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Artificial neural networks (ANNs) have been utilized for classification and prediction task
with remarkable accuracy. However, its implications for unsupervised data mining using
molecular data is under-explored. We found that embedding can extract biologically
relevant information from The Cancer Genome Atlas (TCGA) gene expression dataset by
learning a vector representation through gene co-occurrence. Ground truth relationship,
such as cancer types of the input sample and semantic meaning of genes, were showed
to retain in the resulting entity matrices. We also demonstrated the interpretability and
usage of these matrices in shortlisting candidates from a long gene list as in the case of
immunotherapy response. 73 related genes are singled out while the relatedness of 55
genes with immune checkpoint proteins (PD-1, PD-L1, and CTLA-4) are supported by
literature. 16 novel genes (ACAP1, C11orf45, CD79B, CFP, CLIC2, CMPK2, CXCR2P1,
CYTIP, FER, MCTO1, MMP25, RASGEF1B, SLFN12, TBC1D10C, TRAF3IP3, TTC39B)
related to immune checkpoint proteins were identified. Thus, this method is feasible to
mine big volume of biological data, and embedding would be a valuable tool to discover
novel knowledge from omics data. The resulting embedding matrices mined from TCGA
gene expression data are interactively explorable online (http://bit.ly/tcga-embedding-
cancer) and could serve as an informative reference for gene relatedness in the context
of cancer and is readily applicable to biomarker discovery of any molecular targeted
therapy.

Keywords: gene embedding, TCGA data mining, biomarker discovery, machine learning, immunothearpy

INTRODUCTION

Advances in machine learning have revolutionized our way to handle and interpret data. In
particular, artificial neural networks (ANNs), a bioinspired idea to mimic the architecture of neural
communication computationally, has been proven to be powerful in pattern recognition with
remarkable accuracy, which allow machine to not only classify cats and dogs, oranges and apple
(Krizhevsky et al., 2012; Sainath et al., 2013) but also determine good moves and bad moves in
playing chess and Go (Silver et al., 2016). The same technique has also been explored in oncology
to classify cancer subtypes, predict drug response and drug synergy, recognize malignant lesion
in medical images so on and so forth (Menden et al., 2013; Aliper et al., 2016; Litjens et al., 2016;
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Araújo et al., 2017; Han et al., 2017; Khosravi et al., 2017; Mohsen
et al., 2017; Preuer et al., 2017; Komura and Ishikawa, 2018;
Ribli et al., 2018). However, almost all projects used supervised
or semi-supervised learning method, because ANN is originally
built to learn from experience and is intrinsically supervised
learning, whereas unsupervised learning remains a tool mainly
for exploratory data analysis and dimension reduction.

With the availability of large scale of omics data, unsupervised
learning would come into sights to discover new knowledge from
these existing valuable resources, i.e., to mine biological data.
Conventional bioinformatic analysis, including but not limited to
techniques like clustering and co-expression, has accomplished
to reveal important findings from The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC),
where ANN seldom come into play. Given ANN impressing
achievement in computer vision, it is anticipated to reveal
information that may not be possible to find out using
ordinary bioinformatic approach. To our knowledge, it has not
been fully exploited whether ANN would retrieve biologically
important and relevant information from these data without
supervision. Some parallel unpublished works utilized variational
autoencoders (VAE) system, a deep learning framework, to
extract latent factors from gene expression data, and showed such
latent factors are biologically relevant (Dincer et al., 2018; Way
and Greene, 2018).

Hence, we implemented a shallow two-layer ANN in the
manner of word embedding (Mikolov et al., 2013a,b, 2018)
to train a 50-dimension distributed representation of 20531
genes from TCGA transcriptomic dataset (Figure 1A). Word
embedding is originated from natural language processing to
map phrases to a continuous value vector space based on
their distributional properties, which showed striking result
that semantic relationship of words and phrases was preserved
as distance in the vector space. We hypothesized that gene
properties are also distributional, such that character of a gene
can be defined by its companies in term of gene expression,
and embedding can be employed to infer the relationship
between genes, therefore, relevant biological information could
be retrieved from embedding space (Figures 1B,C). If so, the pre-
trained entity vectors could be useful to identify new biological
knowledge and open up an opportunity to integrate embedding
layer into other deeper neural network models.

