (see P/A boundary in the notum region).
As can be appreciated in Figure 1B, MYCOVER is confined
to the P compartment (representing the pre-cancerous field),
where it does not seem to cause evident alterations in tissue
morphology with respect to the A compartment (representing
the wild-type field), as noted in Figures 1B1,B2, where a Ubi-
GFPnls transgene and the Lgl protein mark cell nuclei and cell
membranes, respectively. To demonstrate MYC’s specificity in
providing cells with a complex pre-cancerisation signature, we

Frontiers in Genetics | www.frontiersin.org 4 December 2018 | Volume 9 | Article 612

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00612 December 8, 2018 Time: 15:8 # 5

Sollazzo et al. MYC Protein in Multifocal Cancers

FIGURE 3 | MYC and PI3KCAAX overexpression increases mitotic activity.
(A,A1) Immunostaining for PH3 (red) on wing discs from late yw; hh-Gal4,
UAS-GFP/UAS-dm larvae. (B) Graph comparing the PH3-positive nuclei
counted in the P (green bar) and A (grey bar) compartments, ∗∗∗p ≤ 0.001.
(C,C1) Immunostaining for PH3 (red) on wing discs from late yw/yw,
UAS-PI3KCAAX; hh-Gal4, UAS-GFP/+ larvae. (D) Graph comparing the
PH3-positive nuclei counted in the P (green bar) and A (grey bar)
compartments, ∗∗p ≤ 0.01. (E) Graph comparing the PH3-positive nuclei
counted in the P compartments of yw; hh-Gal4, UAS-GFP/UAS-dm (striped
green bar) and yw/yw, UAS-PI3KCAAX; hh-Gal4, UAS-GFP/+ (dotted green
bar) larvae, ∗∗∗p ≤ 0.001. Basic genotypes are indicated on the left of the
figure panels and under the graphs. P compartments are outlined in A1,C1,
and disc axes are indicated in A,C. Magnification is 400×.

compared the results of each experiment with those obtained
following overexpression of a membrane-tethered form of PI3K
(PI3KCAAX), another potent growth inducer (de la Cova et al.,
2004). We first verified if overexpression of the PI3KCAAX

transgene (PI3KCAAX−OVER) caused consistent activation of the
PI3K/AKT signalling pathway. As noted in Figures 2A,A1, the
phosphorylated form of AKT was detected in the P compartment
of the wing disc following PI3KCAAX−OVER (GFP+ region in
Figure 2A). Moreover, it did not impact MYC endogenous levels
(Figure 2A2, the P/A border is outlined), being the MFI of
MYC staining statistically comparable in P and A compartments
(Figure 2B). Following MYCOVER, the levels of phosphorylated
AKT in the P compartment (GFP+ region, Figures 2C,C1, the
P/A border is outlined) were also comparable to those observed

FIGURE 4 | MYC overexpression increases genetic instability. (A,A1)
Immunostaining for γH2Av (red) on wing discs from late yw; hh-Gal4,
UAS-GFP/UAS-dm larvae. (B) Graph comparing the γH2Av-positive foci
counted in the P (green bar) and A (grey bar) compartments, ∗∗∗p ≤ 0.001.
(C,C1) Immunostaining for γH2Av (red) on wing discs from late yw/yw,
UAS-PI3KCAAX; hh-Gal4, UAS-GFP/+ larvae. (D) Graph comparing the
γH2Av-positive foci counted in the P (green bar) and A (grey bar)
compartments. Basic genotypes are indicated on the left of both the figure
panels and the graphs. P compartments are outlined in A1,C1, and disc axes
are indicated in A,C. Magnification is 400×.

in the A compartment (Figure 2D), confirming that, differently
from what has been observed in a previous study (Levayer et al.,
2015), in our genetic system and under our working conditions,
the two growth inducers do not significantly cross-regulate each
other, making it suitable for the successive analyses.

