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Emerging or re-emerging dengue virus (DENV) causes dengue fever epidemics globally.

Current DENV serotypes are defined based on genetic clustering, while discrepancies are

frequently observed between the genetic clustering and the antigenicity experiments.

Rapid antigenicity determination of DENV mutants in high-throughput way is critical

for vaccine selection and epidemic prevention during early outbreaks, where accurate

prediction methods are seldom reported for DENV. Here, a highly accurate and efficient

in-silico model was set up for DENV based on possible antigenicity-dominant positions

(ADPs) of envelope (E) protein. Independent testing showed a high performance of

our model with AUC-value of 0.937 and accuracy of 0.896 through quantitative Linear

Regression (LR) model. More importantly, our model can successfully detect those

cross-reactions between inter-serotype strains, while current genetic clustering failed.

Prediction cluster of 1,143 historical strains showed new DENV clusters, and we

proposed DENV2 should be further classified into two subgroups. Thus, the DENV

serotyping may be re-considered antigenetically rather than genetically. As the first

algorithm tailor-made for DENV antigenicity measurement based on mutated sequences,

our model may provide fast-responding opportunity for the antigenicity surveillance on

DENV variants and potential vaccine study.

Keywords: dengue virus, envelope protein, bioinformatics, antigenicity-dominant positions, antigenicity clustering

INTRODUCTION

Dengue virus (DENV) is a mosquito-borne RNA virus from flaviviridae family, which could cause
dengue fever epidemics in tropical and subtropical countries (Rodenhuis-Zybert et al., 2010). Every
year, nearly 390 million people were infected by DENV, among them, 96 million developed into an
acute systemic illness and over 500 thousand experienced potentially life-threatening complications
such as dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS) (WHO/TDR, 2009;
Bhatt et al., 2013). Traditionally, DENV are genetically divided into four subtypes (Lanciotti et al.,
1997; Zhang et al., 2005; Chau et al., 2008). In 1952, an early clinical study reported that individuals
with primary DENV infections often provide protections among the homologous type, and show
only partial cross-protection against heterologous types (Sabin, 1952). As such, DENV serotypes
were simply defined based on genetic clusters. This classification was subsequently supported by
in vitro experiments in which DENV strains were better neutralized by antisera from homologous
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rather than those of heterologous types (Hammon et al., 1960).
Despite above, it was frequently realized that antigenic variation
does occur within same DENV serotype. Initially, this intra-
serotype difference was considered as substantially less than
those of inter-serotypes, and can be neglected (Russell and
Nisalak, 1967; Gentry et al., 1982). Yet, with the accumulation of
clinical and epidemiological evidence, researchers noted that the
traditional classification of DENV serotypes based on genotypes
can no more explain the clinical observations. Cross-reactions
were often found between antiserum from different serotypes,
which leads to the rethinking of the DENV antigenicity clustering
(Katzelnick et al., 2015). Currently, it was believed that the
antigenicity of DENV viruses was actually volatile, while the
traditional genotypic categorization may not be sensitive enough
to evaluate the antigenicity difference (Katzelnick et al., 2015).
Also, the epidemic magnitude of DENV might not only be
affected by traditional serotypes, but most importantly, be
determined by antigenic differences between particular infecting
viruses (Kochel et al., 2002; Adams et al., 2006; OhAinle
et al., 2011). Since antigenic differences among the DENV
types correlate with not only disease outcome and vaccine-
induced protection, but also epidemic magnitude and viral
evolution, accurate antigenic analysis were highly desired for
DENV serotypes.

In order to investigate the antigenicity relationship of DENV
subtypes, comprehensive serological tests were accomplished on
both animal and vaccinated or infected humans to calibrate
the serological relationship between DENV subtypes. In Leah’s
study, 36 DENV isolates covering four serotypes were selected
to inoculate against African green monkey, and the anti-serum
of each monkey was tested against 47 DENV strains to generate
dengue antigenic mapping (Katzelnick et al., 2015). According
to antigenic cartography, the antigenicity of DENV isolates
are usually similar to those viruses from the same serotypes.
However, a substantial number of strains illustrated greater
antigenic variance to inter-type viruses than those from intra-
types (Katzelnick et al., 2015).

