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The identification of gene-environment interactions (G × E) may eventually guide

health-related choices and medical interventions for complex diseases. More powerful

methods must be developed to identify G × E. The “adaptive combination of Bayes

factors method” (ADABF) has been proposed as a powerful genome-wide polygenic

approach to detect G × E. In this work, we evaluate its performance when serving as

a gene-based G × E test. We compare ADABF with six tests including the “Set-Based

gene-EnviRonment InterAction test” (SBERIA), “gene-environment set association test”

(GESAT), etc. With extensive simulations, SBERIA and ADABF are found to be more

powerful than other G × E tests. However, SBERIA suffers from a power loss when

50% SNP main effects are in the same direction with the SNP × E interaction effects

while 50% are in the opposite direction. We further applied these seven G × E methods

to the Taiwan Biobank data to explore gene× alcohol interactions on blood pressure

levels. The ADAMTS7P1 gene at chromosome 15q25.2 was detected to interact with

alcohol consumption on diastolic blood pressure (p = 9.5 × 10−7, according to the

GESAT test). At this gene, the P-values provided by other six tests all reached the

suggestive significance level (p < 5 × 10−5). Regarding the computation time required

for a genome-wide G × E analysis, SBERIA is the fastest method, followed by ADABF.

Considering the validity, power performance, robustness, and computation time, ADABF

is recommended for genome-wide G × E analyses.

Keywords: diastolic blood pressure, systolic blood pressure, hypertension, gene-alcohol interaction, Taiwan

Biobank, multiple testing correction

INTRODUCTION

“Gene-environment interaction” (G × E) is defined as “a different effect of an environmental
exposure on disease risk in subjects with different genotypes” or “a different effect of a genotype on
disease risk in subjects with different environmental exposures” (Ottman, 1996). “Gene-treatment
interactions” are specific examples of G × E in pharmacogenomics. Searching for genes that may
modify drug responses will significantly improve drug delivery by identifying subjects that can
benefit from therapy and those at an increased risk of harm (He and Allen, 2010; Chen et al., 2011;
Ko et al., 2015). The identification of G× E and gene-treatment interactions may eventually guide
health-related choices and medical interventions for complex diseases (Franks and Pare, 2016).
Clearly, more powerful methods must be developed to detect G × E (Hunter, 2005; Zhang and
Biswas, 2015).
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Exploring G × E is important for disease prevention.
However, compared with the success achieved in identifying
genetic main effects, very few G× E findings have been replicated
partially due to the lack of power (Jiao et al., 2013). Single-
nucleotide polymorphism (SNP) analysis (one SNP at a time) is
a commonly used approach. Nonetheless, this approach suffers
from a power loss due to a harsh penalty of multiple testing. Even
true positives may not stand out under the stringent genome-
wide significance level (Lin and Lee, 2010), i.e., 5× 10−8.

Several set-based (or gene-based) analysis methods have been
developed to aggregate the G × E signals within a gene/region
and alleviate the multiple-testing penalty (Jiao et al., 2013; Lin
et al., 2013, 2016; Chen et al., 2014). Jiao et al. proposed a two-
stage “Set-Based gene-EnviRonment InterAction test” for case-
control studies, called “SBERIA” (Jiao et al., 2013). During the
first stage, the SNPs are filtered according to their associations
with E (this is Step 1 in Murcray et al., 2009). The sign and
significance of the filtering statistics are then used to weight SNP
× E in the second stage (Jiao et al., 2013).

Lin et al. proposed the “gene-environment set association
test” (GESAT), which is a variance component (VC) test that
estimates the SNP main effects using a ridge regression (Lin
et al., 2013). These authors later developed an “interaction
sequence kernel association test” (iSKAT) that is regarded as the
optimal in the class of VC tests (Lin et al., 2016). While GESAT
assumes no correlation among the SNP × E interaction effects,
iSKAT searches for the optimal correlation coefficient among
them. Therefore, GESAT is a specific case of iSKAT, and both
approaches can be implemented using the “iSKAT” R package.

Chen et al. proposed a G × E test that treats the SNP main
effects as fixed (designated “INT_FIX”) or random (designated
“INT_RAN”). They also developed a joint test for detecting
the genetic associations while allowing for G × E (designated
“JOINT”) (Chen et al., 2014). These three methods belong to
the class of VC tests and can be performed using the “rareGE”
R package.

The abovementioned methods have been proposed with user-
friendly analysis tools that are popular choices for G × E
analyses. Recently, the “adaptive combination of Bayes factors
method” (ADABF) has been proposed as a powerful polygenic
approach to detect G × E (Lin et al., 2018). This method can
also serve as a gene-based G × E test. In this study, we evaluate
the performance of ADABF when detecting gene-based G × E
signals. We compare ADABF with the abovementioned six tests.
Using a sample of 16,555 subjects from the Taiwan Biobank
(TWB) data, we perform a genome-wide gene-alcohol interaction
analysis on diastolic blood pressure (DBP) and systolic blood
pressure (SBP). The validity, power, robustness, and computation
time of the seven G × E set-based tests are investigated through
simulations or real data analyses.

MATERIALS AND METHODS

Adaptive Combination of Bayes Factors
Method
Suppose a gene or an analysis region contains L SNPs. Let Y
be the phenotype, g [·] be the link function, Gl be the number

of minor allele (0, 1, or 2) at the lth SNP (l = 1, . . . , L), E
be the environmental factor, and X be the vector of potential
confounder covariates. First, we assess each SNP × E interaction
by considering the following generalized linear model (GLM):

g [E (Y)] = β0 + βGGl + βEE+ βGEGlE+ β ′
XX, l = 1, · · · , L.