We started by investigating in the MYCOVER tissue a number
of markers characteristic of human pre-neoplastic fields. Since
it is known that pre-malignant areas may display a higher
proliferative index than normal tissues (Mohan and Jagannathan,
2014), we first checked the mitotic activity of MYCOVER cells
by immunostaining for the phosphorylated histone H3 (PH3),
which is known to play a key role during mitosis both
in Drosophila and mammals (Kamakaka and Biggins, 2005).
A mitotic index analysis highlighted a 32% increase of PH3-
positive nuclei in MYCOVER P compartments with respect to their
A counterparts (Figures 3A,A1,B), and a 20% increase in the
PI3KCAAX−OVER P vs. A compartments (Figures 3C,C1,D). This
result was not unexpected, as PI3K activation plays important
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FIGURE 5 | MYC overexpression causes intense ROS production. (A,A1)
ROS production (red) in wing discs from late yw; hh-Gal4, UAS-GFP/UAS-dm
larvae. (B) Graph comparing the Mean Fluorescence Intensity of ROS
positivity measured in the P (green bar) and A (grey bar) compartments,
∗∗∗p ≤ 0.001. (C,C1) ROS production (red) in wing discs from late yw/yw,
UAS-PI3KCAAX; hh-Gal4, UAS-GFP/+ larvae. (D) Graph comparing the Mean
Fluorescence Intensity Arbitrary Units (MFI-AU) of ROS positivity measured in
the P (green bar) and A (grey bar) compartments. (E) Graph comparing the
Mean Fluorescence Intensity Arbitrary Units (MFI-AU) of ROS positivity
measured in the A compartments of yw; hh-Gal4, UAS-GFP/UAS-dm (striped
grey bar) and yw/yw, UAS-PI3KCAAX; hh-Gal4, UAS-GFP/+ (dotted grey bar)
larvae, ∗∗∗p ≤ 0.001. Basic genotypes are indicated on the left of the figure
panels and under the graphs. P compartments are outlined in A1,C1, and
disc axes are indicated in A,C. Magnification is 400×.

roles in cell growth and proliferation (Leevers et al., 1996). The
mitotic index of the MYCOVER tissue was, however, significantly
higher than that observed in the PI3KCAAX−OVER samples, as in
the graph reported in Figure 3E. To assess genetic instability,
another feature of pre-cancerous fields with obvious mutagenic
effects (Bhattacharjee and Nandi, 2016), we used an antibody
against the γ variant of the phosphorylated histone H2, which
is recognised as the first modification occurring following DNA
double strand breaks, resulting in the assembling of multi-protein
complexes which attempt to repair DNA damage (Dronamraju
and Mason, 2011). As can be seen in Figures 4A,A1, the
γH2Av foci (red) in the MYCOVER P compartment (GFP+,

FIGURE 6 | MYC overexpression triggers apoptotic death. (A,A1)
Immunostaining for Cas3 (red) on wing discs from late yw; hh-Gal4,
UAS-GFP/UAS-dm larvae. (B) Graph comparing the Mean Fluorescence
Intensity Arbitrary Units (MFI-AU) of Cas3 staining measured in the P (green
bar) and A (grey bar) compartments, ∗∗∗p ≤ 0.001. (C,C1) Immunostaining
for Cas3 (red) on wing discs from late yw/yw, UAS-PI3KCAAX; hh-Gal4,
UAS-GFP/+ larvae. (D) Graph comparing the Mean Fluorescence Intensity
Arbitrary Units (MFI-AU) of Cas3 staining measured in the P (green bar) and A
(grey bar) compartments. Basic genotypes are indicated on the left of the
figure panels and under the graphs. P compartments are outlined in A1,C1,
and disc axes are indicated in A,C. Magnification is 400×.

