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The molecular regulatory network underlying stem cell pluripotency has been intensively

studied, and we now have a reliable ensemble model for the “average” pluripotent

cell. However, evidence of significant cell-to-cell variability suggests that the activity

of this network varies within individual stem cells, leading to differential processing of

environmental signals and variability in cell fates. Here, we adapt a method originally

designed for face recognition to infer regulatory network patterns within individual cells

from single-cell expression data. Using this method we identify three distinct network

configurations in cultured mouse embryonic stem cells—corresponding to naïve and

formative pluripotent states and an early primitive endoderm state—and associate these

configurations with particular combinations of regulatory network activity archetypes

that govern different aspects of the cell’s response to environmental stimuli, cell cycle

status and core information processing circuitry. These results show how variability in

cell identities arise naturally from alterations in underlying regulatory network dynamics

and demonstrate howmethods frommachine learning may be used to better understand

single cell biology, and the collective dynamics of cell communities.

Keywords:machine learning (artificial intelligence), single-cell data, regulatory network, eigenface approach, stem

cell, pluripotency stem cells

INTRODUCTION

The pluripotent epiblast exists transiently in the developing embryo and is the founding tissue
for all somatic and germ cells in the adult mammalian organism (Gardner and Beddington,
1988; Boroviak et al., 2014). Because of this remarkable ability there has been sustained
interest in deciphering the molecular regulatory mechanisms that underpin pluripotency (Li
and Belmonte, 2017). From these studies, it has become increasingly clear that the functional
state of pluripotency emerges in a complex, and as yet incompletely understood, way from the
collective dynamics of underpinning molecular regulatory networks, which involve numerous
protein-protein, protein-DNA, epigenetic and signaling interactions (Niwa et al., 1998; Sato et al.,
2004; Azuara et al., 2006; Loh et al., 2006; Meshorer et al., 2006; Kunath et al., 2007; Kim et al.,
2008).

The nature of the regulatory relationships in these underlying networks have accordingly
become a focus of increasing research attention (Dunn et al., 2014; Xu et al., 2014). Typically,
regulatory interactions are inferred from measurements taken from cellular aggregates, usually
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containing many thousands of cells, and therefore provide
an ensemble view that characterizes those interactions that
are typical for the “average” pluripotent cell (Gerstein et al.,
2012). These ensemble models have been tremendously useful
in dissecting the molecular basis of pluripotency and have
become successively refined in recent years (Loh et al., 2006;
Kim et al., 2008) to include, for example, the processing logic of
combinatorial interactions (Dunn et al., 2014; Xu et al., 2014).

However, although undoubtedly powerful tools to understand
pluripotency, these networks are fundamentally derived from
bulk cell measurements and there is now a need to better
understand how these ensemble models relate to regulatory
processes within individual pluripotent cells (Trott et al., 2012;
Filipczyk et al., 2015; Stumpf et al., 2016; Teschendorff and Enver,
2017).

The relationship between ensemble and individual cell
regulatory networks are particularly relevant to the study of
pluripotency for two reasons.

Firstly, it is now well observed that apparently functionally
homogeneous pluripotent cells exhibit substantial cell-to-cell
variability in gene/protein expression patterns, suggesting that
pluripotency as a function is compatible with a variety of
different molecular configurations (Kumar et al., 2014; Singer
et al., 2014; Guo et al., 2016). This has led to acceptance
that there are numerous alternate states of pluripotency—most
notably naïve and primed states corresponding to the epiblast
of the blastocyst, and the epiblast in the egg cylinder of
the mouse post-implantation embryo, respectively—each with
subtly different developmental potential. Our understanding
is such that propagation of these alternate pluripotent states
in vitro is now routine, using different cocktails of growth factor
supplementation (Evans andKaufman, 1981;Martin, 1981; Brons
et al., 2007; Tesar et al., 2007; Chou et al., 2008; Weinberger
et al., 2016). Importantly, these distinct populations can each
contribute to all principal embryonic lineages in vitro and
are apparently inter-convertible (Chou et al., 2008; Guo et al.,
2009; Greber et al., 2010), suggesting a remarkable plasticity in
the dynamics of the underlying regulatory networks. It seems
likely that as our understanding of pluripotency develops, other
varieties of pluripotency will be discovered and sustained in vitro.
Indeed, it has recently been proposed that pluripotent cells also
progress through an important formative state, in which the
naïve regulatory network is partially dissolved and cells become
competent for lineage allocation (Kalkan and Smith, 2014; Smith,
2017).

Secondly, the epiblast appears insensitive to the removal or
addition of cells (Gardner and Beddington, 1988), suggesting
a level of functional redundancy between individual cells that
is supportive of the notion that pluripotent cell populations
in vivo behave more like a “collection of transition cells”
(Gardner and Beddington, 1988), than a defined developmental
state per se. This collective behavior presumably also emerges
from the dynamics of the underlying regulatory networks,
although the mechanisms by which such collective dynamics
are regulated by intracellular regulatory networks is still
largely mysterious (MacArthur and Lemischka, 2013).
Taken together, these findings suggest that the regulatory

network underlying pluripotency exists in a number of
interchangeable configurations, although the nature of these
different configurations, and their relationships to one another,
are not yet fully understood (Trott et al., 2012; Stumpf et al.,
2016).