Above results suggest that the traditional genotype
classification cannot fully meet the needs of antigenicity
clustering, and new methods of more accurate antigenicity
evaluation are highly needed. With the development of
bioinformatics technology, computational approaches have
started to provide possibility in both accurate and high-
throughput way (Liao et al., 2009; Qiu et al., 2016). Although,
this may be managed by a few general in-silico model (Qiu et al.,
2018), the limitation often includes requiring clearly defined
epitope residues and low computational efficiency. In this study,
a rapid model tailor-made for DENV was established to infer
the antigenic relationship between inter- and intra-serotypes of
DENV strains considering the conformational environment of
major surface envelope (E) protein. Based on the comprehensive
experimental dataset collated from previous researches,
antigenicity-dominant positions (ADPs) of DENV and four
serotypes were firstly derived based on the correlation between
residual mutation of E protein and antigenicity variance. Then,
the position specific scoring matrix (PSSM) was combined with
physic-chemical descriptors (PCDs) to build the antigenicity

calculation model. Finally, 1,143 historical sequences of DENV E
antigens from NCBI (Resch et al., 2009) were predicted and the
antigenicity relationship was analyzed between DENV serotypes.

MATERIALS AND METHODS

Dataset
For model construction, virus-antiserum neutralization titers
which reflecting the antigenic relationship were collated from
previous researches (Katzelnick et al., 2015), in which the
binding ability between DENV and DENV-post-infection
African green monkey antisera were determined. Corresponding
envelope protein of DENV were collected from National Center
for Biotechnology Information (NCBI) (Resch et al., 2009).
Considering the injected time and integrity of data, antisera
samples derived from African green monkey which injected
with corresponding vaccine for 3 mouth were chosen for model
construction and validation. Totally, 1,444 strain pairs with
experimental antigenicity distance involving 46 strains were
retained and those with antisera value labeled as <10 were
arbitrarily set as 5 to simplify the calculation. For model
construction, 80% of strain pairs (1,155) from experimental data
were randomly selected as training dataset and the remaining
20% (289 strain pairs) were defined as independent validation set.

Further, historical DENV strains with envelope protein
sequence were collected virus variation resources at the NCBI
(Resch et al., 2009), a total number of 4,633 E protein sequences
were retained. Based on the sequence identity of 100%, 1,143 un-
redundant E protein sequence were selected for further analysis.
The three-dimensional structure of envelope protein was collated
from Protein Data Bank (PDB id: 1OAN) (Berman et al., 2000;
Modis et al., 2003).

Identifying Antigenicity-Dominant
Positions of E Protein Surface
Since the antigenicity recognition between antigen and antibody
often occurs at the interaction interface of antigen surface, those
surface mutations exposed on protein surface in training set were
initially selected as candidates. After mapping all positions to
template structure (PDB id: 1OAN), 357 surface positions are
collected with solvent accessible surface areas (SASA) over 1
Å, which was calculated through Naccess V2.1.1. As antigenic
variation often related withmutations atmultiple positions, it can
be further correlated with antisera titer values by linear regression
(LR).

For each strain pair to be compared, the candidate ADPs are
defined as set P, which initially covers 357 surface positions.
By marking the positions with amino acid mutations as 1
and otherwise as 0, a 357-bit vector vec(P) can be generated.
Combined with the normalized antisera titer value, a LR was
established and those positions with weight (absolute value)
over 0 was defined as positions correlated with antigenicity
distance. In that case, 97 ADPs were retained. According to
geometric distance, those 97 positions can be classified into four
antigenic patches. Here, antisera titer value (V) was normalized
by logarithm (Log2V). For individual serotypes, the ADPs were
derived based on intra-serotypes experimental titers.