(1)
For simplicity, we omit the subscript “i” that represents the data
of the ith subject. The SNP × E interaction is of interest, and
thereforeH0 :βGE = 0 vs.H1 :βGE 6= 0. Let β̂GE be themaximum
likelihood estimate (MLE) of βGE. According to the asymptotic
normality ofMLE, β̂GE follows a normal distribution with amean
of βGE and a variance of V, i.e., β̂GE ∼ N (βGE,V).

We assume that the true interaction effects follow a normal
distribution with a mean of 0 and a variance of W, i.e., βGE ∼

N (0,W). The Bayes factor (BF) (Wakefield, 2007, 2009) of the
SNP× E interaction is

BF =
Pr (Data|H1)

Pr (Data|H0)
=

√

V̂

V̂ +W
exp





β̂2
GEW

2V̂
(

V̂ +W
)



 , (2)

where β̂GE is the MLE of βGE, and V̂ is the estimated variance of

β̂GE. To propose a prior that can be applicable to most situations,
we first scale the environmental factor E to range from 0 to 1. A
dichotomous E will be coded as 0 or 1 whereas a continuous E will
be first scaled to be E′ = (E− Emin)/(Emax − Emin) , in which
Emin and Emax are theminimum andmaximum of E, respectively.
In this way, GlE in Equation (1) will be between 0 and 2, in the
same range as Gl.

The Wellcome Trust Case Control Consortium GWAS
(WTCCC, 2007) specified the prior for SNP main effects as βG ∼

N (0,W), where W = 0.22 = 0.04. This prior implies that we
believe 95% of odds ratios (ORs) range from exp (−2× 0.2) =

0.67 to exp (2× 0.2) = 1.49. Now that GlE is in the same range
as Gl, we consider using the same prior for SNP × E interaction,
i.e., βGE ∼ N (0,W) whereW = 0.22 = 0.04. Reported SNP× E
interactions have been of modest effect sizes that can be positive
or negative (Simino et al., 2013; Rudolph et al., 2016; Sung et al.,
2018), and therefore N (0,W = 0.04) may be a reasonable prior
for βGE (Lin et al., 2018).

To apply ADABF to continuous traits, we should first
standardize the traits to have a mean of 0 and a standard
deviation of 1, as implemented in our ADABF R code that
can be downloaded from http://homepage.ntu.edu.tw/~linwy/
ADABFGE.html. The prior of N (0,W = 0.04) implies that 95%
of βGEl s range from (−2× 0.2) = −0.4 to (2× 0.2) = 0.4. This
may also be a reasonable prior for βGE when traits are continuous.

Because SNP × E interaction effects reported by empirical
studies have been modest (Simino et al., 2013; Rudolph et al.,
2016; Sung et al., 2018), this prior variance (W = 0.22 = 0.04)
may be slightly large for βGEl s. However, a larger prior variance
can just reflect our uncertainty of the prior information (Wang
et al., 2009).

After calculating the BFs of all the L SNP × E, we sort these L
BFs from the largest to the smallest, and denote them as BF(1) ≥

BF(2) ≥ · · · ≥ BF(L). The leading k BFs are summarized by

Sk =
∑k

l=1 log
(

BF(l)

)

, where k = 1, · · · , L. Let β̂GE,H0
be the
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vector containing L β̂GEs under the null hypothesis H0 (none

of the L SNPs interact with E). We draw B sets of β̂GE,H0
from

the multivariate normal distribution with a mean vector of 0 and
a variance-covariance matrix incorporating the pairwise linkage

disequilibrium (LD) among the L SNPs, and then calculate S
(1)
k
,

. . . , S
(B)

k
accordingly. The details can be found from Lin et al.

(2018).
By comparing Sk with its counterparts fromH0 (S

(1)
k
, . . . , S

(B)

k
),

we obtain the P-value regarding Sk, where k = 1, · · · , L. We
then find the minimum P-values (across k = 1, · · · , L) for the
observed sample and for each of the resampling replicates. By
comparing these minimum P-values, we obtain the significance
of G × E for the observed sample. The efficient sequential
resampling procedure (Liu et al., 2016) is used to speed up
ADABF, in which the minimum and maximum numbers of
resampling were set at 103 and 107, respectively. The resampling
procedure is repeated until the P > 100/B, where B is the number
of resampling.

Because the same prior variance W is used for the observed
sample and for each of the resampling replicates, the performance
of ADABF is robust to the selection of W (Lin et al., 2018). The
R code of the ADABF method can be downloaded from http://
homepage.ntu.edu.tw/~linwy/ADABFGE.html. A Perl script
is also provided to facilitate genome-wide analyses, http://
homepage.ntu.edu.tw/~linwy/ADABFGEfromPLINK.html.

Set-Based Gene-EnviRonment InterAction
Test (SBERIA)
There are two steps in SBERIA (Jiao et al., 2013): the filtering
stage and the G× E stage. For case-control studies, a commonly-
used filtering stage is to regress E on each SNP and assess the
association of each SNP with E, by fitting a logistic regression for
binary E or a linear regression for continuous E (Murcray et al.,
2009; Jiao et al., 2013). This strategy is referred to as the “SNP-E
association filtering.”

Suppose a positive interaction between SNP (coded as 0, 1, or
2) and E (coded as 0 or 1) is responsible for the susceptibility
of a rare disease. Subjects with E = 1 and SNP = 2 will have an
increased disease risk. If cases are ascertained, more E = 1 and
SNP = 2 combinations will be observed in cases, representing
that SNP and E will be positively associated in cases. Assuming
SNP and E are approximately independent in controls, they will
be also positively associated in the combined case-control data
(Jiao et al., 2013). Similarly, if there is a negative interaction
between SNP and E, they will be negatively associated in the
combined case-control data. Therefore, for rare-disease studies
with ascertained cases, the association between SNP and E
in combined case-control samples can be an efficient filtering
statistic for detecting SNP× E interaction (Murcray et al., 2011).
Dai et al. (Proposition 3) has justified the validity of using this
filtering stage in G× E studies (Dai et al., 2012).