outlined in Figure 4A1) were about twice compared to the A
compartment (Figure 4B), while they resulted comparable in
the P and A compartments of the PI3KCAAX−OVER samples
(Figures 4C,C1,D). Our study continued by evaluating the
presence and abundance of ROS in the presumptive pre-
cancerous field. As noted in Figures 5A,A1, a strong increase in
ROS generation (red) was found in the MYCOVER P compartment
of the wing disc (GFP+, outlined in Figure 5A1), quantified
as about 20 arbitrary units (AU) MFI vs. the 6.5 AU found
in the A compartment (compare green and grey bars in the
graph Figure 5B). Contrariwise, no significant differences were
found between the P (GFP+, outlined in Figure 5C1) and A
compartments following PI3KCAAX−OVER, as is appreciable in
Figures 5C,C1,D. As MYCOVER and PI3KCAAX−OVER samples
underwent parallel enzymatic reactions, we could also compare
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FIGURE 7 | MYC overexpression downregulates survival and epigenetic
markers. (A–A2) Immunostaining for dIAP1 (A1, red) and Pc (A2, cyan) on
wing discs from late yw; hh-Gal4, UAS-GFP/UAS-dm larvae. (B) Graph
comparing the Mean Fluorescence Intensity Arbitrary Units (MFI-AU) of dIAP
and Pc staining measured in the P (green bars) and A (grey bars)
compartments, ∗∗∗p ≤ 0.001. (C–C2) Immunostaining for dIAP1 (C1, red) and
Pc (C2, cyan) on wing discs from late yw/yw, UAS-PI3KCAAX; hh-Gal4,
UAS-GFP/+ larvae. (D) Graph comparing the Mean Fluorescence Intensity
Arbitrary Units (MFI-AU) of dIAP and Pc staining measured in the P (green
bars) and A (grey bars) compartments. Basic genotypes are indicated under
the figure panels. P compartments are outlined in A1,A2,C1,C2, and disc
axes are indicated in A,C. Magnification is 400×.

ROS levels in the respective wild-type A compartments, and
found that MYCOVER A compartment showed a twofold ROS
increase with respect to the PI3KCAAX−OVER A compartment
(Figure 5E). This was an interesting finding, as ROS are diffusible
ions and molecules and they may freely move away from the
producing cells, thus expanding MYC’s pre-cancerisation effect
to adjacent tissues by a non-autonomous mechanism. In this
sense, a recent study demonstrated that, in Drosophila epithelial

tumours, apoptotic caspases enhance tumour malignancy by
generating ROS, which in turn recruit immune cells that signal
back to the epithelium to activate cancer pathways (Perez
et al., 2017). Although MYCOVER tissues cannot be compared to
overt cancers, similar cell-cell interactions may be at work that
cooperate with MMCC to expand the pre-cancerous field. An
analysis of apoptotic cell death carried out by immunostaining
for the activated form of the effector Caspase 3 (Cas3) revealed
that MYCOVER epithelial cells were highly prone to apoptotic
death (see Figures 6A,A1), with about 9 MFI AU in the P
compartment vs. 1.5 in the A counterpart, as can be noted in
Figure 6B. By contrast, no significant differences were noticed
between P and A compartments overexpressing PI3KCAAX

(Figures 6C,C1,D). Consistently with Caspase 3 activation,
MYCOVER cells downregulated the anti-apoptotic protein dIAP1
(Wang et al., 1999), as shown in Figure 7A1 (Figure 7A shows the
GFP+ P compartment), with 7.4 MFI AU in the P vs. 13.5 in the A
compartment (Figure 7B); dIAP1 indeed functions by inhibiting
the initiator caspase DRONC (Meier et al., 2000) that, in turn,
activates the effector caspases. Also in this case, PI3KCAAX−OVER