Frontiers in Genetics | www.frontiersin.org 2 December 2018 | Volume 9 | Article 621

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Qiu et al. In-silico Antigenicity Determination of DENV

Quantitative Model Construction Based on
Antigenicity-Dominant Positions
Position Specific Scoring Matrix
To quantitatively describe amino acid mutations on each
antigenic dominant position, amino acid distribution was
calculated to reflect the effect of residue mutations. A PSSM
was generated by position-specific iterated basic local alignment
search tool (PSI-BLAST) (Altschul et al., 1997) based on 1,143
historical envelope protein sequence. Each score on a 1 × 20
matrix represents the frequency of each amino acid occurred
on the described positions. For a pair of DENV strains, PSSM
vector was constructed based on the score of each position,
each score was defined as absolute difference of matrix score
for compared residues. For each queried E protein pairs, a 97-
bit PSSM descriptor was formulated to summarize amino acid
mutations at 97 positions.

Physical Chemical Property Descriptors
Physical chemical property descriptors were based on amino
acid index from AAindex database (Kawashima and Kanehisa,
2000). The optimization of physic-chemical indexes was done
as below: (1) Pair-wised Pearson Correlation Coefficient (PCC)
were calculated between any two AAindexes. (2) Two indexes
were defined as similar only when the corresponding PCC-
value was over 0.8. (3) All indexes were ranked according
to the number of similar ones which can be represented in
descending order. (4) From the top to the bottom of rank
list, indexes which can be represented by others were removed
sequentially. (5) Minimum index set was obtained which can
represent the full index list. Physic-chemical property descriptor
was generated based on the absolute difference of AAindex
summed for each antigenic region, further, the relationship
between PCDs, and experimental titers were constructed through
LR for feature selection. Here, the neighborhood region of
conformational structures was set as 1 Å according to distance
screen from 1 to 5 Å (Supplementary Table 2). Each round,
those indexes with weight unequal to 0 were remained and after
iterative selection, 20 antigenically-related indexes were selected
for further model construction. For the four antigenic patches,
(4∗20=) 80 bits of descriptors were generated as physic-chemical
property descriptors.

Modeling the Antigenic Variance
Based on antigenic descriptors incorporating PSSM profile and
physic-chemical properties, prediction model for antigenicity
regression could be constructed. Here, both qualitative and
quantitativemodel were adopted formodel construction between
normalized experimental titers and antigenicity descriptors. To
further analysis the antigenic relationship, different antigenic
cutoffs were set for classifications based on the homologous titers
between DENV strains and the antiserum against itself. In that
case, for the strain pairs based on E protein marked as Ea and Eb,
a 177-array quantitative descriptor for antigenicity-dominant
positions (QDAP) was derived as below containing PSSM profiles
and PCD. Further, the machine learning model can be generated
to fit the parameters of 177-dimensional descriptors for antigenic
variation which defined by logarithm of experimental titers

(LogVab) on the training set, as follows:

{

QDAP
(Ea ,Eb)
1 : 177 =

{

PSSM
(Ea ,Eb)
1 : 97 + PCD

(Ea ,Eb)
1 : 80

}

LogVab = Train1155(α1QDAP1,α2QDAP2 · · ·α177QDAP177)+ εα

(1)

Till the optimized model is reached as below:

L̂ogVab = γ0+γ1QDAP1+γ2QDAP2+· · ·+γ177QDAP177 (2)

Here, score L̂ogVab stood for the predicted antigenicity variation
between two DENV strains. The experimental LogVab represent
the logarithm of experimental titers which used for model
training. Thus, the escape threshold for the predicted L̂ogVab is
the same as that of LogVab from experimental titers.

Parameter Definition
To evaluate the performance of our model, statistical parameters
were defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision =
TP

TP + FP
(4)

Sensitivity =
TP

TP + FN
(5)

Here, TP represents true positive, TN represents true negative,
FP represents false positive, and the FN represents false negative.
Also, to evaluate our regression mode, correlation coefficient
(CC) was introduced as follows:

Correlation coefficient =

∑n
i=1 (Xi − X)(Yi − Y)

√

∑n
i=1 (Xi − X)

2
√

∑n
i=1 (Yi − Y)

2
(6)

Where Xi represents the predicted value, Yi represents the actual
value, X refer to average of Xi, and Y refer to the average of Yi.