In the subsequent G × E stage, the hypothesis of interest is
H0 :αGE = 0 vs. H1 :αGE 6= 0 in the following GLM,

g [E (Y)] = α0 + α′
GG+ αEE+ αGEEG

′
ŵ + α′

XX, (3)

where G is the vector of the numbers of minor allele (0, 1, or
2) at the L SNPs, and ŵ is the vector of weights given to the
L SNPs. The weight is determined by the sign and significance
of the filtering statistic. The weight given to a SNP is 1 if it
is positively associated with E, −1 if it is negatively associated
with E, and is a very small value (e.g., 0.0001) if the SNP is
not statistically associated with E (i.e., filtering test P-value >

a pre-specified significance level, say, 0.10 in Jiao et al., 2013).
The SBERIA approach uses this weighting scheme because the
SNP-E association test has been shown to be asymptotically
independent of the SNP × E interaction test (Murcray et al.,
2009; Dai et al., 2012) and is powerful for filtering (Jiao et al.,
2013).

Another commonly-used screening strategy is the “main-
effect filtering.” Each SNP is first screened by testing H0 : γG = 0
vs. H1 : γG 6= 0 in the following GLM:

g [E (Y)] = γ0 + γGGl + γ ′
XX. (4)

To preserve the type I error rates, the filtering statistic (stage
1) and the following interaction test statistic (stage 2) must
be asymptotically independent under the null hypothesis. Dai
et al. have proven the validity of using the “main-effect
filtering” as the screening strategy (Dai et al., 2012). Each
element in ŵ represents the weight given to a SNP, which
is 1 if the SNP is positively associated with Y, −1 if it is
negatively associated with Y, and is a very small value (0.0001)
if the SNP is not statistically associated with Y (i.e., P-value
> a pre-specified significance level, say, 0.10 in Jiao et al.,
2013).

Variance Component (VC) Test
The class of VC tests include iSKAT (Lin et al., 2016), GESAT (Lin
et al., 2013), INT_FIX, INT_RAN, and JOINT (Chen et al., 2014).
VC tests are based on the following GLM:

g [E (Y)] = δ0 + δ′GG+ δEE+ δ′GES+ δ′XX, (5)

where S =
[

EG1 EG2 · · · EGL

]

′. The vector δGE =
[

δGE1 δGE2 · · · δGEL
]

′ contains the L SNP× E interaction effects.
Assuming δGEl s (l = 1, . . . , L) follow a distribution with a mean
of 0 and a variance of τ2. The null hypothesisH0 : δGE = 0 is then
reduced to H0 : τ2 = 0. The score statistic to test H0 : τ2 = 0 vs.
H1 : τ2 > 0 can be referred to Equation (6) in Lin et al. (2016).

Similar among the five VC tests, δGEl s (l = 1, . . . , L)
are assumed to be random effects that follow a distribution.
Therefore, testing H0 : δGE = 0 can be reduced to testing
H0 : τ2 = 0. However, these five VC tests are dissimilar in two
aspects.

First, they take different approaches to estimate the SNP
main effects, δGl

s (l = 1, . . . , L). INT_FIX treats δGl
s as fixed

effects, whereas INT_RAN assumes δGl
s follow a distribution

with a mean of 0 and a variance of τ1. GESAT and iSKAT use
ridge regression to estimate δGl

s under the null hypothesis of
H0 : δGE = 0. JOINT simultaneously tests whether SNP main
effects or G × E interaction effects exist, i.e., H0 : τ1 = τ2 = 0 vs.
H1 : τ1 > 0 or τ2 > 0. Therefore, it is not a pure test for detecting
G× E.
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Second, iSKAT allows an exchangeable correlation ρ among
δGEl s (l = 1, . . . , L) and searches for the optimal ρ . The other
four VC tests all assume that δGEl s are independent to each other
(i.e., ρ = 0).

RESULTS

To reflect the real LD structures of the human genome, we used
GWAS data from the TWB as our simulation material. The TWB
aims to build a research database that integrates the genomic
profiles, lifestyle patterns, dietary habits, and environmental
exposures of residents aged 30–70 years in Taiwan (Chen et al.,
2016). Community-based volunteers donated blood, took a
physical examination, and completed a questionnaire with a
face-to-face interview.

Most of these community-based volunteers were unrelated
subjects. To exclude subjects with cryptic relatedness, we first
estimated the genome-wide identity by descent (IBD) sharing
coefficients among seemingly unrelated individuals from the
whole-genome data. Using PLINK-1.9 (Purcell et al., 2007),
we obtained the IBD scores for all pairs of subjects, i.e., PI-
HAT = Pr(IBD = 2) + 0.5× Pr(IBD = 1). “PI-HAT” is a
parameter used in PLINK to quantify pairwise IBD scores. Some
GWAS excluded relatives within third-degree consanguinity,
and therefore removed one person from a pair with PI-HAT
≥ 0.125 (Lowe et al., 2009; Mok et al., 2014). We here use a
slightly more stringent threshold, 0.1. After removing subjects
with cryptic relatedness (PI-HAT > 0.1), our analysis data
included 16,555 unrelated subjects (8,213 males and 8,342
females).

The whole-genome genotyping of the TWB data revealed
631,941 autosomal SNPs. We excluded 22,212 SNPs with
genotyping rates <95% and 5,988 SNPs with Hardy-Weinberg
test P < 5.7 × 10−7 (WTCCC, 2007). The remaining 603,741
SNPs were used for the simulations and the following real data
analysis. Because the SNP positions in the TWB data were based
on the human genome GRCh37/hg19 assembly, we mapped
the variants into genes according to the same assembly in the
UCSC Genome Bioinformatics database (http://www.genome.
ucsc.edu). In total, 24,769 autosomal genes were identified.
Furthermore, following the conventional gene-based tests (Liu
et al., 2010), we incorporated 50 kb in the 3′ and 5′ regions that
might regulate a gene.