tissues did not show significant differences in dIAP1 staining
between the P and A compartments (Figures 7C,C1,D). Finally,
with regard to changes in the epigenetic signature of human pre-
neoplastic tissues (Grady, 2005; Lee et al., 2011), we analysed
the effect of MYCOVER on the chromatin modifier Polycomb
(Pc), known to shape cellular plasticity through large-scale
epigenetic regulation (Klebes et al., 2005). We previously showed
that Pc expression is nearly absent in Drosophila epithelial
cancers (Grifoni et al., 2015). As it is known that Pc and other
proteins of the Pc group (PcG) are necessary to MYC auto-
repression in Drosophila (Goodliffe et al., 2005; Khan et al.,
2009), Pc downregulation in overt cancers may help sustain high
MYC cellular levels, so allowing it to impact many different
phenotypic traits. As can be observed in Figure 7A2, Pc resulted
downregulated also in our pre-cancerisation model, with 9.8 vs.
19.4 MFI AU in the P (GFP+ in Figure 7A, outlined in 7A2),
and A compartments, respectively (Figure 7B). This is consistent
with MYC and PcG proteins trans-regulation (Benetatos et al.,
2014), and since low Pc levels result in a higher chromatin
accessibility, this condition would favour additional mutational
insults through inappropriate entrance of DNA cleaving enzymes
(Zhang et al., 2008). Also in this case, PI3KCAAX−OVER tissues
did not display significant differences compared to the wild-type
counterparts (Figures 7C2,D).

Altogether, these results support our hypothesis that high
levels of MYC are sufficient as to induce a series of molecular
changes, which are likely to turn the affected tissue into a pre-
malignant field. Moreover, this ability seems to be specific to
MYC, as an active form of the growth inducer PI3K failed to
promote significant alterations of the markers analysed.

Single-Cell Mutations of Neoplastic
TSGs Initiate Multifocal Growth in a
MYCOVER Tissue
With the aim to translate the evidence described above into
a functional demonstration of MYCOVER’s capacity to establish
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FIGURE 8 | About one/third of lgl− clones overgrows at the expense of the
surrounding wild-type tissue in a MYC-overexpressing background. (A,A1)
Immunostaining for Lgl (red) and MYC (cyan) on wing discs from late w;
l(2)gl4, FRT40A/Ubi-GFPnls, FRT40A; hh-Gal4/UAS-dm larvae. The arrow
points to a posterior wild-type twin clone and the arrowhead indicates a
scattered lgl−/− clone with no obvious wild-type twin in the posterior hinge
region (A1). (B,C) Graphs comparing the average clone area of lgl−/− (black
triangles, black in the images) and wild-type twins (grey triangles, double red
in the images) in the P (B) and A (C) compartments, ∗∗∗p ≤ 0.001. The basic
genotype is indicated on the left of the figure. The P compartment is outlined
in A1, and disc axes are indicated in A. Magnification is 400×.

a pre-malignant condition, we investigated the phenotypic
consequences of the induction of second mutations in a
MYCOVER background. We used a genetic model which, through
a combination of the UAS-Gal4 (Brand and Perrimon, 1993)
and Flp-FRP (Xu and Rubin, 1993) binary systems, allowed us
to express MYC in the P compartment and to induce second
mutations of interest later in time, so reproducing the temporal
sequence that is likely to occur during cancer initiation. The A
compartment has been used as a control, to assess the clonal
phenotype promoted by the same second mutations in a region
carrying endogenous MYC expression.

As described in the Introduction, we previously showed that
hyperplastic TSGs (hTSGs) exploit excess MYC to grow more
rapidly, but are not able to initiate malignant transformation
(Ziosi et al., 2010); we thus aimed at exploring MYCOVER’s
effect on the clonal behaviour of neoplastic TSGs (nTSGs).
We first analysed the lethal giant larvae (lgl) mutation. Lgl
protein regulates the apical-basal cell polarity in the epithelia
(Grifoni et al., 2013); we previously demonstrated its functional
conservation from Drosophila to humans (Grifoni et al., 2004),
and we and others found the human orthologue HUGL-1
involved in cancers from different organs (Grifoni et al., 2004,
2007; Schimanski et al., 2005; Lu et al., 2009). In the Drosophila
wing disc, lgl mutant cells are unable to grow in a wild-
type background, especially in the regions where MYC levels
are high, and are eliminated by MMCC (Froldi et al., 2010).
In the same wild-type background, MYCOVER in lgl mutant