Here, we sought to develop a method to interpret single cell
data to better understand how alterations in regulatory network
activity within individual cells gives rise to variability within
pluripotent cell populations.

To approach this problem, we were inspired by a method
from the early days of face recognition, which de-constructs
facial images into facial archetypes, known as eigenfaces,
that are learned from a training set of portraits, and
reconstructs unseen faces as weighted sums of these learned
eigenfaces (Sirovich and Kirby, 1987; Turk and Pentland,
1991) (see Figure 1). Although face recognition methods are
now highly sophisticated, the original implementation of
the eigenface routine is essentially an ingenious, although
mathematically straightforward, implementation of principal
component analysis (PCA) that relies on the fact that each facial
image may be considered as a matrix of numbers, and therefore
reshaped to a vector and associated with a point in a high-
dimensional space. Thus, given a set of training portrait images,
PCA may be used to extract the characteristic features—the
eigenvectors of the training covariance matrix, also known as
principal components—that capture significant variation within
the training set (Figure 1A). By transforming these eigenvectors
back into matrices of the same dimension as the images in
the training set they can be visualized as facial archetypes (or
“eigenfaces”) of the training set (Figure 1A). Remarkably, it was
observed that only a small number of eigenfaces (typically∼ 5%)
is sufficient to explain 95% of facial details, and therefore unseen
portrait images can be reliably reconstructed as a weighted sum
of a very small number of eigenfaces (Figure 1A). Importantly,
this means that a small subset of the vector of weights alone is
typically sufficient to recognize an individual from their portrait,
thus significantly reducing the dimension of the recognition
problem (Figure 1B).

While this does not immediately appear to relate to the
study of pluripotency we surmised that a similar approach could
be used to reconstruct pluripotent cell identities from single
cell data, as a weighted sum of regulatory network archetypes,
and developed an approach consisting of three elements: First,
we project single-cell expression data onto an ensemble model
of pluripotency regulatory circuitry to obtain snapshots of the
regulatory activity within individual cells. Second, we apply
PCA to these snapshots to extract the regulatory network
archetypes and associated weightings for individual cells. Third,
the weightings correspond to low-dimensional representations
of the regulatory network activity to which we fit a Gaussian
Mixture Model to classify the observable cell identities that
emerge from the dynamics of the ensemble network.

Using this approach, we identify distinct pluripotent cell
identities (notably naïve and formative pluripotent states and an
early primitive endoderm state) that co-occur in vitro, in culture
conditions commonly used to promote self-renewal. These cell
identities differ in the extent to which the network archetypes are
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FIGURE 1 | Eigenfaces for face recognition. (A) A training set of portrait images of size N× N is used to extract the facial archetypes (eigenfaces) encoded by the N2

principal components of the training set. A small subset of eigenfaces explains most of the variability in facial features between individuals. In this specific example

from The Extended Yale Face Database B (Georghiades et al., 2001; Lee et al., 2005), a recognizable version of an original test image can typically be reconstructed

from a weighted sum of the first 5.9% (60 out of 1024) eigenfaces, which explain 95% of the variance in the data. (B) Each test face may be reconstructed as a

weighted sum of eigenfaces, and thereby efficiently encoded by a weight vector, which may be thought of as a point in a much lower dimensional space than the

original feature space. In this case although each face is initially associated with a point in a 1024 dimensional space (corresponding to the 1024 pixels in the original

image), a recognizable version may be reconstructed in just 60 dimensions (the corresponding weightings). Different images of the same person typically occupy a

region in the principal component space around a central characteristic image.

expressed. Furthermore, we compare these network archetypes
to time-course data of cellular reprogramming and reconstruct
the sequence of network re-configurations underlying induced
pluripotency. This analysis indicates that the over-expression of
the Yamanaka cocktail of transcription factors (Takahashi and
Yamanaka, 2006) initially induces regulatory activity similar to
the early Primitive Endoderm, prior to the emergence of the
formative and naïve pluripotency states.

RESULTS

Integrating Regulatory Interactions With
Single Cell Data
We first sought to obtain a reliable training dataset of
protein expression patterns in pluripotent cells across multiple
intracellular information levels, including the protein abundance
of core transcription factors (Loh et al., 2006; Kim et al.,
2008), the phosphorylation status of signaling pathways (Niwa
et al., 1998; Sato et al., 2004; Kunath et al., 2007) and global
transcriptional activity based on histone acetylation (Azuara
et al., 2006; Meshorer et al., 2006). Such systems-level proteomic
information at single-cell resolution is currently only available
through immunolabeling followed by mass-cytometry, a highly
specialized technique that is available to only a small number of
groups (Spitzer and Nolan, 2016). Thus, we sourced a relevant
training dataset from the literature (Zunder et al., 2015). In
total this training data consists of expression patterns of 34
proteins and protein modifications in 31,876 pluripotent cells
from two mouse embryonic stem cell (mESC) lines (Nanog-
GFP [NG] mESCs and Nanog-Neo [NN] mESCs that express
green fluorescent protein [GFP] or a Neomycin resistance
gene, respectively, from the endogenous Nanog locus, Wernig
et al., 2008), grown in low-serum medium supplemented with
Leukemia Inhibitory Factor (LIF; 0i conditions). In addition, this
dataset also contains expression levels of the same features in

15,540 NG mESCs and 15,752 NN mESCs grown in medium
supplemented further with a GSK3β inhibitor and a MEK
inhibitor (known as 2i conditions, which support the pluripotent
“ground” state, Ying et al., 2008), as well as expression time-
course data containing 834,548 secondary mouse embryonic
fibroblasts (MEFs) generated from both cell lines that express
Yamanaka reprogramming factors (Takahashi and Yamanaka,
2006) under the control of a doxycycline (dox) inducible
promoter (Wernig et al., 2008).