We assessed the type I error rates and power of the seven
tests using simulations. Our ADABF was compared with rareGE
(Chen et al., 2014), SBERIA (Jiao et al., 2013), GESAT (Lin et al.,
2013), and iSKAT (Lin et al., 2016). These competitor methods
have been developed with user-friendly analysis tools that are
popular choices for G × E studies. The “rareGE” function in
the “rareGE” R package (version 0.1) provides P-values for the
following three tests: (1) INT_FIX: a G × E test that treats
the SNP main effects as fixed effects; (2) INT_RAN: a G ×

E test that treats the SNP main effects as random effects; and
(3) JOINT: a joint test of the genetic main effects and G × E
interactions. Both GESAT (Lin et al., 2013) and iSKAT (Lin et al.,
2016) were implemented using the “iSKAT” R package (version
1.2).

Type I Error Rates
Given the genotypes of each subject from the TWB, his/her
continuous trait was simulated according to

Y = βGGl + βGEGlE+ e, (6)

whereGl is theminor allele count (0, 1, or 2) at the lth SNP, E is the
environmental factor, and e is the random error term following
the standard normal distribution. Moreover, we simulated binary
traits according to

log
Pr (Y = 1)

1− Pr (Y = 1)
= −0.4+ βGGl + βGEGlE, (7)

where the intercept was log
(

0.4� 0.6

)

= −0.4, corresponding to
a disease prevalence of 0.4, which was the worldwide prevalence
of hypertension among adults aged ≥ 25 years (Abebe et al.,
2015).

In Equations (6) and (7), E was a binary environmental
factor taking a value of 0 or 1 each with a probability of
0.5. Because E was randomly sampled, the “SNP-E association
filtering” (Murcray et al., 2009; Jiao et al., 2013) that computes the
association between E and each SNP was inefficient. Therefore,
in our simulations, we used the above-mentioned “main-effect
filtering” (Dai et al., 2012) in SBERIA.

To evaluate the validity of these G × E tests, we let βG =

βGE = 0 and generated the phenotypes of 16,555 subjects
according to Equations (6) or (7). We repeated 41 rounds of
genome-wide G × E analysis for the 24,769 autosomal genes so
that each G × E test was evaluated at least one million times
(24, 769 × 41 = 1, 015, 529). Following the conventional gene-
based tests (Liu et al., 2010), we incorporated 50 kb in the 3′ and 5′

regions that might regulate a gene. The number of SNPs involved
in a gene depends on the length of the gene. Table 1 presents the
empirical type I error rates under various nominal significance
levels based on 1,015,529 replications of the continuous traits
and binary traits separately. All the tests preserved the type I
error rates. Tables S1–S3 in our Supplementary Materials further
present the type I error rates stratified by the number of SNPs
involved in a gene. The results are similar to Table 1, indicating
that the type I error rates do not much depend on the number of
SNPs in a gene.

We also evaluated the validity of these G × E tests in the
presence of genetic main effects. If βGE = 0 but βG 6= 0, all
tests, except for JOINT, were valid (results not shown). Thus, if
we obtain a significant test result using the JOINT method, we
cannot know whether this significance is contributed by G × E
or not. Therefore, the JOINT test should not be used if G × E
is of the main interest. It is suitable for detecting genetic main
effects while allowing for G× E.

Power
The true number of SNPs interacting with E may not be
large in the genome (McCarthy et al., 2008; Liu et al., 2016).
Therefore, we simulated one or four non-null βGEs in a gene. To
investigate the impact of the gene length on power, we randomly
drew three genes (i.e., CHD5, TNNT3, and RFX3), respectively,
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TABLE 1 | Empirical type I error rates in the simulation study.

Traits Nominal significance levels ADABF INT_FIX INT_RAN JOINT SBERIA iSKAT GESAT

Continuous,

βG = βGE = 0 assigned to

Equation (6)

0.05 0.049807 0.050379 0.050163 0.050147 0.050389 0.052703 0.052583

0.01 0.009549 0.009944 0.009882 0.010036 0.010081 0.011072 0.011570

0.001 0.000927 0.000962 0.000948 0.001168 0.001008 0.001166 0.001300

0.0001 0.000080 0.000088 0.000091 0.000156 0.000115 0.000125 0.000139

5× 10−5 0.000040 0.000039 0.000042 0.000068 0.000057 0.000061 0.000066

2.5× 10−6 0.000000 0.000001 0.000001 0.000002 0.000001 0.000002 0.000003

Binary,

βG = βGE = 0 assigned to

Equation (7)

0.05 0.050339 0.050739 0.050540 0.050385 0.049992 0.052701 0.053239

0.01 0.008855 0.009989 0.009913 0.010193 0.010111 0.011149 0.011655

0.001 0.000865 0.000972 0.000965 0.001200 0.001011 0.001191 0.001333

0.0001 0.000082 0.000100 0.000105 0.000138 0.000103 0.000121 0.000146

5× 10−5 0.000054 0.000053 0.000058 0.000071 0.000054 0.000062 0.000076

2.5× 10−6 0.000003 0.000003 0.000003 0.000003 0.000003 0.000005 0.000004

Each entry represents the proportion of P-values smaller than the corresponding nominal significance level based on 1,015,529 simulation replicates.

TABLE 2 | The 11 simulation scenarios for power comparison.

SNP main effects SNP x E interaction effects

Scenario βG1 βG2 βG3 βG4 βGE1 βGE2 βGE3 βGE4

(1-1) 0 0 0 0 + 0 0 0

One positive SNP x E interaction effect without SNP main effect.