FIGURE 9 | The majority of lgl−/− cells forms multifocal nests which colonise
a large fraction of the MYC-overexpressing tissue. (A–B1) Immunostaining for
Lgl (red) and MYC (cyan) on wing discs from late w; l(2)gl4,
FRT40A/Ubi-GFPnls, FRT40A; hh-Gal4/UAS-dm larvae. (C) Pie chart
illustrating the numerical proportions of overgrown, mild and severe multifocal
lgl−/− clones found in the P compartment of w; l(2)gl4, FRT40A/Ubi-GFPnls,
FRT40A; hh-Gal4/UAS-dm wing discs. The basic genotype is indicated on the
left of the figure panel. P compartments are outlined in A1,B1, and disc axes
are indicated in A,B. Magnification is 400×.

clones rescues them from death and transforms lgl−/− cells
from losers into super-competitors (Froldi et al., 2010). But
what happens to newly formed lgl, MYCOVER cells when they
are surrounded by MYCOVER neighbours? As can be seen in
Figure 8, while lgl−/− clones were smaller than wild-type twins
in the A control compartment of the disc (Figures 8A,A1,C), in
the 28% of the wing discs analysed the lgl−/− clones growing
in the MYCOVER P compartment appeared significantly larger
than the wild-type twins (Figures 8A,A1,B). As an example, the
arrow in Figure 8A1 points to a wild-type clone (double red)
which appears much smaller than the lgl mutant twin (black).
In addition, the arrowhead indicates an lgl mutant clone in the
hinge region of the P compartment with no apparent wild-type
twin clone. This suggests that the lgl mutant cells have a greater
ability to exploit the excess MYC protein than the surrounding
neighbours, hence the gain of a competitive advantage over the
wild-type tissue. However, the average clone area occupied by the
lgl−/− cells in this system was about 5000 px2, whereas it was
found to be around 24000 px2 in a previous study where lgl−/−,
MYCOVER cells were induced in a wild-type background (Froldi
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FIGURE 10 | lgl-/- cells undergoing severe multifocal growth accumulate
MYC protein. Immunostaining for MYC (red) on wing discs from late w; l(2)gl4,
FRT40A/Ubi-GFPnls, FRT40A; hh-Gal4/UAS-dm larvae. In A1,A2,
arrowheads indicate MYC-accumulating mutant cells. The basic genotype is
indicated on the left of the figure panel. Disc axes are indicated in A,B. A1–B2
are magnified views of the squares drawn in A,B. Magnification is 400× in
A,B, 1000× in A1,A2, and 1200× in B1,B2.

et al., 2010), demonstrating the MYCOVER neighbours exert a
competitive pressure against the growth of the lgl mutant clones,
which translates into a limited capability of lgl−/− cells to form
large masses in a uniform MYCOVER field.

The remaining 72% of the wing discs analysed displayed
a novel phenotype: the lgl mutant tissue grew as a multitude
of spots scattered all across the MYCOVER P compartment.
Figure 9 shows two typical samples that we classified as “mild
multifocal” (Figure 9A), which represented the 38% of the
total samples (Figure 9C), and “severe multifocal” (Figure 9B),
which represented the 34% of the total samples (Figure 9C).
We classified multifocality as “mild” when the lgl mutant clones
(black), though colonising a large fraction of the P compartment,
did not alter its width (Figure 9A1), and “severe” when the
lgl−/− cells filled the entire P compartment, which appeared
dramatically enlarged (see how the P/A border moved from P
to A comparing Figures 9A1,B1). This deep organ alteration
suggests a locally invasive, malignant behaviour of these mutant