To interrogate this data, we sought to supplement it by
constructing a directed regulatory network specific to the
features (transcription factors, surface epitopes, phosphorylation,
etc.) that had been quantified (Figure 2). Features (that is,
proteins profiled) in this signed, directed regulatory network
are represented as nodes and regulatory interactions between
features are represented as edges between pairs of nodes (an
edge is positive if it is activating, and negative if it is inhibiting).
Evidence for node interactions was extracted from transcription
factor binding data from ChIPBase 2.0 (Zhou et al., 2017), and
information on other known interactions were sourced from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata
et al., 1999) and Reactome (Fabregat et al., 2016) (see Table S1 for
details). Unconnected nodes, such as the inert GFP reporter, and
cell cycle markers pH3 and IdU were removed from the analysis.
The resulting network G contains 27 nodes, connected by 124
edges (Figure 2).

The overall structure of G is conveniently encoded in the
network adjacency matrix,

Aij =

{

s, if node i regulates node j

0, otherwise
(1)

where s = +1 for activating interactions, and s = −1 for
inhibitory interactions.
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FIGURE 2 | Integrated regulatory network derived from the literature.

Schematic shows the structure of the inferred regulatory network between the

factors profiled, derived from the literature (see Table S1). The network

accounts for multiple molecular information processing mechanisms, at

multiple different spatial locations in the cell, including interactions between:

transcriptional regulators (green squares), chromatin modifiers (petrol

octagons), cell cycle factors (sea green rounded squares), signaling cascades

(light green circles), and surface molecules (yellow diamonds).

The first step in our process consists of combining this
regulatory network with the single cell expression training set.
Trivially, the expression data represents the activity of the
nodes in the network within each cell, but does not take into
account regulatory interactions between nodes. To incorporate
this information, we assumed that the activity of each edge
within the network is determined by the signal intensities of
both interaction partners within the individual cell. Accordingly,
denoting the vector of expression values in a given cell by v, we
created a weighted adjacency matrixW

Wij =

{

vi × vsj if Aij 6= 0

0 if Aij = 0,
(2)

where the sign of an edge s ∈ [−1,+1] denotes either inhibiting
or activating interactions. Thus, we associated a high weight to
a positive edge if both the source and the target were highly
expressed, and a high weight to a negative edge if the source
was highly expressed and the target was expressed at a low
level. Informally, this representation may be thought of as
assigning high confidence that a given edge is expressed within
an individual cell if its source and target nodes are expressed
consistently with the sign of the edge relating them. The resulting
weighted adjacency matrix W is a simple measure of the extent
to which the network G is expressed in the cell given the
expression patterns observed in that cell. By analogy with the face

recognition problem,W may be considered as the “image” of the
cell.

As with the eigenface routine, this matrix may be easily
restructured as a vector. In this case, W may be coerced into
a vector of length m (where m is the number of edges in the
network, here 124), by first reshaping it to a vector of length n2

(where n is the number of nodes in the network, here 27), and
then squeezing out all entries for which Aij = 0. This procedure
effectively injects the expression data with prior knowledge of the
network structure, leading to an expansion of the original feature
space from R

n to R
m (generically a connected network will have

more edges than nodes, unless it is a tree). Using this method, we
inferred the activity of the regulatory network G within each of
the∼ 9×105 individual cells profiled. For subsequent analysis we
treated NG mESCs cultured in 0i conditions as a training dataset
and held back the remaining data to test the model learned from
the training data.

Regulatory Networks Characterize
Alternate States of Pluripotency
Once the training data had been produced, we conducted
principal component analysis. In the same way that the principal
components (PCs) in the eigenface routine may be reshaped and
interpreted as facial archetypes from which individual portraits
may be reconstructed, the principal components here may be
reshaped and interpreted as network archetypes from which
pluripotent cell identities may be reconstructed. However, while
only ∼ 5% of the PCs are required for accurate face recognition,
we found that (for both NG and NN mESCs) ∼ 23% of the
PCs were required to explain 95% of the variance in our training
data (Figure 3A). The larger number of PCs required is not
unexpected, and is reflective of the high levels of noise that
are characteristic of high-throughput single cell data (Brennecke
et al., 2013). Therefore, rather than using the proportion of
variance explained to determine the appropriate number of
PCs to retain for subsequent analysis, we sought to identify
the minimal number needed to preserve the natural clustering
structure in the data.

We found that four distinct clusters of cells were readily
identifiable in the full dataset (natural clustering structure was
obtained by fitting a Gaussian mixture model to the data and
selecting the model that minimizes the Bayesian information
criterion [BIC], see Figure 3D and Figure S1D). This natural
clustering was robustly retained when projecting the data onto
the first three PCs (Figure 3B); higher components only added
noise to this basic clustering structure. This analysis suggests
that PCs 1-3 account for the biological variability present in the
data, while higher components primarily correspond to technical
variability.