RESULTS

Determination of Antigenicity-Dominant
Positions
Antigenicity-dominant positions (ADPs), whose mutations
are correlated with antigenicity variation, were determined
by following procedures: (1) surface exposed residues with
potential to become epitopes for immune response, and
(2) essential positions where mutations will likely lead to
antigenicity variations (see section Materials and Methods).
Three hundred and fifty-seven surface exposed positions were
initially retrieved. According to the correlation with training data
from experimental antigenicity variance (Katzelnick et al., 2015),
97 were identified as potential ADPs. It can be found that ADPs
are mainly located in domain ED1, ED2, and ED3 on E protein
surface, which was illustrated in Figure 1A. Above ADPs can be
clustered into four major surface patches according to spatial
distance, which may correlate to potential epitope areas on E
protein. Here, all four domains were labeled as D1, D2, D3, and
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FIGURE 1 | Antigenic-dominant positions of DENV. (A) The 97 ADPs mapped on envelope (E) protein (PDB id: 1OAN). D1, D2, D3, and D4 patches were marked in

blue, red, black, and green, respectively. (B) Clustering tree based on geometric distances between 97 ADPs, antigenic regions were marked with colors. (C)

Broad-neutralizing epitope areas previously determined for E protein (Aaskov et al., 1989; Cockburn et al., 2012; Fibriansah et al., 2014, 2015). (D) 30 ADPs for DENV

serotype 1. (E) 40 ADPs for DENV serotype 2. (F) 47 ADPs for DENV serotype 3. (G) 37 ADPs for DENV serotype 4.

D4, as being marked in blue, red, black, and green in Figure 1B,
respectively.

It can be seen that those 97 ADPs are highly overlapping
with broad-neutralizing epitopes derived from corresponding
antibodies targeting all four serotypes (Figure 1C). For instance,

the cross-neutralizing mAb of 4E11 was reported to recognize the
ED3 region of E protein monomer structure (Cockburn et al.,
2012), and another mAb of 1F4 could bind to ED1 regions
(Fibriansah et al., 2014). They are well-matched with our region
of D1 (blue) and D2 (red), respectively. Also, cross-neutralizing
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antibodies for polymer structures, such as 1B7 (Aaskov et al.,
1989) and 2D22 (Fibriansah et al., 2015), are partially overlapping
with our region of D3 (black) and D4 (green).

Besides the general ADPs for DENV, serotype-specific
antigenic sites were also determined for each DENV serotype
according to antisera of corresponding serotypes in a similar
way (see section Materials and Methods). Finally, 30, 40, 47,
and 37 sites are derived as serotype-specific ADPs for DENV
1–4, respectively, as been illustrated in Figures 1D–G and
Supplementary Table 1.

Model Construction and Evaluation
Machine learning models are adopted here for DENV
antigenicity predictions. Molecular features mainly cover
positions specific scoring matrix (PSSM) and physic-chemical
environments for each of the ADPs, which were previously
reported important to antigenicity predictions (Qiu et al.,
2016, 2018). The workflow of DENV antigenicity prediction
model covers four steps: (1) deriving PSSM for each ADP, (2)
generating physic-chemical properties of neighboring regions for
each ADP clusters, (3) selecting appropriate machine learning
approaches, and (4) calculating the antigenicity distance between
two compared DENV strains. Detailed information can be found
in section Materials and Methods.

For machine learning methods, both qualitative and
quantitative approaches were tested. Five qualitative models
including Sequential Minimal Optimization (SMO), Naïve
Bayes (NB), Support Vector Machine (SVM), Logistic Classifier
(LC), and Random Forest (RF) were used to establish different
classification models. Note that, no titer threshold has been
reported in DENV case. According to experimental results
of Katzelnick’s (Katzelnick et al., 2015), over 90% of self-
reactive titer value is over 20. In that case, tilter value of 10,
15, 20, and 40 were tentatively tried in turn as classification
cutoff for evaluation. Through 10-fold cross-validation, the
performance of all five algorithms indicated that NB classifier
obtained the best overall performance on different thresholds
and achieved the AUC-value over 0.88 under the threshold