MATERIALS AND METHODS

Data Preparation
TCGA level3 RNASeqV2 RSEM normalized data from 36
cancer types were downloaded from The Broad Institute GDAC
FireHose. COADREAD, GBMLGG, KIPAN, STES were marked
as reductant with COAD and READ, GBM and LGG, KICH,
KIRC, and KIRP, STAD, and ESCA, respectively. According to
TCGA code tables, samples which has sample type codes starting
with 1 were regarded as normal. Read counts lower than 1 were
regarded as noise and replaced with 1, then the data were log2
transformed. Unless otherwise specified, data presented as cancer
data was model trained from cancer only non-redundant set.

Embedding Model
Embedding is a method to represent a categorical variable using
some real numbers or mathematically defined as vector. In this
case, we would like to find the numerical representation of each
gene and sample by a two-layer shallow artificial neural network
consisting of a single embedding layer and an output layer. The
vector could be n-dimensional and the dimension of all gene
and sample vector need to be equal, while we arbitrarily chose
n = 50. To train an artificial neural network with gene expression
data, the embedding matrix (composed of all gene and sample
vectors) can be randomly initialized around zero. The predicted
gene expression of each gene in each sample Gai was defined by
dot product of the respective gene vector Ga and sample vector Si
plus gene bias ba and sample bias bi, i.e., Gai = Ga · Si

T
+ ba + bi.

The neural network was trained to minimize the loss between
predicted and true gene expression.

Model Training
All weights were initialized uniformly and randomly between
−0.05 and 0.05. The model was trained to minimize the mean
squared loss between predicted and true gene expression using
adaptive moment estimation (Adam) (Ma et al., 2018), a
stochastic gradient descent method, with mini-batch size of 64.
Gradient of parameters were back propagated as usual. Learning
rate of the model was determined from a loss versus learning
rate plot. All models were trained with three epochs. Models
were all implemented in Python 3.6 using PyTorch and fast.ai
library on a dedicated GPU Quadro P6000 machine hosted on
Paperspace (Brooklyn, NY, United States). The training and cross
validation metrics was shown in Supplementary Figure S4 and
Supplementary Table S1.

Self-Organizing Maps
Self-organizing maps (SOM) were initialized either by random or
principal component analysis (PCA). Map size were set as a 1D
vector with 50-component, the same dimension with gene and
sample embedding vector. SOM were implemented using Python
3.6 with default setting. The quantization loss and training time
was included in Supplementary Table S2.

Visualization of Embedding Dimension
Embedding matrices were visualized by either t-distributed
stochastic neighbor embedding (t-SNE) or PCA. Three
dimensional t-SNE was implemented with perplexity = 5
and 50000 iterations. Three components PCA were implemented
using default setting. Both t-SNE and PCA were done using
scikit-learn library. The cumulative variance explained by
PC1, PC2 and PC3 was included in Supplementary Table S3.
Hierarchical clustering of S was performed using unweighted
pair group method with arithmetic mean (UPGMA) and
implemented using seaborn clustermap function.

Gene Ontology Enrichment Analysis and
Enrichment Map
Gene Ontology enrichment analysis were performed using
geneSCF version 1.1-p2 (Kingma and Ba, 2014) and Gene
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FIGURE 1 | Overview of embedding system from a large gene expression dataset. (A) Schematic representation of entity system. Input data is a matrix of n samples
(rows) × k genes (columns) with gene expression encoded in each cell. Through embedding, categorical variables, i.e., genes and samples, were represented as
m-dimensional vector. (B) Samples are projected into m dimensional sample entity vector space. The embedding system learnt the feature of sample solely from
input matrix, such that similar sample are clustered in close proximity. (C) t-SNE representation of sample entity matrix from whole TCGA RNASeqV2 dataset. 32
cancer types are labeled with different color.

Ontology database dated May 2018. In brief, Fisher’s exact test
and Benjamini–Hochberg procedure was employed to calculate
p-value and false discovery rate (FDR), respectively. Terms were
considered statistically significant enriched if p-value <0.01 and
FDR <0.05. Enrichment map was constructed as previously
described (Subhash and Kanduri, 2016).