Since the PCs are linear combinations of the underlying
features (here, network edges) each one may be thought of
as regulatory network archetype, and the expression pattern of
each cell in the training data may therefore be reconstructed
as a weighted sum of these archetypes. By analogy with
eigenface routine, we will call these network archetypes eigen-
networks. Since PCs 1-3 account for the biological variability
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FIGURE 3 | PCA identifies three distinct pluripotent states within ES cells cultured in 0i conditions. (A) Cumulative proportion of variance explained by principal

components (PCs) of the training data for Nanog-GFP (NG) mESCs and Nanog-Neo (NN) mESCs, respectively. The dotted red line marks the commonly used

threshold value of 0.95. (B) Density plot of training data from NG mESCs projected onto the first three components. Four clear clusters are apparent, labeled 1-4,

corresponding to distinct states of network activity. Each hexagonal bin contains at least 5 cells. (C) Heat map of expression of important nodes in NG mESCs

projected onto PCs 1-3. Mean expression values are displayed for each hexagonal bin. Distinct alternate states of pluripotency are apparent, based upon edge

co-expression patterns. (D) Bayes information criterion (BIC) as a function of the number of Gaussian mixture components fitted to the first three principal

components. The arrow marks the elbow in the plot, indicating the optimal number of components (here 4). (E) Projection of a test dataset of expression patterns

from NG mESCs cultured in 2i conditions onto the training PCs (B). (B–E) Show data from NG mESCs, corresponding data for NN mESCs is shown in Figure S1.

in the data, the structure of the eigen-networks associated with
these components are of particular interest. The first eigen-
network (PC1 in Figure 4A) naturally separated cells into two
subsets (Figure 3B), based upon overall activity of regulatory
interactions (see Figure 4A and overall expression in Figure 3C).
A subset of cells with low overall edge expression (cluster 1 in
Figure 3B) primarily contained apoptotic cleaved Casp3-positive
cells (Figure 3C) and cell cycle arrested cells (Figure S1G), likely
caused by the increased activity of IκBα (Figure 4A). Cluster 1
also lacked activity between the core pluripotency factors Oct4,
Nanog and Klf4 (Figures 3C, 4A). In contrast to this small
subset, the majority of cells displayed high overall expression of

pluripotency related-factors, including Oct4 (compare positive
edge association in PC1 Figure 4A and node expression in
Figure 3C).

The majority pluripotent population identified by the
first eigen-network naturally separated into 2 distinct further
sub-populations (clusters 2, 3 in Figure 3B) by expression
of the second eigen-network (PC2 in Figure 4A), which
broadly captures the strength of connection between the cell’s
signaling pathway activity and its core transcriptional regulatory
circuitry, including activity of β-catenin (Wnt-signaling),
Stat3-phosphorylation (LIF-signaling) and Erk-phosphorylation
(FGF/MEK-signaling) (blue edges in Figure 4A, PC2). This
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FIGURE 4 | Regulatory network activity archetypes define alternate pluripotency states. (A) Graphical representation of the first three PCs, interpreted as regulatory

network archetypes. Color and edge width indicate signed deviation from the mean. (B) Representative regulatory network states for naïve, formative, and early

primitive endoderm (PrE) states. The network corresponding to arrested/apoptotic cells (cluster 1) in Figure 3B is also shown for reference.

component therefore captures integration of the primary axes
of extrinsic control of the pluripotent ground state (Ying et al.,
2008), and distinguishes cells in the pluripotent ground state
(cluster 3), which are characterized by high Nanog, Oct4, and
Klf4 expression and strong integration of signaling and core
transcriptional regulatory programs, from those in a second
pluripotent state (cluster 2), which are characterized by low
Nanog and Klf4 expression (Figure 3C), and more sporadic
connectivity between signaling and transcriptional controls and
high Erk-signaling activity (red edges in Figure 4A, PC2). This
expression pattern indicates that these cells may correspond to
a more developmentally advanced state (Marks et al., 2012).
While the full nature of this state has yet to be determined, it
is consistent with the recently proposed “formative” phase of
pluripotency, characterized by dissolution of core pluripotency
sustaining mechanisms (Smith, 2017).

In addition to these primary populations we also observed
small subset of cells (∼ 2%) that could be distinguished from
the formative and naïve pluripotent states based on expression
of the third eigen-network (see population 4 in Figure 1B). This
fourth population is similar to the formative state (population 2)
with respect to expression of Nanog (both low; see Figure 3C)
and similar to the naïve state (population 3) with respect to
expression of Klf4 (both high; see Figure 3C). However, it is
quite distinct with respect to a number of surface markers.
Notably cells in cluster 4 are CD73high (Nt5e; Figure 3C), and
CD44high and CD54low (Figure 4, PC3), suggesting an increased
interaction with the extracellular matrix. These differences are

not simply a manifestation of mitosis or cell cycle arrest, since
the proportion of M-phase cells in this population is comparable
to both the naïve and formative states and the proportion of G0-
phase cells is comparable to the formative state (Figures S1F,G).
Although this data does not include more specific markers
such as Gata6 and Sox17, we conjecture that this population
corresponds to the early primitive endoderm (PrE), due to the
observed low expression of Nanog and co-expression of Oct4
and Klf4 (Guo et al., 2010; Boroviak et al., 2014). Additionally,
these cells display high levels of STAT3 signaling acitvity (blue
edges in Figure 4A, PC3), which has been shown to support
PrE differentiation (Morgani and Brickman, 2015). Moreover, in
the process of PrE differentiation, cells undergo an epithelial-to-
mesenchymal transition (EMT) (Chazaud et al., 2006) and begin
to express mesenchymal markers such as CD73 (see Figure 3C

and the blue edge between Oct4 and Nt5e, and between Oct4 and
CD24 in Figure 4A, PC3). In accordance with this notion, we
observe that this population has the highest total within cluster
variance, indicating the presence of substantial cell-cell variation
(see Figure S1E), which is typically found in cells transitioning
from one state to another (Bargaje et al., 2017).