of 20 (Figure 2A). Also, the average (AVG) accuracy of our
model achieved a range from 0.763 to 0.931 and fluctuation of
accuracy is extremely small with variance (VAR) no more than
0.002 (Supplementary Figure 1). This results illustrated that
our model could provide an accurate and robust prediction on
antigenic classifications and NB classifier was chosen to establish
our qualitative mode. After that, the performance of our
model was evaluated through independent testing dataset from
previous experiments (Katzelnick et al., 2015). Results indicated
that our NB classifier could achieve high AUC from 0.81 to 0.90
and ACC from 0.77 to 0.86 under different thresholds, which
indicate the outstanding ability of our model for qualitative
antigenicity classifications between comparable DENV strains
(Supplementary Figure 2).

For quantitative approaches, different regression model
including Additive Regression (AR), Support Vector Regression
(SVR), Gaussian Processes (GP), LR, and Isotonic Regression
(IR) were evaluated. Results indicated that LR could
achieve the best quantitative predictions with CC of 0.744
(Supplementary Figure 3). Thus, LR was chosen to establish
our quantitative model. Further, by setting different thresholds,
the classification performance of quantitative LR model was
also evaluated and compared with qualitative NB classifier
(Figure 2B). The results showed that quantitative LR model
are always better than qualitative NB classifier under different
thresholds. Thus, quantitative model of LR was adopted for final
analysis.

The Discrepancy Between DENV Serotypes
And Antigenicity Clusters
With above model, we made a large-scale antigenicity mapping
for 1,143 historical DENV strains retrieved from NCBI to
investigate the relationship between DENV serotypes (genetic
clusters) and antigenicity clusters. Firstly, the pair-wised
antigenicity similarity of all 1,143 historical strains were
calculated through our model for intra- and inter-serotypes.
Similarly, the genetic distance was also done by counting the
number of residual mutations for intra- and inter-serotypes

FIGURE 2 | Model performance of our model. (A) Cross-validation performance of qualitative model constructed by Sequential Minimal Optimization (SMO), Naïve

Bayes (NB), Support Vector Machine (SVM), Logistic Classifier (LC), and Random Forest (RF). Here, Y axis represents the AUC-value of different computational

models. (B) Performance of Linear Regression and Naïve Bayes on independent dataset.
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FIGURE 3 | Antigenicity and sequence analysis of DENV. (A) Genetic distance between intra- and inter-DENV serotypes by the number of residual mutations. Blue

bars represent the results of 1,143 historical strains, red bars represent the experimental strains of 47 strains from Leah’s work (Katzelnick et al., 2015). X axis

represents the four intra-groups and six inter-groups, Y axis represents mutation abundancy of compared strain pairs. (B) Antigenic similarity between intra- and inter-

DENV strains. Blue bars represent the results of 1,143 historical strains, red bars represent the experimental binding results of 47 strains from Leah’s work (Katzelnick

et al., 2015). X axis represents four intra- groups and six inter-groups. Y axis represents antigenic similarity of compared strain pairs, represented by logarithm of titer

value. (C) Antigenicity clustering of 1,143 DENV strains, red, yellow, blue, and cyan represents DENV serotype 1, 2, 3, and 4, respectively. (D) Antigenicity clustering of

two major clusters of DENV serotype 2, including DENV 2a and DENV 2b.

(Figure 3). It can be seen that, the genetic distance or variation
within one serotype is significantly less than that of inter-
serotypes and the distribution ranges of genetic distance were
clearly distinguishable without any overlapping between the
two classes (Figure 3A). However, in the case of antigenicity
similarities, this border become overlapping, despite the slight
differential trends (Figure 3B). Because the computational
principle to predict clusters is that the similarity of intra-
serotype strains should be separable from that of inter-serotype
strains, now the mixed border will certainly lead to discrepancies
between DENV genetic cluster (serotypes) and antigenic
clusters.

As reference, the large-scale animal data from Leah’s study
(Katzelnick et al., 2015) were calculated similarly to show the
difference between 4 intra- and 6 inter-groups (Figures 3A,B).
The discriminable genetic border, but not the antigenic border,
can be observed again in experiments as well. The agreeing results
indicated that DENV can be clearly clustered into four groups
genetically, but not antigenically. Thus, the traditional DENV
antigenic cluster should be re-evaluated.