(1-2) + 0 0 0 + 0 0 0

One positive SNP x E interaction effect, with SNP main effect in the same direction.

(1-3) − 0 0 0 + 0 0 0

One positive SNP x E interaction effect, with SNP main effect in the opposite direction.

(4-1) 0 0 0 0 + + + +

Four positive SNP x E interaction effects without SNP main effect.

(4-2) + + + + + + + +

Four positive SNP x E interaction effects, all with SNP main effects in the same direction.

(4-3) − − − − + + + +

Four positive SNP x E interaction effects, all with SNP main effects in the opposite direction.

(4-4) + + − − + + + +

Four positive SNP x E interaction effects, two with SNP main effects in the same direction and the other two in the opposite direction.

(4-5) 0 0 0 0 + + − −

Two positive and two negative SNP x E interaction effects, without SNP main effect.

(4-6) + + − − + + − −

Two positive and two negative SNP x E interaction effects, all with SNP main effects in the same direction.

(4-7) − − + + + + − −

Two positive and two negative SNP x E interaction effects, all with SNP main effects in the opposite direction.

(4-8) + − + − + + − −

Two positive and two negative SNP x E interaction effects, two with SNP main effects in the same direction and the other two in the opposite direction.

incorporating 20, 50, and 100 SNPs, for simulations. Assuming
d SNPs interact with E (d = 1 or 4), the continuous traits of the
16,555 subjects were generated according to

Y =

d
∑

l= 1

βGl
Gl +

d
∑

l= 1

βGElGlE+ e, (8)

where βGl
is the SNP main effect, βGEl is the effect size of SNP

× E, Gl is the minor allele count (0, 1, or 2) at the lth SNP that

interacts with E (l = 1, . . . , d), and e is the random error term
following the standard normal distribution. Moreover, the binary
traits were simulated according to

log
Pr (Y = 1)

1− Pr (Y = 1)
= −0.4+

d
∑

l= 1

βGl
Gl +

d
∑

l= 1

βGElGlE. (9)

The magnitudes of SNP main effects (
∣

∣βGl

∣

∣) and SNP × E
interaction effects (

∣

∣βGEl

∣

∣) were evaluated at three levels: small,
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medium, and large. For continuous traits, the effect sizes were
uniformly drawn from [0.08, 0.12] (small), [0.13, 0.17] (medium),
and [0.18, 0.22] (large), respectively. For binary traits, the effect
sizes were uniformly drawn from [log (1.05), log (1.15)] (small),
[log (1.25), log (1.35)] (medium), and [log (1.45), log (1.55)]
(large), respectively.

Table 2 lists the 11 simulation scenarios for power
comparison, including 3 for d = 1 and 8 for d = 4. Scenarios
(1-1), (4-1), and (4-5) are pure interaction models without SNP
main effect. Scenarios (1-2), (4-2), and (4-6) include SNP × E
interaction effects with SNP main effects in the same direction.
Scenarios (1-3), (4-3), and (4-7) include SNP × E interaction
effects with SNP main effects in the opposite direction. Scenarios

(4-4) and (4-8) include SNP × E interaction effects with 50%
SNP main effects in the same direction and 50% in the opposite
direction.

Based on 1,000 replications for each scenario, Figures 1, 2
present the results of 1 SNP × E (i.e., d = 1) for continuous and
binary traits, respectively. The results of 4 SNP × E (i.e., d = 4)
are shown in Figures 3, 4 (for continuous traits) and Figures 5, 6
(for binary traits). Under the same scenario and the same level of
effect sizes, the power of all tests decreased as the number of SNPs
increased. This was because the proportion of non-null βGEs was
decreasing as the number of SNPs increased. For example, when
d = 4, the proportions of non-null βGEs were 4/20, 4/50, and
4/100, respectively.

FIGURE 1 | Power of the seven tests for continuous traits (1 SNP × E). The x-axis represents the number of SNPs in the gene, whereas the y-axis depicts the power

at the nominal significance level α = 2.5× 10−6. From the top row to the bottom row, the magnitudes of SNP main effects and SNP × E interaction effects were

evaluated at three levels: small, medium, and large, respectively.
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FIGURE 2 | Power of the seven tests for binary traits (1 SNP × E). The x-axis represents the number of SNPs in the gene, whereas the y-axis depicts the power at the

nominal significance level α = 2.5× 10−6. From the top row to the bottom row, the magnitudes of SNP main effects and SNP × E interaction effects were evaluated

at three levels: small, medium, and large, respectively.

The JOINT test was generally the most powerful test.
However, as mentioned above, it is not a pure G × E test.
Among the 6 pure G × E tests, ADABF was more powerful
under 1 SNP × E (i.e., d = 1, Figures 1, 2). Let m be the
number of SNPs in a gene, where m = 20, 50, or 100 in
our power comparison. When d = 1, m − 1 SNPs exhibit
no interactions with E. ADABF outperformed the other tests
because it excluded SNP × E with smaller BF; thus, ADABF
was more robust to the inclusion of many (m − 1) null
βGEs.