To investigate this possibility further we constructed
representative networks for each of the four identified states
using the first three eigen-networks and the weight vector
corresponding to the centroid for each cluster (see Figure 4B).
The resulting networks may be thought of as representations
of the characteristic patterns of network activity within each of
the four states we identified. These networks show that: (1) the
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pluripotent ground state is characterized by strong co-regulatory
activity between members of the core transcriptional circuit
and strong integration of signaling pathways with this core
sub-network (Figure 4B). (2) By contrast, the PrE state is
characterized by partial dissolution of the core transcriptional
circuit (in particular a loss of Nanog, Sox2, and p53 activity),
which is accompanied by changes in cell-cell (CD54) and cell-
matrix (CD73, CD44) mediated signaling. However, cells in this
state continue to perceive environmental signals via the LIF/Stat3
signaling pathway (Figure 4B), indicating continued receptivity
to pluripotency-stimulating environmental cues. (3) The putative
formative state is marked by a further dissolution of the core
transcriptional circuit, including the loss of Klf4 regulatory
activity (Figure 4B) and a decrease in LIF/Stat3 signaling
(Figure 4B), suggesting that these cells are transitioning away
from the pluripotent ground state. Accordingly, the formative
state is also marked by the positive regulation of EpCAM
(Figure 4B), suggesting the onset of cell polarization, as is
observed in the epiblast of the egg cylinder in vivo (Bedzhov and
Zernicka-Goetz, 2014).

In summary, this analysis revealed the presence of four
distinct cellular communities, each characterized by different
levels of activity of regulatory network archetypes, within mouse
ES cell populations cultured in 0i conditions. To determine
how general these results were we also examined network
expression patterns mESCs cultured in 2i conditions, which
stimulateWnt signaling activity and reduce Erk-phosphorylation
using small molecule inhibitors of MEK, and thereby shield
the core transcriptional circuitry from extrinsic differentiation
cues (Ying et al., 2008). In accordance with the nature of these
conditions we found that populations 1, 2, and 4 (corresponding
to arrested, formative and PrE cells) were comprehensively
depleted in mESCs cultured in 2i conditions, while cluster
3 (corresponding to the naïve or ground state) was robustly
maintained (Figure 3E). These results re-affirm the potency of
these conditions to purify the ground state of pluripotency, and
provide mechanistic insight into the molecular mode of action of
these conditions.

Individual Cells Transition Through Distinct
Network Activity States During
Reprogramming
To further investigate the biological importance of the
regulatory network archetypes we had identified we then
sought to determine their temporal expression during cellular
reprogramming of somatic cells to pluripotency.

During cellular reprogramming, pluripotency regulatory
network activity is typically initially established through the
ectopic expression of four trans-genes, Oct4, Sox2, Klf4, and c-
Myc (OSKM) (Takahashi and Yamanaka, 2006). Subsequently,
the concerted action of these core reprogramming factors
leads to profound changes to the cellular phenotype, ultimately
re-instating a self-sustaining pluripotent identity in a small
proportion of cells. The dynamics of this process are thought
to be initially driven by low frequency stochastic events
followed by the deterministic progression through a series of

characteristic intermediate, partially reprogrammed, expression
states (Buganim et al., 2012). It is presumed that these
intermediate partially reprogrammed states correspond to
partial re-configurations of the pluripotency regulatory network
(Golipour et al., 2012). However, the relationships between
regulatory network reconfigurations and the dynamics of
reprogramming are not well understood.

To address this issue, we considered data from a
reprogramming time-course in which the expression of
ectopic OSKM transgenes were induced in secondary MEFs by
doxycycline (dox) supplementation of the MEF culture medium
for 16 days, followed by a further 14 days in 0i conditions without
dox (Zunder et al., 2015).

To analyze this data we first fit our training data (expression
patterns of NG mESCs cultured in 0i conditions) projected
onto the first three eigen-networks (as described above) with a
Gaussian mixture model (GMM) with four components. This
GMM may be thought of as an estimate of the joint probability
density function P(x) for the training data, projected onto the
first three PCs (where x ∈ R

3 identifies points in PC space).
We then projected the reprogramming time-course data onto the
first three PCs derived from the training data and used the fitted
GMM to estimate the likelihood of observing the expression
patterns seen in the reprogramming time-course within the
pluripotent cell population. That is, if v is the expression pattern
of a given cell in the reprogramming time-course projected onto
PCs 1-3 from the training data, we calculated P(v) as a measure
of the likelihood of observing v in the training population. The
negative logarithm of this probability

S(v) = − log2 P(v) (3)

is the amount of information imparted by observation v with
respect to the probability measure P (Cover and Thomas, 1991).
Informally, S(v) is a measure of the “surprisal” of observing
the expression pattern v in a pluripotent population: cells that
express proteins in a pattern similar to that often seen in
pluripotent cells have a low surprisal; while cells that express
proteins in a pattern that is unusual for pluripotent cells
have a high surprisal. To obtain assessment of the dynamics
of reprogramming, we calculated the surprisal for each of
the 263,692 NG cells in the reprogramming time-course, and
monitored how the distribution of surprisal in the population
changed over time during reprogramming.