FIGURE 11 | Rab5−/− cells show a fully penetrant, multifocal phenotype in a
MYC-overexpressing background. Immunostaining for MYC (red) on wing
discs from late w; Rab52, FRT40A/Ubi-GFPnls, FRT40A; hh-Gal4/UAS-dm
larvae. In A1,A2, arrowheads indicate MYC-accumulating mutant cells. The
basic genotype is indicated on the left of the figure panel. Disc axes are
indicated in A,B. A1–B2 are magnified views of the squares drawn in A,B.
Magnification is 400× in A,B, 1000× in A1,A2, and 800× in B1,B2.

cells that may be favoured by clone confluence during growth,
as it is with other tumour models in Drosophila (Menendez
et al., 2010; Ballesteros-Arias et al., 2014), with MYC protein
levels that appeared to increase along with phenotype severity
(compare Figures 9A,B). lgl mutant cells displayed preferential
MYC accumulation, as can be appreciated in Figure 10A2,
where arrowheads indicate some of the mutant cells (black, see
Figure 10A1) accumulating MYC. Again, the organs displaying
larger mutant spots (Figure 10B, squared area) showed an
obvious increase in MYC protein levels (Figure 10B2). The
most interesting aspect of this model is that it faithfully
reproduced a distinctive feature of human pre-cancerous fields,
i.e., multifocality (Dotto, 2014). The multifocal phenotype has
never been associated with lgl mutations in Drosophila; therefore,
it represents a novel trait acquired by a cell subject to a mutation
in the lgl nTSG while being part of a MYCOVER field.

To verify that a MYCOVER field represented a bona fide pre-
cancerous area, and that multifocality did not result from a
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FIGURE 12 | Rab5−/− cells show loss of cell polarity in a
MYC-overexpressing background. Immunostaining for aPKC (cyan) on wing
discs from late w; Rab52, FRT40A/Ubi-GFPnls, FRT40A; hh-Gal4/UAS-dm
larvae. In A1,B1, arrows indicate mutant cells (black) displaying membrane
redistribution of the apical marker aPKC, while the arrowheads point to a
normal region of the disc border where the pseudostratified epithelium shows
apical aPKC staining (asterisks). The dashed line in A1 marks the disc outer
border. The basic genotype is indicated on the left of the figure panel. Disc
axes are indicated in A,C. A1,B1 are magnified views of the squares drawn in
A,B. Magnification is 400× in A,B,C,C1 and 1000× in A1,B1.

specific interaction between lgl and MYC, we induced a LOF
mutation of a different nTSG in the MYCOVER field. Rab5
is an evolutionarily conserved core component of the vesicle
trafficking machinery (Lu and Bilder, 2005), implicated in various
aspects of human tumourigenesis (Torres and Stupack, 2011;
Mendoza et al., 2014). Like lgl, entire fly organs mutated for
Rab5 show neoplastic growth (Lu and Bilder, 2005; Vaccari and
Bilder, 2009), and Rab5 mutant cells induced in a wild-type
wing disc suffer from cell competition and are eliminated from
the organ (Ballesteros-Arias et al., 2014). Using the same clonal
system as above, we induced Rab5 LOF clones in animals whose P
compartments overexpressed MYC. As can be seen in Figure 11,
the multifocal phenotype was evident also for the Rab5−/−

FIGURE 13 | lgl−/− and Rab5−/− cells do not display multifocal growth in a
PI3KCAAX-overexpressing background. (A,A1) Immunostaining for En (red) on
wing discs from late w/yw, UAS-PI3KCAAX; l(2)gl4, FRT40A/Ubi-GFPnls;
hh-Gal4/+ larvae. The arrows in A1 indicate the mutant clones (black).
(B) Graph comparing the average clone area of lgl−/− clones in the P (black
triangles) and A (grey triangles) compartments, ∗∗∗p ≤ 0.001. (C,C1)
Immunostaining for En (red) on wing discs from late w/yw, UAS-PI3KCAAX;
Rab52, FRT40A/Ubi-GFPnls; hh-Gal4/+ larvae. The arrows in C1 indicate the
mutant clones (black). (D) Graph comparing the average clone area of
Rab5−/− clones in the P (black triangles) and A (grey triangles)
compartments. Basic genotypes are indicated on the left of the figure panel.
The P compartment is outlined in A1,C1, and disc axes are indicated in A,C.
Magnification is 400×.