Among the 6 pure G× E tests, SBERIA can be more powerful
than ADABF under 4 SNP × E (i.e., d = 4, Figures 3–6).
However, SBERIA suffered from a power loss in Scenarios (4-4)

and (4-8), where 50% SNPmain effects were in the same direction
with the SNP × E interaction effects while 50% were in the
opposite direction. This is because SBERIA builds a G × E term
by incorporating the SNPs that pass the filtering stage (i.e., EG′

ŵ

in Equation 3). The weight (elements in ŵ) given to a SNP
is 1 if it is positively associated with Y, −1 if it is negatively
associated with Y, and is a very small value (e.g., 0.0001) if the
SNP is not statistically associated with Y. When 50% SNP main
effects were in the same direction with the SNP × E interaction
effects while 50% were in the opposite direction, the positive
and negative SNP × E interactions in EG′

ŵ were canceled out.
Therefore, SBERIA suffered from a power loss in Scenarios (4-4)
and (4-8).
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FIGURE 3 | Power of the seven tests for continuous traits (4 SNP × E, from Scenario 4-1 to 4-4). The x-axis represents the number of SNPs in the gene, whereas the

y-axis depicts the power at the nominal significance level α = 2.5× 10−6. From the top row to the bottom row, the magnitudes of SNP main effects and SNP × E

interaction effects were evaluated at three levels: small, medium, and large, respectively.

Application to the Taiwan Biobank Data
Subsequently, we applied these G × E methods to the TWB
data. Among the TWB subjects, ∼79.9% were of the southern
Han Chinese ancestry, ∼5% were of the northern Han Chinese
ancestry, and ∼14.5% belonged to a third group (Chen et al.,
2016). To adjust for the population substructure, the 603,741
SNPs that passed the quality-control stage were used to construct
the principal components (PCs). We aim to explore the
interaction effects between genes and alcohol consumption on
blood pressure levels. Our study was approved by the Research
Ethics Committee of National Taiwan University Hospital
(NTUH-REC no. 201612188RINA).

In the TWB data, “alcohol drinking” is defined as a weekly
alcohol intake >150 c.c. for at least 6 months. Among the 16,555
subjects, 14,779 subjects answered “no” to alcohol drinking,
whereas 1,764 subjects answered “yes.” Totally 12 subjects did
not respond to this question. Therefore, the environmental factor
(“alcohol drinking”) was binary here. Both DBP and SBP were
measured twice in a sitting position, with a 5-min interval
between the two measurements. As suggested by Jamieson et al.
(1990) and others (Husemoen et al., 2008), two measurements
of blood pressure should routinely be taken, and the average
recorded. Therefore, in the following analysis, we used the

average of the two measurements of DBP (or SBP) as the
phenotype.

Prior to the G × E analysis, we first regressed DBP (the
average of two measured DBPs) and SBP (the average of
two measured SBPs) on gender, age, alcohol drinking, body
mass index (BMI), and the first seven PCs. In Table 3, we
list the regression coefficients regarding gender, age, alcohol
drinking, and BMI. Males, elder subjects, subjects consuming
alcohol, and subjects with larger BMI exhibit a significantly
higher mean blood pressure than females, younger subjects,
subjects without alcohol consumption, and subjects with smaller
BMI. On average, alcohol drinking results in an increase of
∼1.51 mmHg in DBP and ∼2.10 mmHg in SBP. This finding
that an increased alcohol intake elevates blood pressures is
consistent with the conclusions of numerous studies (Xin
et al., 2001; Puddey and Beilin, 2006; Tomson and Lip,
2006).

Single Marker Analysis
The first strategy to detect G × E is single SNP analysis. Let Y be
DBP or SBP, Gl be the number of minor allele (0, 1, or 2) at the
lth SNP, E be the environmental factor (“alcohol drinking”), and
X be the vector of covariates, including age, gender, BMI, and
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FIGURE 4 | Power of the seven tests for continuous traits (4 SNP × E, from Scenario 4-5 to 4-8). The x-axis represents the number of SNPs in the gene, whereas the

y-axis depicts the power at the nominal significance level α = 2.5× 10−6. From the top row to the bottom row, the magnitudes of SNP main effects and SNP × E

interaction effects were evaluated at three levels: small, medium, and large, respectively.

the first seven PCs. We fitted a linear regression for each of the
603,741 SNPs,

E (Y) = β0+βGGl+βEE+βGEGlE+β ′
XX, l = 1, · · · , 603741.

(10)
This single marker analysis was performed using PLINK (version
1.9) (Purcell et al., 2007). PLINK reported low genomic inflation
factors after adjusting the first seven PCs, i.e., λGC = 1.081 for
DBP and 1.058 for SBP. As suggested by GWAS such as Li et al.
(2015), these λGCs represented minimal effects of population
stratification. We then tested H0 :βGE = 0 vs. H1 :βGE 6= 0,
and compared the P-value with the commonly-used genome-
wide significance level, 5 × 10−8. No significant SNP × E were
identified for DBP or SBP.

Gene-Based Analysis
Then, we performed the seven gene-based tests. According to
the human genome GRCh37/hg19 assembly, there are 24,769
autosomal genes. We followed the conventional gene-based tests
(Liu et al., 2010), and therefore incorporated 50 kb in the 3′

and 5′ regions that might regulate genes. The “main-effect
filtering” and “SNP-E association filtering” were both used in the
SBERIA approach, and they were referred to as “SBERIA1” and
“SBERIA2,” respectively.

(1) SBERIA1 (main-effect filtering): In the filtering stage, a linear
regression was fitted for each SNP, i.e., E (Y) = γ0 + γGGl +

γ ′
XX. The validity of using this filtering stage was justified by

Corollary 1 proposed by Dai et al. (2012). Using this filtering

strategy into Jiao et al.’s SBERIA approach, when the P-value
of testing H0 : γG = 0 vs. H1 : γG 6= 0 was smaller than

0.1, the weight given to the lth SNP was 1 if γ̂G > 0 and

was −1 if γ̂G < 0 (γ̂G was the MLE of γG). When the P-

value of testing H0 : γG = 0 vs. H1 : γG 6= 0 was larger than
0.1, the weight given to the lth SNP was 0.0001 (Jiao et al.,