Simulation of Immunotherapy
Responders and Non-responders
Without access to immunotherapy responders’ gene expression
data, we opt to stimulate it using TCGA dataset. To do so,
we chose SKCM and LUSC to represent immunotherapy
responsive cancers, while LIHC and PRAD were regarded as
non-responsive cancers based on currently available knowledge
of clinical response. Centroid of predicted gene expression
level from responsive and unresponsive cancers were computed
by multiplying the centroid of sample entity matrix with
gene entity matrix. Gene with Euclidean distance smaller
than threshold (0.1) with another gene was defined as close
neighbors. Close neighbors of immune checkpoint proteins
(PDCD1/PD-1, CD274/PD-L1, CTLA4/CTLA-4) present
exclusively in responders were overlapped with its neighbors
defined from TCGA gene entity matrix.

Code and Data Availability
Trained embedding matrices and program codes were available
and freely accessible online in https://github.com/zeochoy/tcga-

embedding. The implementation of the embedding model
using the code were described in the online repository.
Embedding projector powered by TensorBoard can be utilized
to interactively explore the entity matrices1. The usage of
embedding projector was described in the Supplementary
Figure S1. The configuration JSON files were hosted on GitHub
gists.

RESULTS

Preservation of Sample and Gene
Relationship
To illustrate the embedding model learnt relationship between
samples, cancer types could be a readily available ground

1http://bit.ly/tcga-embedding-cancer

TABLE 1 | Comparison between PCA, SOM, and embedding.

PCA SOM Embedding

Linearity Linear Non-linear Non-linear

Relation between
gene and sample
matrices

Not necessarily
related

Not necessarily
related

Trained
collaboratively

Data normalization Required Built-in Built-in

Training time Short Medium Long
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truth reference. Principal component analysis (PCA) and self-
organizing maps (SOM) were applied on raw log2 expression
as a comparison to embedding (Table 1). Both SOM and
embedding are able to capture non-linear relationship, while
PCA is a linear dimension reduction method. Embedding differs
from others methods by the collaborative trained sample and
gene entity matrices. It is collaborative trained because the
neural net is optimized by the loss between predicted and
true gene expression, while the predicted gene expression is
defined by sample and gene embedding matrices together (i.e.,
predicted gene expression is the dot product of respective sample
and gene vector.). Although embedding matrices are trained
collaboratively in embedding, one major drawback is its relatively
longer training time (up to several hours depending on the
machines and data compared to a few seconds or minutes in PCA
or SOM). 50-component PCA and SOM with 50-dimensional
codebook vectors were used in order to (Sainath et al., 2013)

obtain component matrix with the same dimension as embedding
matrices, and (Krizhevsky et al., 2012) to investigate the ability
to capture underlying information from the gene expression data
among different methods.

Component matrix obtained from 50-component PCA
(95.05% variance explained), sample entity matrix and SOM of
hepatobiliary and pancreatic cancers were projected into three
dimensional space and labeled with distinct color according to
its cancer type as shown in Figure 2A. Samples with same
cancer type were clearly clustered together after embedding
and SOM, but not in 50-component PCA. It was striking to
reveal that the relationships were preserved even the dimension
were dramatically reduced from 20531 in log2 expression to
50 dimension embedding space. The superiority of embedding
in sample relationship preservation over SOM is more obvious
if all cancer types are considered as shown in Supplementary
Figure S2.

FIGURE 2 | Preservation of relationship and the properties of entity model. (A) PCA projection of hepatobiliary and pancreatic cancers [liver hepatocellular
carcinoma/LIHC (green), cholangiocarcinoma/CHOL (red), and pancreatic adenoma/PAAD (blue)] from (upper left) 50-compenet PCA projection of raw log 2 gene
expression level; (upper right) sample entity matrix; (lower left) SOM with PCA initialized map, and; (lower right) SOM with random initialized map. Sample relationship
are preserved by the embedding model even with dramatically reduced dimensions (20531 to 50). (B) PCA projection of all 20531 genes from (1st row)
50-compenet PCA projection of raw log 2 gene expression level; (2nd row) gene entity matrix; (3rd row) SOM with PCA initialized map and; (4th row) SOM with
random initialized map. Housekeeping genes (GAPDH, ACTB, B2M) are highlighted in red. Housekeeping genes are clustered together in gene entity matrix, which
showed the ability of the embedding model to understand semantic relationship between genes that not biologically and functionally related. G1 cell cycle (CCNE1,
CCNE2, CDK2) and DNA damage response (SIRT6, CHD1L, MRE11A) related genes were highlighted in green and blue, respectively. PCA projection of entire gene
entity matrix with PI3K/Akt/mTOR pathway components highlighted in (C) and a zoomed in projection with PI3K/Akt/mTOR components. PIK3CA is labeled in red;
AKT1, AKT2, AKT3 are labeled in green; MTOR is labeled in blue; and MAPKAP1 and RPS6KB1 are labeled in yellow.
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The goal of embedding shall be to reflect semantic or biological
relationship between genes. Housekeeping genes are suitable for
such illustrative purpose, because it is not functionally interacting
but semantically related. Few G1 cell cycle (CCNE1, CCNE2,
and CDK2) and DNA damage response (SIRT6, CHD1L, and
MRE11A) related genes were also indicated. Genes were scattered
without noticeable structure before embedding, but found to
harbor two distinct clusters afterward. In contrast with 50-
component PCA (68.10% variance explained) of original gene
expressions and SOM, related genes were clearly adjacent to each
other only after embedding as shown in Figure 2B.