Then, all the pair-wised antigenic similarity of 1,143 historical
strains were mapped into a clustering tree (Figure 3C), while
different colors represent different DENV serotypes. It can be
found that most of the intra-type strains tend to cluster together,
which were consistent with the serotype classification, as in the
case of serotype 1 and serotype 3. However, substantial number
of strains are clearly clustered into other serotypes. For instance,
a number of serotype 4 strains are grouped into serotype 2 and
3. More interesting, two different antigenic groups can be clearly
demonstrated for DENV 2. Therefore, we would like to propose
the further subtyping of DENV 2 into two sub-clusters, where
DENV 2a was antigenically closer to serotype 4 rather than
DENV 2b (Figure 3D).

Further, we clustered the antigenicity distance of DENV
based on neutralization titer value from monkey experiments
(Katzelnick et al., 2015). Because of the noise, the raw
experimental data was cleaned as below: (1) null values were
abandoned; (2) small and uncertain titers which labeled as “<10”
were defined as 5; (3) the logarithm of each titer values was
defined as the antigenic similarity of two compared strains.
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Antigenic clustering between remained pairs involving 28 DENV
strains was illustrated in Supplementary Figure 4.

It can be found that besides four clusters representing four
traditionally defined serotypes, a new cluster of DENV2 can be
detected, which was antigenically closer to serotype 4 rather than
serotype 2. This experiments result can support our proposal of
two sub-clusters for DENV2.

DISCUSSION

The antigenic difference between DENV viruses plays essential
role to the DENV epidemic control, vaccine-based prevention,
and clinical treatment. In this paper, we built an accurate and
efficient model to calculate the antigenic similarity for DENV
strains based on mutated sequences of E proteins. To achieve
that, we primarily considered the possible ADPs instead of all
mutations in E antigens, not only for the reasons of computing
efficiency, but also for predicting accuracy.

It is aware that not all mutations can cause antigenicity
variation. After possible ADPs were derived where mutations
could significantly affect the antigenicity, ADPs were further
clustered into spatial patches for detecting potential epitope
regions based on geometric distance on protein surface. It
is noted that ADPs were calculated from experimental data
previously accumulated. More abundant experimental data will
lead to more accurate model. Despite the creditability of our
model, the range of ADPs might be refreshed, and slightly
adjusted with the future accumulation of latest binding assays,
so as the minor changes of antigenic grouping.

Apart from the contribution of ADPs, the performance of our
model is also contributed by full consideration of PSSM profile
and the physic-chemical environment around the ADPs. Here,
the PSSM generated by PSI-BLAST (Altschul et al., 1997) could
provide a detailed description on evolution pressure of ADPs
at sequence level. Moreover, the physic-chemical environment
described by amino acid indexes are also considered to better
reflect the micro-environment variations between two compared
strains (Qiu et al., 2016). Thus, by incorporating PSSM profiles
and PCDs, our model could better predict the antigenicity
variation of DENV strains.

It was reported that, many DENV isolates are antigenic
similar to those viruses from different types rather than those
from the same type (Katzelnick et al., 2015). In this paper,
we explained the reasons why canonical DENV types are
not antigenically homogenous. Both data of experiments

and historically published sequences showed that, the
mutation accumulation is discrete but the antigenicity
variation of mutants tends to be continuous among the
DENV mutant populations (Supplementary Figure 5). The
discrete genetic distance between intra- and inter-groups
make it easy to define DENV subgroups but that may not
correlate with the antigenic similarity. Thus, we suggest the
re-consideration of the traditional serotype definition via DENV
antigenic similarity instead of genetic distance. Our model
provides convenient way to calculate the relative antigenicity
difference.

In summary, we established as a fast and efficient model
for DENV antigenicity based on sequence input of E antigens.
With the improvement of ADPs updating and incorporation of
additional antigens, it will be possible to establish an on-line tool
to serve the purpose of epidemicmonitoring and broad-spectrum
vaccine design of DENV.
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