We first observed that the surprisal remained high,
and approximately constant, for the first 10–12 days of
reprogramming (Figure 5A), indicating that cells in the starting
population (in this case NG MEFs) consistently exhibited
expression patterns that are unusual for pluripotent cells, as
expected. However, around days 10–12 the population split into
two distinct sub-populations: a majority sub-population in which
the surprisal remained high, and a minority sub-population in
which the surprisal was substantially reduced, suggesting the
emergence of population of pioneer partially reprogrammed
cells (Figure 5A). Over the next approximately 20 days the
proportion of cells in the low surprisal sub-population gradually
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FIGURE 5 | Dynamics of regulatory network activity during cellular reprogramming. (A) Violin plots of changes in “surprisal” [Equation (3)] over time. A gradual decrease

in surprisal in the population accompanies cellular reprogramming. The red arrow marks the end of doxycycline treatment. (B) The fraction of cells classified into each

of the four clusters identified in the training data. Class labels are as in Figure 3B (purple: arrested, blue: formative, green: naïve, orange: primitive endoderm).

increased, indicating the consolidation and proliferation of a
robustly pluripotent population of cells (Figure 5A).

To better understand the identity of this emerging pluripotent
sub-population we sought to relate it to the three alternate
pluripotency states we had identified (see Figure 5). To do so
we used our fitted GMM to classify each cell in the time-course
into one of the four populations identified in the training data
(Figure 5B). Since numerous cells, particularly at the beginning
of the time-course, did not resolve well onto any of the clusters
in the training data (which is to be expected, since they are not
pluripotent) we also incorporated a fifth class to capture those
cells with network activity states that were distinct from those
found in the training data (for details see section Materials and
methods).

This analysis revealed that specific instances of regulatory
network activity define distinct phases of the reprogramming
process (Figure 5B).

Initially, while the majority of cells were unclassified,
indicating lack of similarity to all of the pluripotent training
populations, a small proportion of cells were associated with the
fourth cluster, corresponding to the early PrE in 0i conditions.
This observation is not unexpected as these early PrE cells
express Oct4 and Klf4 in addition to surface markers CD24,
CD44, and CD73 (see Figure 3C). Similarly, in the presence
of dox, MEFs initially express exogenous OSKM transgenes in
parallel to endogenous mesenchymal surface markers such as
CD44 and CD73 that are normally expressed in MEFs, until
undergoing the mesenchymal-to-epithelial transition (Li et al.,
2010). Therefore, these cells display regulatory configuration
similar to the early PrE state. This route is consistent with
previously observed expression sequence of CD44, Icam1 and
Nanog during reprogramming (O’Malley et al., 2013).

This initial phase is followed by the emergence of a
population of cells in cluster 1 (corresponding to arrested or
apoptotic cells that are frequently observed in reprogramming,
Smith et al., 2010) from day 10–14, followed closely by the
emergence of a population of cells in cluster 2 (corresponding
to the formative pluripotent state) from day 17 and lastly, the
emergence of a small population of fully reprogrammed cells in

cluster 3 (corresponding to the pluripotent ground state) after
22 days.

These data suggest that reprogrammed cells do not emerge
in significant numbers until after dox is withdrawn, at which
point the regulatory network begins to assume a more
natural configuration similar to that of the formative state.
These observations are in accordance with the notion that
activation of the OSKM transgenes prevent cells from entering
a stabilization phase of reprogramming in which the pluripotent
state becomes fully established (Golipour et al., 2012). Notably,
at around the same time there is an apparent reduction
in the frequency of cluster 4 cells, which are marked by
low Sox2 and p53 activity, indicating that these cells only
exist transiently during reprogramming. Since this population
is more variable than the naïve and formative pluripotent
populations, it may also mark the handover from the early
stochastic phase of reprogramming, in which the activation
of OSKM transgenes initiate transformation of the regulatory
network configuration, to the late deterministic phase, in which
the pluripotent cell identities are consolidated by endogenous
regulatory mechanisms (Buganim et al., 2012).

Taken together these results indicate that reprogrammedMEF
cells enter pluripotency via a PrE-like state. It remains to be
seen if this is a general characteristic of reprogramming that also
applies to cells of different somatic origin, or if this particular
route is due to the fact that the MEF starting population has a
mesenchymal origin that happens to be more similar to the PrE
state than it is to the other pluripotent identities (see Figure 6).
Indeed, it was recently demonstrated that reprogramming with
the OSKM cocktail can also result in induced extra embryonic
endoderm (iXEN) stem cells in parallel to fully reprogrammed
iPSCs (Parenti et al., 2016).