As aforementioned, the relationship between genes was
preserved by distance in the entity space. In addition, key
components of PI3K/Akt/mTOR pathway (PIK3CA, AKT1,
AKT2, AKT3, MTOR, EIF4EBP1, and RPS6KB1) was taken as
an example to demonstrate the vector-like property of gene
entity matrix as shown in Figure 2C. PIK3CA had similar
distance of from 0.6 to 0.7 to AKT1 and AKT2, but was
farther to AKT3. AKT1 and AKT2 were closer neighbors, while
AKT3 was in a different location in the entity space. Distances
between AKT1 and AKT2 with MTOR were also similar, but
not AKT3. This difference might implied a distinct expression
pattern of AKT3 and its relationship with MTOR. Analogous
phenomenon was true for MTOR and its downstream effectors,
EIF4FBP1 and RPSKB1. One of the most compelling result of
such is the ability to perform arithmetic operation on abstract
concepts. For example, vector(PIK3CA) – vector(AKT1) shall be
approximately equal to vector(PIK3CA) – vector(AKT2), and this
property shall apply to vector(MTOR) – vector(MAPKAP1) and
vector(MTOR) – vector(RPS6KB1) as well.

Understanding the Embedding
Dimensions
Another common concern of machine learning is the difficulty
to comprehend the model. In order to address the issue,
we investigated the rationale of embedding dimensions. As
presented in Figures 3A,B, cancer types could be differentiated
from preferences in embedding dimension. Similar cancer types
shared akin characteristic, thus were aggregated in a group. Four
distinguishable groups highlighted in blue, yellow, green, and red
were noticed.

Group blue, corresponded to blood cancers, was least
weighted in dimension 12 and 43. Brain cancers were annotated
as group yellow with an inclined weighing in dimension 15
and 17. Gastrointestinal cancers and a few of cancer with
epithelial origins were intimately associated and labeled in
green, which showed bias toward dimension 22, 25, 35, and 46.
Lastly, red group consisted of endocrine cancers and the one
with mesenchymal origins without obvious preferences except
negatively weighted in dimension 35 and 46.

Correspondingly, biological meaning of dimensions was
revealed using GO enrichment analysis as in Figures 3C,D. For
example, dimension 43 was related to cornification unrelated
to blood cancers. In line with group yellow, biological process
concerning nervous system was over-represented in term of
GO in dimension 17, while keratinization and epidermis

development genes were enriched in dimension 22 and 25.
Dimension 35 and 46 was linked with cell adhesion, collagen and
extra-cellular matrix and G protein coupled receptors (GPCR)
signaling, that is notably corresponded to be gastrointestinal
cancers and less concerned in cancer with mesenchymal origins.

Case Studies: Molecular Subtyping of
Liver Hepatocellular Carcinoma Dataset
In order to examine the power of embedding, we attempted
to classify molecular subtypes of liver hepatocellular carcinoma
using entity matrices. Sample entity matrix revealed apparent
difference between liver cancer samples in Figure 4A. Three
subtypes were previously identified by TCGA Research Network
on this dataset (Merico et al., 2010) using five platforms
data including DNA copy number, DNA methylation, gene
expression, miRNA expression and reverse phase protein lysate
microarray. Integrated cluster 1, i.e., iClust1, exhibited by
low CDKN2A silencing and low TERT expression, iClust2
was characterized by high CDKN2A silencing, while iClust3
corresponded to 17p loss. Therefore, we extracted the gene
entity matrices of TERT, CDKN2A, and TP53 (that is located
at 17p) and selected three dimensions, 10, 12, and 18 for
CDKN2A, TERT, and TP53, respectively, of disparate weights
on the signature genes as illustrated in Figure 4B. The three
selected dimensions were pulled out for clustering. Five groups,
as annotated C1 to C5 in Figure 4C, were resolved. C3 with high
CDKN2A and low TERT expression resembled iClust1, and C2
with distinguished lower weighting in dimension 18 coincided
with iClust3, while substantially lower weighted in dimension 10
was similar to iClust2 characteristic. Furthermore, a cluster with
heavily weighted in both dimension 10, 12, and 18 was uncovered
as C1. The significance of C1 cluster is not yet known and may
indicate a novel molecular subtype in liver cancer.