2013).
(2) SBERIA2 (SNP-E association filtering): In the filtering stage,

a logistic regression was fitted for each SNP, i.e., log it (E) =

δ0 + δGGl + δ′
XX, where E = “alcohol drinking” was

binary. The validity of using this filtering stage was justified
by Proposition 3 of Dai et al. (2012). According to Jiao
et al.’s SBERIA approach, when the P-value of testing
H0 : δG = 0 vs. H1 : δG 6= 0 was smaller than 0.1, the
weight given to the lth SNP was 1 if δ̂G > 0 and was −1

if δ̂G < 0 (δ̂G was the MLE of δG). When the P-value
of testing H0 : δG = 0 vs. H1 : δG 6= 0 was larger than

0.1, the weight given to the lth SNP was 0.0001 (Jiao et al.,
2013).
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FIGURE 5 | Power of the seven tests for binary traits (4 SNP × E, from Scenario 4-1 to 4-4). The x-axis represents the number of SNPs in the gene, whereas the

y-axis depicts the power at the nominal significance level α = 2.5× 10−6. From the top row to the bottom row, the magnitudes of SNP main effects and SNP × E

interaction effects were evaluated at three levels: small, medium, and large, respectively.

Table 4 lists the genes that are significant according to at least
one of the analysis methods, where the statistical significance is
claimed if a P < 2.5× 10−6, where 2.5× 10−6 = 0.05�20000 is the
commonly-used genome-wide significance level in gene-based
analyses (Epstein et al., 2015). Regarding DBP, the ADAMTS7P1
gene was identified by the GESAT test (P = 9.5 × 10−7). At
this gene, the P-values provided by other 6 tests all reached the
suggestive significance level (P < 5× 10−5 = 1�20000 ). The other
genes listed in Table 4 were presumably to have genetic main
effects rather than G × E interactions, because they were only
identified by the JOINT test.

Table 5 presents the information regarding the four SNPs in
the analysis region of the ADAMTS7P1 gene. For DBP analysis,
two BFs of SNP× alcohol interactions were >100 (representing
decisive evidence against the null hypothesis Jeffreys, 1961;
Kass and Raftery, 1995), including rs16973457 and rs4238534.
Plots of the SNP×alcohol interaction effects on DBP and SBP
are presented in Figure 7. Here, non-drinkers (black curves)
exhibit similar blood pressure values across different genotypes.
However, drinkers (red dashed curves) exhibit elevated blood
pressure if they possess certain genotypes. Interestingly, if we
ignore GlE from Equation (10), the main effects of these SNPs
are not significant (shown in the final column of Table 5).

This finding highlights the importance of considering the
SNP×alcohol interaction effect on blood pressure.

Computation Time
As shown in Table 4, we also provide the time spent for analyzing
the 24,769 autosomal genes, using a Linux platform with a
Dell Intel Xeon E5-2690 2.9 GHz processor and 8 GB memory.
SBERIA (8∼10 h for a phenotype) is the fastest method, followed
by ADABF (∼80 h). iSKAT and GESAT both required more than
300 h. INT_FIX, INT_RAN, and JOINT were conducted using
a function in the “rareGE” package, and these three tests totally
required more than 400 h.

DISCUSSION

Environmental factors, such as diet, exercise, alcohol intake and
tobacco use, can modify the associations of genetic variants
with disease (Lee et al., 2011). G × E can shed light on
biological processes leading to disease, identify high-risk subjects,
and improve disease prediction (Hunter, 2005; Dudbridge and
Fletcher, 2014).

Our ADABF method has been proposed as a powerful
polygenic approach to detect G × E (Lin et al., 2018). This
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FIGURE 6 | Power of the seven tests for binary traits (4 SNP × E, from Scenario 4-5 to 4-8). The x-axis represents the number of SNPs in the gene, whereas the

y-axis depicts the power at the nominal significance level α = 2.5× 10−6. From the top row to the bottom row, the magnitudes of SNP main effects and SNP × E

interaction effects were evaluated at three levels: small, medium, and large, respectively.

TABLE 3 | The regression models for the DBP and SBP analyses (prior to the G × E analysis).

DBPa SBPa

Important

explanatory variables

in the regression

model

Regression

coefficient (β̂)

Standard

error of β̂

Wald statistic,
β̂�
s.e.

(

β̂
)

P-value Regression

coefficient

(β̂)

Standard

error of β̂

Wald statistic,
β̂�
s.e.

(

β̂
)

P-value

Genderb

(1: female; 0: male)

−5.8385 0.1613 −36.188 < 2× 10−16 −5.7753 0.2440 −23.669 < 2× 10−16

Agec

(in year, continuous

variable)

0.1380 0.0069 19.961 < 2× 10−16 0.6018 0.0105 57.579 < 2× 10−16

Alcohol drinkingd

(1: yes; 0: no)

1.5107 0.2552 5.920 3.29× 10−9 2.0961 0.3860 5.431 5.69× 10−8

Body mass index

(BMI)e

(in kg/m2, continuous

variable)

0.8884 0.0215 41.380 < 2× 10−16 1.2633 0.0325 38.907 < 2× 10−16

aThe first seven PCs were also adjusted in the model.
b Interpretation of gender, Males have significantly higher mean blood pressure than females.
c Interpretation of age, Elder subjects have significantly higher mean blood pressure than younger subjects.
d Interpretation of alcohol drinking, Subjects consuming alcohol have significantly higher mean blood pressure than subjects without alcohol consumption.
e Interpretation of BMI, Subjects with larger BMI have significantly higher mean blood pressure than subjects with smaller BMI.
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method can also serve as a gene-based G × E test. In this study,
we compare our ADABF method with six existing gene-based
tests, through extensive simulations and real data analyses. Our
ADABF method is among the most powerful tests. Although
the JOINT test is typically the most powerful method, it is
not appropriate for assessing G × E in the presence of genetic
main effects. As presented by Table 4, although seven genes were
identified as significant by JOINT, none of them were replicated
by any of the six pure G× E tests at the genome-wide significance
level (2.5 × 10−6 = 0.05�20000 ) or at the suggestive significance
level (5× 10−5 = 1�20000 ). The JOINT test should not be used if
G × E is of the main interest, but it is useful in detecting genetic
main effects while allowing for G× E.