Although the approach taken in this study is centered on
pluripotent network configurations observed in steady-state
culture conditions, our analysis of network reconfiguration
dynamics during reprogramming is consistent with the
detailed clustering performed by Zunder et al., who report
that cells initially transition through a Oct4high/Klf4high

state and increasingly resemble partially reprogrammed,
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FIGURE 6 | Proposed topography of pluripotency states. Cells descend a

natural hierarchy of distinct regulatory network activity states (black arrows).

Despite this natural hierarchy, 0i culture conditions permit the inter-conversion

of these different network configurations in vitro (green arrows). Somatic cell

reprogramming re-establishes a network configuration similar to that of the

early primitive endoderm (PrE; cyan arrows), from which cells replenish the

remaining pluripotency states. A different cocktail of reprogramming factors

may enable different reprogramming trajectories to the formative or naïve

states from different starting populations (orange arrows). A subset of cells

also undergo cell cycle arrest or apoptosis (dashed arrows).

transgene-dependent cells prior to mesenchymal-to-epithelial
transition (MET) (Zunder et al., 2015). Based on the similarity
of these partially-reprogrammed cells with the PrE-like network
state we have identified, and the fact that MET provides a major
obstacle in somatic cell reprogramming (Li et al., 2010), we
propose that futher study of PrE commitment may also help
understand the late phase of cellular reprogramming.

DISCUSSION

The notion that there is a single well-defined pluripotent stem
cell identity has been rapidly eroded by advances in single
cell analysis methods, which are now revealing ever greater
varieties of pluripotency (Ying et al., 2008; Kumar et al., 2014;
Singer et al., 2014; Guo et al., 2016). Collectively, these results
suggest that pluripotency is not a single phenotype but instead
is a property that spans a continuum of observable cell states
(Gardner and Beddington, 1988; Silva and Smith, 2008; Ying
et al., 2008; Morgani et al., 2017; Smith, 2017; Stumpf et al.,
2017). This is in part because the densely connected pluripotency
regulatory network is rich in feedback loops which both stabilize
pluripotency, and endow pluripotent cells with a remarkable
phenotypic plasticity (Kim et al., 2008; MacArthur et al., 2012).
Hence, to fully understand pluripotency, strategies to decipher
regulatory networks at single cell resolution are needed.

There have been a number of notable advances to this end,
particularly with regard to methods for inferring and analyzing
regulatory networks directly from single cell data, which can
reveal aspects of regulatory control that are inaccessible to study

with ensemble techniques such as ChIP-Seq (Buganim et al.,
2012; Trott et al., 2012; Chan et al., 2017; Stumpf et al., 2017). For
example, Trott and co-workers have inferred regulatory network
activity from correlation patterns in single cell data in different
stem cell sub-populations, and related these different activity
patterns to different aspects of the stem cell identity (Trott et al.,
2012). Similarly, Stumpf (not the current author) and colleagues
have used powerful notions from information theory to more
precisely identify regulatory interactions from single cell time-
course data (Chan et al., 2017). However, single cell data is
inherently noisy, and consequently large numbers of cells are
needed to gain the statistical power to accurately distinguish
functional from spurious interactions (Chan et al., 2017).

To circumvent this problem here we have presented a method
that incorporates prior knowledge of regulatory interactions
directly into single cell expression patterns, rather than inferring
regulatory interactions from the data itself, and uses this prior
knowledge to dissect the regulatory processes that give rise to
different states of pluripotency. This approach is similar to that
taken by Teschendorff and colleagues, who, by projecting single
cell data onto a known regulatory network, find that pluripotency
can be remarkably well related to systems-level emergent network
properties (Teschendorff and Enver, 2017). We anticipate that
as single cell profiling methods develop we will see concurrent
advances in the statistical methods needed to investigate and
interrogate the resulting data: indeed, new statistical advances
will be essential to fully realize the power of these new and
emerging technologies. We expect that Bayesian methods, which
use known regulatory interactions as a prior to guide learning of
functional interactions directly from single cell data, will combine
the benefits of the two approaches to this problem and may
therefore be particularly powerful.

It is important to note that with our eigen-network method
developed in this paper, we aim to infer from data the (meta-)
stable configurations of the regulatory network that correspond
to cell identities. Our method is not concerned with the
mechanism by which these stable configurations emerge. Since
every cell is equipped with the same genetic information,
the topology of the ensemble network is equally valid at the
individual cell level, however, specific, observable instances
emerge from the dynamics of the regulatory interactions, and
may correspond to attractor states (Kauffman, 1969; Huang et al.,
2005).