Case Studies: Identification of Related
Genes With Immune Checkpoint
Blockade Responsiveness
To demonstrate the practical use of such embedding, responders
and non-responders were simulated using TCGA data as detailed
in Methods. The simulation devised as a compromise to the
fact that there are no existing comprehensive transcriptomic
profile of immune checkpoint therapy responders and non-
responders to date. We chose two cancer types to represent
immunotherapy responsive cancers (namely SKCM and LUSC)
and non-responsive cancers (LIHC and PRAD), respectively.
More than one cancer type is required for simulation, because
we would like to single out related genes to immune checkpoint
proteins instead of the differential expressed genes between
cancer types. And cancer types were selected based on currently
available knowledge of clinical response, such that melanoma
and lung cancer are generally known to more immunotherapy
responsive than liver and prostate cancer. Then, we pulled the
neighboring genes with immune checkpoint proteins exclusively
discovered in responder set. By overlapping the candidates with
neighboring genes with PD-1, PD-L1, and CTLA-4 in learnt
embedding matrices, the number of candidate genes could
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FIGURE 3 | Interpretations of entity dimension. (A) Heatmap of cancer types (corresponding centroids) with respect to entity dimensions. Cancers were clustered
into at least 4 distinct groups labeled with blue, yellow, green, and red. Group blue corresponded to blood cancers, group yellow corresponded to brain cancers,
group green included gastrointestinal cancers with epithelial origin, while group red consisted of cancers with mesenchymal origin. (B) Heatmap of all genes with
respect to entity dimensions. Gene can correspond to more than one dimension and differentially “hot” dimension between 4 sample groups are circled and
indicated by arrow. (C) Gene Ontology (Biological Process) enrichment of top 100 genes from differentially “hot”. Notably, the “hot” dimensions were associated with
distinct GO terms and related to respective group. (D) Enrichment map of GO term showed three apparent clusters corresponding to respective group. Node size is
proportional to gene set size; edge width is proportional to overlap coefficient, while node color is consistent to group color.

be successfully reduced from several thousands to fewer than
twenty as shown in Figure 5. In addition, a similar simulation
approach using microsatellite and POLE status for stratification
in COAD, READ, and UCEC tumors have been included in
Supplementary Data “Identification of Related Genes With
Immune Checkpoint Blockade Responsiveness Stratified by
Microsatellite and POLE Mutation Status” and Supplementary
Figure S5 to illustrate the applicability of our embedding method.
If comprehensive transcriptomic dataset of immunotherapy
responsiveness is accessible in the future, one may pulled the
differentially expressed genes to substitute the above neighboring
genes method to yield more biologically accurate and relevant
result. It is doubtlessly possible that not all data included in the
responders set for simulation is true immunotherapy responder,
therefore may hinder the usefulness and correctness of the result.
However, the stimulation approach seems to be an appropriate
alternative given that our limited accessibility to real life dataset,
and to transfer our current clinical knowledge for potential
discovery.