Notably, all gene-based tests can be performed using a pre-
specifiedweighting scheme for SNPs. For example, if rare variants
are believed to have stronger interactions with E, the beta
distribution density function with parameters 1 and 25 evaluated
at the sample MAF, i.e., Beta (MAF; 1, 25), is commonly used to
weight the SNPs (Wu et al., 2011; Lin et al., 2016). However,
to present a fair comparison, we do not impose any additional
weighting on these seven tests.

The ADAMTS7P1 gene at 15q25.2 has not been reported
to be associated with blood pressures or hypertension. Indeed,
after removing the SNP×alcohol interaction (GlE) from
Equation (10), the main effects of all the four SNPs within
ADAMTS7P1 were not significant. Although the ADAMTS7P1-
alcohol interaction effect on SBP did not achieve the suggestive
significance level (5× 10−5 = 1�20000 ), the P-values of the 6 pure
G × E tests were all <10−3 (Table 6). Moreover, as presented
in the bottom part of Table 5, the BF of rs16973457× alcohol
interaction on SBP was >100 (representing decisive evidence
against the null hypothesis Jeffreys, 1961; Kass and Raftery, 1995).
Further gene×alcohol studies investigating this chromosome
region will be warranted.

In this study, we extend our ADABF to G × E detection
and compare it with six existing tests. Their validity, power,
robustness, and computation time are investigated. SBERIA
builds a G × E term by incorporating the SNPs that pass the
filtering stage (i.e., EG′

ŵ in Equation 3); ADABF removes the
SNP × E with smaller BFs. Both approaches take the advantage
of screening out noises, and therefore they are usually more
powerful than other pure G × E tests (Figures 1–6). However,
it is worth noting that SBERIA suffers from a power loss when
50% SNP main effects are in the same direction with the SNP
× E interaction effects while 50% are in the opposite direction.
Considering the validity, power performance, robustness, and
computation time, ADABF is recommended for genome-wide G
× E analyses.

To detect G × E on a genome-wide scale, ADABF polygenic
test (Lin et al., 2018) and ADABF gene-based test are two
strategies with different aims. The ADABF polygenic test
combines all SNPs that pass the pruning and filtering stages
into a test, and therefore it does not suffer from a power loss
due to the multiple-testing correction. A P < 0.05 or 0.01 is
sufficient to reject H0 of no polygenic G × E interactions (Pan
et al., 2015). By contrast, the power of ADABF gene-based test
is compromised by the penalty of multiple testing. A P < 2.5 ×
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TABLE 5 | The four SNPs in the analysis region of the ADAMTS7P1 gene.

Phenotype SNP Position

(base pair)

Minor

allele

Major

allele

MAF SNP × alcohol interaction testa If SNP × alcohol

interaction was

not incorporated

in the modelb

β̂GE s.e.
(

β̂GE

)

Wald

statistic

P-value

(H0 :βGE = 0

vs.

H1 :βGE 6= 0)

Bayes

factor

P-value

(H0 :βG = 0 vs.

H1 :βG 6= 0)

DBP rs74249839 82537997 G T 0.0544 −1.5477 0.7757 −1.995 0.0460 1.95 0.58

rs7183805 82539431 A G 0.1761 0.8042 0.4595 1.750 0.0801 0.88 0.82

rs16973457 82563991 T C 0.1924 −1.8607 0.4309 −4.318 1.59× 10−5 1519.09 0.65

rs4238534 82564555 T C 0.1627 −2.1048 0.4642 −4.535 5.81× 10−6 3883.43 0.76

SBP rs74249839 82537997 G T 0.0544 −1.6558 1.1731 −1.411 0.1581 0.78 0.99

rs7183805 82539431 A G 0.1761 0.9474 0.6949 1.363 0.1728 0.48 0.76

rs16973457 82563991 T C 0.1924 −2.4675 0.6518 −3.786 0.000154 186.85 0.19

rs4238534 82564555 T C 0.1627 −2.4668 0.7024 −3.512 0.000446 74.07 0.56

aThe DBP (or SBP) was regressed by Equation (10) and βGE was of the main interest.
b If we ignored GlE from Equation (10), the main effects of these four SNPs were not significant.

FIGURE 7 | Plots of SNP×alcohol interaction effects on DBP and SBP. These are the interaction plots of the four SNPs in Table 5. As shown in these plots, the

SNP×alcohol interaction patterns in DBP are similar to those in SBP. The black curves depict the mean of DBP or SBP among the non-drinkers, whereas the red

dashed curves depict that among the drinkers. The number shown on each point represents the sample size of that category.

TABLE 6 | Analysis of the ADAMTS7P1-alcohol interaction effect on SBP.

Gene Chr. Analysis

region

#(SNPs) P-values

ADABF INT_FIX INT_RAN JOINT SBERIA1 SBERIA2 iSKAT GESAT

ADAMTS7P1 15 82535621–

82676915

4 3.5× 10−4 2.2× 10−4 2.0× 10−4 1.3× 10−3 5.0× 10−4 1.7× 10−4 2.0× 10−4 8.2× 10−5
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10−6 = 0.05�20000 is required to claim a significant gene-
based test (Epstein et al., 2015). Despite a much more stringent
significance threshold, the ADABF gene-based test can make
statistical inference for specific chromosomal regions, whereas
the ADABF polygenic test (Lin et al., 2018) make an inference
for SNPs (passing the pruning and filtering stages) spread out the
whole genome.
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