cells (Figures 11A,B and respective magnifications A1 and B1).
Also in this case, mutant cells showed MYC accumulation
(Figures 11A2,B2, arrowheads in A2 indicate some mutant nests
accumulating MYC). The 100% of the organs analysed showed a
multifocal phenotype, subdivided in 71% mild and 29% severe.
Moreover, Rab5 mutant cells showed loss of apical-basal cell
polarity, a central feature of epithelial cancers (Wodarz and
Nathke, 2007): in Figure 12, the magnifications in A1 and B1
show a region of the disc outer border where one can appreciate
that the normal epithelium (arrowheads in A1 and B1) displays a
wild-type localisation of the apical marker atypical PKC (aPKC,
cyan, asterisks in B1). On the contrary, the mutant cells in the
region indicated by the arrows in A1 and B1 (black in A1) show
a redistribution of the polarity marker from the apical side to
the entire cell cortex, together with aberrant, three-dimensional
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growth. In Figures 12C,C1, the impairment of aPKC expression
(cyan) is evident across the entire MYCOVER P compartment.
This characteristic is consistent with Rab5 function: the endocytic
trafficking is indeed essential in the maintenance of cell polarity,
and mutations in genes involved in endocytosis provoke the
expansion of cell’s apical domain (Shivas et al., 2010).

Altogether, this evidence indicated that MYC overexpression
in an epithelial tissue is sufficient to promote multifocal
malignant lesions following single-cell mutations of different
nTSGs.

To assess if multifocality may be considered a trait arising from
specific properties conferred by the MYC field to the mutant cells,
we repeated the same experiments as above in a PI3KCAAX−OVER

territory. Using the same system as above, we first analysed
lgl mutant behaviour. In Figures 13A,A1, we can observe lgl
mutant clones (GFP−, indicated by the arrows) in the PI3KCAAX

P compartment (marked in red by En staining in A). They are
located outside the central region of the disc where, instead, we
observed the presence of wild-type clones (GFP2+), indicating
that mutant twins were eliminated by MMCC. Therefore, despite
the over-expression of PI3KCAAX, lgl−/− clones continue to die
in this area of the wing discs where MYC is normally highly
expressed (see Figure 2A2). A statistical analysis of the clone
area in the P and A compartments showed that lgl−/− mutant
clones were significantly larger in P, with an average size of about
5000 px2, compared to A, where they displayed an average size
of about 2000 px2 (Figure 13B). The most important observation
was, however, the total absence of multifocal growth. We then
analysed the behaviour of the Rab52 mutation in a PI3KCAAX

background. In Figures 13C,C1, a wing disc is shown where
small mutant clones of comparable size are present in both
compartments (black, arrows in Figure 13C1). In Figure 13D,
the graph indicates that the mutant clones do not show significant
differences in size between the P and A compartments. Finally, as
it was for lgl, no multifocal growth was observed in all the Rab5
samples analysed.

These latter findings indicate that MYC confers on cells
mutant for different nTSGs the ability to grow in multiple
foci dispersed all across the modified territory. This seems
to be a specific characteristic of MYC, as the growth
inducer PI3K did not promote this peculiar phenotype. MYC
upregulation emerges from our study as an excellent candidate
to foster field cancerisation, by inducing a complex pre-
cancerisation molecular signature able to provide cells hit
by non-competitive mutations with the ability to initiate
carcinogenesis.