13 (C11orf45, CD101, CLEC7A, CLIC2, CMPK2, FER, GNLY,
GPR183, IL18R1, MCTP1, RASGEF1B, SLFN12, TTC39B),
26 (CD247, CD28, CD3D, CD5, CD79B, CD8B, CD96, CFP,
CLEC10A, CRTAM, CST7, CXCR2P1, CXCR6, CYTIP, EOMES,
GZMH, GZMK, ITK, LAT, LTB, PTPRCAP, TBC1D10C,

TNFRSF8, TRAF3IP3, ZAP70, ZBP1), and 34 (ACAP1, CCR5,
CD2, CD247, CD27, CD28, CD3D, CD5, CD6, CD8B, CD96,
CST7, CTSW, CXCL11, CXCR3, CXCR6, CYTIP, FCRL5, FCRLA,
GZMA, GZMH, ITK, KLRK1, LCK, LTB, MAP4K1, MGC29506,
MMP25, PTPRCAP, SLAMF6, TNFRSF8, TNFRSF9, TRAF3IP3,
ZAP70) genes were speculated to be related to PD-1, PD-L1, and
CTLA-4, respectively. Pearson correlation coefficients ranged
from −0.11 to 0.72 between candidates and respective immune
checkpoint protein in responders dataset (Figure 5F). The
relatively large range of correlation coefficients reflected the
embedding model do not only discover co-expressed pairs, but
also other related genes in biological or semantic sense. Only 1
of the candidates, LCK, was functionally interacting partner in
STRING or BioGRID.

Of note, the relations of 75% of the pairs were supported
by the literature (Supplementary Tables S4–S6). 11 out
of 16 remaining 25% were mainly contributed to immune
response but lacking direct evidence to support their association
between the checkpoint proteins and candidates (CD79B, CFP,
CMPK2, CXCR2P1, CYTIP, FER, MMP25, RASGEF1B, SLFN12,
TBC1D10C, TRAF3IP3), while 5 genes (ACAP1, C11orf45,
CLIC2, MCTP1, TTC39B) were poorly characterized with
unknown or limited information on their biological functions.
We speculated that 16 novel genes might be effector genes
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FIGURE 4 | Molecular subtyping of liver hepatocellular carcinoma/LIHC using entity matrix. (A) Heatmap of LIHC dataset with respect to entity dimensions, only
dimensions with stand deviation larger than mean stand deviation were shown. (B) Heatmap of three signatures genes, TERT, CDKN2A, and TP53 which were
previously reported to distinguish liver cancer subtypes, with respect to entity dimensions. Dimension 10, 12, 18 corresponded to TERT, CDKN2A, and TP53,
respectively. (C) Heatmap of LIHC dataset with respect to entity dimension 10, 12, and 18 showed five distinct clusters labeled as C1-C5. C3, C4&C5, and C2
matched with iClust1, iClust2, and iClust3, respectively.

corresponding to antitumor immunity and act as indicators for
successful checkpoint blockade therapy. On the other hand, most
of the potential genes (CCR5, CD101, CD2, CD247, CD28, CD3D,
CD5, CD6, CD8B, CLEC7A, CLEC10A, CXCL11, CXCR3, CXCR6,
CYTIP, EOMES, ITK, KLRK1, LAT, LCK, MAP4K1, PTPRCAP,
TNFRSF8, TNFRSF9, TRAK3IP3, ZAP70) were involved in
T cell signaling (including T cell activation, T cell receptor
signaling and T cell migration), others were engaged in
B cell (CD79B, FCRL5, FCRLA, MGC29506, GPR183), NK
cell signaling (SLAMF6), cytotoxicity (CRTAM, CTSW, GNLY,
GZMA, GZMH, GZMK) or known to be pro-inflammatory
(CMPK2, IL18R1, LTB, MMP25, ZBP1). Remaining genes were
either recognized to be involved in immune response but with
undetermined biological function (CD96, CFP, CST7, CXCR2P1,
FER, RASGEF1B, SLFN12, TBC1D10C) or with unknown role
in immune system at all (ACAP1, C11orf45, CLIC2, MCTP1,
TTC39B).

DISCUSSION

We applied embedding, an unsupervised machine learning
method originally used for natural language processing, to mine
expression data. By embedding, sample and gene relationship
are resolved as evidenced by the model ability to preserve
known entities, such as cancer types and semantic meaning
of genes. The underlying mechanism of the model is easily

understandable instead of depicted as black-box in other
machine learning or ANNs (Cancer Genome Atlas Research
Network. Electronic address: wheeler@bcm.eduA and Cancer
Genome Atlas Research Network, 2017), while a straightforward
posterior over-representation analysis or enrichment analysis
is enough to determine the biological meaning of embedding
dimensions. On top of that, the model could be exploited to
spot previously undiscovered function or related pathway of
a gene by inspecting its coordinates in embedding space. It
is possible because each gene is not assigned to a particular
system initially, but to embedding space that corresponds
to many systems. One may imagine the input dataset as a
collection of experimental results, in which certain genes were
disrupted in each sample, in particular, the case of cancers,
as traditional knockdown/overexpression assay and its resulting
gene expression change was recorded by RNA sequencing. In
the sense, it is easier to interpret the process undertaken by
embedding and imagine the power of such model.