In summary, we have adapted a simple image analysis
method to infer the presence of four distinct patterns of
pluripotency, based on the activity patterns of three regulatory
network archetypes within individual cells. The power of our
method is not due to its mathematical or computational
sophistication—indeed, it is mathematically and computationally
straightforward—but rather in the biological interpretation it
allows. As such it provides a simple example of how methods
from machine learning may be easily adapted to address
biological questions in an intuitive way. In particular, using
this method we have identified a novel pluripotent state, which
appears to be an intermediate between the well-known naïve and
primed states (see Figure 6) and shares many of the putative
properties of a recently proposed “formative” state (Smith, 2017).
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Cells in this state are characterized by partial dissolution of the
core transcriptional regulatory circuit and distinct changes in
cell-cell and cell-matrix interactions. It is unlikely that these cells
correspond to the primed pluripotent state, since the culture
conditions (low serum and LIF) in which “formative” cells
are observed in large numbers do not support FGF/Activin-
dependent self-renewal of primed pluripotent EpiSCs (Brons
et al., 2007; Tesar et al., 2007). Furthermore, these cells only
appear at low frequency in 2i culture conditions and transiently
during the early stages of cellular reprogramming of MEFs
to pluripotency. Taken together these results suggest that this
“formative” state is a temporary intermediate in which the
feedback mechanisms that stabilize the core pluripotency circuit
become weakened and cells begin to become competent for
lineage allocation. It remains to be seen how the population
we have identified relates to recent observations of formative
pluripotency characterized by loss of Rex1 expression and
genome wide reorganization (Kalkan et al., 2017). We anticipate
that the coming years will see greater advances in single
cell profiling and analysis methods that will enable us to
address this question, and identify with greater precision the
regulatory networks that control the maintenance and exit from
pluripotency.

MATERIALS AND METHODS

Single-Cell Expression Data
Expression data from Zunder et al. (2015) was retrieved from
the Cytobank repository (accession no. 43324). In summary,
these data contain measurements of 46 features taken at the
single-cell level by mass cytometry, from two separate engineered
mouse embryonic stem cell (mESC) lines NG (Nanog-GFP) and
NN (Nanog-Neomycin). Each mESC line contains doxycycline
(dox) inducible gene cassettes for Oct4, Sox2, Klf4, and c-
Myc used for secondary reprogramming to pluripotency from
somatic mouse embryonic fibroblasts (MEFs). Data includes the
expression profiles of mESCs in steady state pluripotent stem
cell culture conditions containing either Serum/LIF (denoted
0i) or Serum/LIF supplemented with 3µM GSK3 inhibitor
CHIR-99021 and 1µM MEK inhibitor PD-0325901 (denoted
2i). Furthermore, time-course data comprised of snapshots of
MEFs undergoing 16 days of dox treatment in MEF medium
(DMEM, 10% serum) followed by 14 days without dox (123
medium + LIF) (Zunder et al., 2015). De-barcoded raw data
was processed in R version 3.3.2 using the flowCore (Ellis
et al., 2017) package version 1.40.4. Relevant features were
logicle-transformed with parameters w = 0.6, t = 10, 000
andm = 4.5.

Cell Cycle Analysis
Classification of cell cycle status was performed based on the
expression levels of Ki67 (absence indicates G0), phosphorylation
of Histone H3 (presence indicates M) as described in Figure
4C of Zunder et al. (2015). Classification of G1-, G2- and S-
phase was not possible due to a lack of discernible modes for
marker IdU.

Ensemble Regulatory Network
An ensemble model of binary node interactions (valid for an
abstract average cell) was derived from publicly available data.
Transcription factor binding data was derived from ChIPBase 2.0
(Zhou et al., 2017), and information on other known interactions
were sourced from KEGG (Ogata et al., 1999) and Reactome.org
(see Table S1).

Statistical Analysis
Principal Components Analysis
Principal components analysis of scaled and centered training
data (expression from mouse ES cells cultured in 0i conditions,
see above) was conducted in R using the prcomp function.

Gaussian Mixture Model
Gaussian mixture models were constructed in R using theMclust
package version 5.2.2 (Fraley and Raftery, 2002). Fit quality
was assessed using the Bayesian information criterion (BIC).
Minimum BIC indicates the best model fit, however, models with
a higher number of parameters often only provide marginally
better fits and the overall quality approaches a natural limit.
Optimal trade off between increased parameters and quality of
fit was obtained by selecting the model corresponding to the
“elbow” in the plot of fit quality against number of components.

Density Estimation
Estimate of the probability density function corresponding to
the GMM identified above was obtained using the densityMclust
function in R. Probability density estimates were calculated using
the predict method in R.

Classification
The GMM identified above was used for classification of
data into either of four categories based on the highest
posterior probability in combination with a reject option
to avoid misclassification of vastly dissimilar phenotypes.
Thus, points outside the 90th percentile for all individual
multivariate Gaussian distributions were rejected as
outliers.

SOFTWARE AND COMPUTER CODE

Analyses were performed in R version 3.3.2. Computer code
used in this study is available as a R-markdown file from
https://github.com/passt/Eigen-Networks.
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Supplementary Table S1 | Regulatory interactions derived from the literature.

Directed interactions between source and target nodes are provided in addition to

the interaction type, sign (+1: activating; −1: inhibiting) and reference to the

information source.

Supplementary Figure 1 | Sub-states of regulatory network activity. (a–c)

Projection of Nanog-Neo (NN) mESC onto the same principal component space

derived from Nanog-GFP (NG) mESCs (shown in Figure 3). NN mESC display

qualitatively the same population structure and corresponding node expression

levels as NG mESCs. (d) Relationship between number of multivariate Gaussian

distributions required to fully represent population structure, given the number of

Principal Components used to represent network activity state. (e) Total

variance/covariance within each sub-population (estimated from trace of the

covariance matrix and the sum of the off diagonal elements of the covariance

matrix for the respective fitted multivariate Gaussian models). (f) Fraction of cells

of each cluster in M-phase of the cell cycle. sfig1 Fraction of cells of each cluster

in G0-phase of the cell cycle.
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