DISCUSSION

Field cancerisation is studied in the effort to understand if
essential events recur in tumour initiation that may help develop
early therapeutic interventions. It is now recognised that many
types of cancers start from cells owing some, but not all,
phenotypic traits necessary for malignancy, and those traits may
result from various mutagenic insults, on the basis of which the
most performant cells are selected for clonal expansion (Curtius

et al., 2018). This process may be driven by cell competition,
which is intensively studied both in Drosophila (Merino et al.,
2016) and mammals (Di Gregorio et al., 2016). In this context,
we focused our attention on MMCC, a process based on steep
differences in MYC levels in confronting cells, which ultimately
favour the expansion of high MYC-expressing cells at the
expense of the less fit neighbours (Grifoni and Bellosta, 2015).
Given the broad implication of MYC protein in human cancers
(Gabay et al., 2014), its myriad functions inside the cell (Dang
et al., 2006) and its regulation at both the transcriptional and
post-transcriptional levels by a number of signalling pathways
(Nussinov et al., 2016), it seems an excellent candidate to pioneer
field cancerisation (Moreno, 2008).

To address this question, we first investigated the cellular
responses to MYC overexpression (MYCOVER) in the imaginal
wing disc, a Drosophila epithelial tissue widely used to model
development, cell competition and cancer (Herranz et al., 2016).
We found that MYCOVER was per se sufficient to activate a
series of cellular behaviours consistent with the formation of a
pre-neoplastic field, such as ROS production, genetic instability,
changes in apoptotic and proliferation activity and alteration
of epigenetic markers. Moreover, we showed that these cellular
responses were not elicited by a MYC’s generic pro-growth
function, as an active form of the powerful growth inducer PI3K
was not able to induce similar phenotypes, except a mild pro-
proliferative effect. High MYC levels seem rather to prime field
cancerisation by triggering a cascade of molecular changes that
cooperate in taking cells a step closer to malignancy.

This bona fide pre-cancerous tissue was then tested for
the ability to initiate tumourigenesis following mutations in
neoplastic TSGs (nTSGs). We previously studied the effects of
MYCOVER on three hyperplastic TSGs (hTSGs) owing to the
Hippo signalling pathway: ds, ft and ex, and found that mutant
clones grew more rapidly while killing the MYCOVER wild-
type neighbours with higher efficiency, but they did not show
any signs of malignancy (Ziosi et al., 2010). We and others
demonstrated that most hTSGs upregulate MYC (Neto-Silva
et al., 2010; Ziosi et al., 2010), hence their competitive capability,
while some nTSGs downregulate MYC, hence their elimination
from the tissue (Froldi et al., 2010). It is also recognised that the
behaviour of both hTSGs and nTSGs depends on tissue’s MYC
levels (Froldi et al., 2010; Neto-Silva et al., 2010; Ziosi et al., 2010):
in a uniform background, as with our model, mutant behaviour
should rather be dictated by the intrinsic features of the given
mutation.

In the Drosophila wing disc, wild-type cells hit by nTSGs
mutations are usually irrelevant: they are indeed eliminated
rapidly or contribute to the tissue without overgrowing
(Froldi et al., 2010; Ballesteros-Arias et al., 2014). The
same mutations induced in a MYCOVER field were rather
capable to initiate multifocal, three-dimensional growth
accompanied by loss of apical-basal cell polarity and aberrant
tissue architecture. This was convincing evidence that MYC
upregulation was sufficient as to establish a specific, complex
pre-cancerisation signature, which predisposes the tissue to
undergo malignant multifocal growth following certain second
mutations.
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Our findings lay the basis for future studies focused on
early tumourigenesis. These studies are as essential as difficult:
while understanding the very first phases of cancer is mandatory
to conceive novel preventive and therapeutic interventions,
investigations carried out in complex systems may lead to
discouraging results. In this sense, the use of a genetically
amenable animal model may greatly help dissect and dismantle
the intricate networks implicated in cancer initiation.
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