A major advance made by embedding is its capability to
learn without the need of existing knowledge base. Similar
works had been done by inferring ontologies from similarities
matrix of molecular networks either as unsupervised or semi-
supervised (Dutkowski et al., 2013; Kramer et al., 2014; LeCun
et al., 2015; Li and Yip, 2016; Paul and Shill, 2018). However,
both studies worked on similarities matrix rather than raw
expression data. Even further improvements have been made
on threshold setting and tree construction, it still describes
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FIGURE 5 | Identification of potential related genes for immune checkpoint blockade therapy responsiveness. Venn diagram of neighboring genes in simulated
immunotherapy responders and non-responders with (A) PD-1, (B) PD-L1, (C) CTLA-4 and its corresponding neighbors in TCGA gene entity space. Functionally
interacting partner (in STRING or BioGRID) are underlined. Gene relatedness supported by the literature are in bold. Genes related to T cell, B cell, NK cell, cytotoxic
effector, pro-inflammatory, or immune response are highlighted in yellow, dark blue, orange, green, light blue, and gray, respectively. Known and predicted
protein-protein interaction of (D) PD-1 and PD-L1, and (E) CTLA-4 were retrieved from STRING. (F) Boxplot of Pearson correlation between gene candidates and
respective immune checkpoint protein.

linear relationship only. On the contrary, the relationships learnt
using embedding are non-linear, because its findings cannot
be explained solely using correlation coefficient. This non-
linearity potentially enables embedding to surpass conventional
bioinformatic analysis approach in discovering biological data
relationships, such as biclustering and co-expression provided
by Oncomine, cBioPortal, and TCGAbiolinks. Furthermore,
a recent landmark paper (Sykacek, 2012) on using a visible
neural network to model yeast cell system has implicated the
potential advantage of such computational inferred data (i.e.,
CliXO (Dutkowski et al., 2013) or entity matrix) over manually
curated database [GO (The Gene Ontology Consortium, 2017)]
by experts in discovering new biological process.

Although data preparation is minimal for embedding
comparing with models working on statistic (similarity matrix),
data shall be critically chosen because gene entity matrix
is intrinsically sensitive to the input data as demonstrated
in Supplementary Data “Robustness of Embedding Model
Towards Different Sample Types” and Supplementary Figure S3.

For example, if you want the model to learn the gene network
of hepatobiliary pancreatic cancers, you shall only input HBP
cancers without normal control samples. Otherwise, the model
could learnt the connections from normal data as well and
overwhelm the desired result.

Still, the implementation of embedding is simple but its result
is valuable. It is different from other machine learning or deep
learning model, because prediction is not our interest. Compared
with existing method to map latent space of expression data using
VAEs (Dincer et al., 2018; Way and Greene, 2018), embedding
is concise in architecture and easier to train but also achieve
biologically relevant entity space. Parallel work using the same
technique but trained on datasets from GEO database also
demonstrated the trained matrix reflected functional relationship
(Du et al., 2018). However, we suggested the representation
may go beyond functional interactions to capture semantic
understanding of genes, such as housekeeping genes. In addition,
the use of embedding could be plentiful. We demonstrated
the gene entity matrix could serve as an immediate reference
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to gene relationships to prioritize or single out gene lists,
and the sample entity matrix could be further exploited for
molecular subtyping. It is compelling to apply the same method
to identify biomarkers of diseases or synergistic targets of a
drug treatment. One may utilize the predictive power of the
model to extrapolate unknown or missing gene expressions
values using a subset of gene expression profile, such as targeted
RNA sequencing. It might seem irrelevant or impossible at
first sight, but the machinery behind gene embedding is a
technique called collaborative filtering. Collaborative filtering
is a widely adopted recommender system to make predictions
of users’ interest by their preferences as seen in Google,
Facebook, Twitter and Netflix (Das et al., 2009; Su and
Khoshgoftaar, 2009; Gupta et al., 2013) etc. Apart from
these, embedding could be coupled with other neural network
architecture that trains together with the neural network

or incorporate the pre-trained entity matrices into the new
model.
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