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At least 40 human diseases are associated with repeat expansions; yet, the mutational
origin and instability mechanisms remain unknown for most of them. Previously, genetic
epidemiology and predisposing backgrounds for the instability of some expanding loci
have been studied in different populations through the analysis of diversity flanking the
respective pathogenic repeats. Here, we aimed at developing a pipeline to assess
disease-associated haplotypes at oligonucleotide repeat loci, combining analysis of
single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs). Machado-
Joseph disease (MJD/SCA3), the most frequent dominant ataxia worldwide, was used
as an example of a detailed procedure. Thus, to identify genetic backgrounds that
segregate with expanded/mutated alleles in MJD, we selected a set of 26 SNPs
and 7 STRs flanking the causative CAG repeat. Key criteria and steps for this
selection are described, and included (1) haplotype blocks minimizing the occurrence
of recombination (for SNPs); and (2) match scores to increase potential for polymorphic
information content of repetitive sequences found in Tandem Repeats Finder (for STRs).
To directly assess SNP haplotypes in phase with MJD expansions, we optimized a
strategy with preferential amplification of normal over expanded alleles, in addition to
SNP allele-specific amplifications; this allowed the identification of disease-associated
SNP haplotypes, even when only the proband is available in a given family. To infer
STR haplotypes, we optimized a multiplex PCR, including 7 STRs plus the MJD_CAG
repeat, followed by analysis of segregation or the use of the PHASE software. This
protocol is a ready-to-use tool to assess MJD haplotypes in different populations. The
pipeline designed can be used to assess disease-associated haplotypes in other repeat-
expansion diseases. This should be of great utility to study (1) genetic epidemiology
(population-of-origin, age and spreading routes of mutations) and (2) mechanisms
responsible for de novo expansions, in these neurological diseases; (3) to detect
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predisposing haplotypes and (4) phenotype modifiers; (5) to help solving cases of
apparent homoallelism (two same-size normal alleles) in diagnosis; and (6) to identify the
best targets for the development of allele-specific therapies in ethnically diverse patient
populations.

Keywords: haplotype, repeat instability, CAG expansion, mutation origin, Machado-Joseph disease, SCA3,
SNP, STR

INTRODUCTION

Repetitive DNA sequences with a capacity to expand (sometimes
up to hundreds or thousands of repeats) are found in the
human genome in non-coding and exonic regions. They are
currently known to be associated with approximately 40 human
diseases (reviewed in Paulson, 2018). Trinucleotide repeats were
the first to be identified, but an intensive search over the last
decades has shown tetra-, penta- and hexanucleotide repeats also
expanding above a normal polymorphic range in some human
subjects (Paulson, 2018). Most of the repeat-associated disorders
manifest with neurological, neuropsychiatric or neuromuscular
symptoms. Among them are the spinocerebellar ataxias (SCA1,
DRPLA, SCA2, MJD/SCA3, SCA6, SCA7, SCA8, SCA10,
SCA12, SCA17, SCA31, and SCA36), Huntington’s disease,
myotonic dystrophy, spinal-bulbar muscular atrophy and fragile
X syndrome. While each of these diseases is rare worldwide,
together they are one of the commonest causes of hereditary
neurological pathology (Sequeiros et al., 2011; Paulson, 2018).

Non-human primates have short repeat alleles at all these
loci (Andrés et al., 2004), which implies that expansion into
pathogenic ranges occurred after Homo-Pan split. If we are
able to identify the genetic backgrounds where de novo
expansions occurred (place-of-birth for these mutations), many
new possibilities will open for the study of mutational origins
and spread (Sequeiros et al., 2011; Obayashi et al., 2015; Lee et al.,
2016; Bampi et al., 2017; Kay et al., 2017), as well as mechanisms
of repeat instability (Martins et al., 2006; Falush, 2009; Warby
et al., 2009; Ramos et al., 2010) and genetic modifiers for these
diseases (Filippova et al., 2001; Libby et al., 2008; Becanovic et al.,
2015).

To characterize the genetic background of expanded
alleles, polymorphic markers are crucial given their capacity
to distinguish alleles identical-by-state. Single nucleotide
polymorphisms (SNPs) are the most common source of genetic
variation in the human genome, but their biallelic nature reduces
their informativeness. Short tandem repeats (STRs) have a
very high polymorphism information content (PIC), but their
mutation rate ranging 10−6–10−2 per locus per generation (Fan
and Chu, 2007) causes a high rate of recurrence. A combined
stepwise analysis with both SNPs and STRs may then be the key
to overcome both problems.

In Machado-Joseph disease (MJD/SCA3), SNPs and STRs have
been used mainly to study genetic epidemiology in this dominant
ataxia, the most frequent SCA worldwide (Martins and Sequeiros,
2018); however, there is also evidence on the importance
of extending haplotype analyses to study MJD instability
(Martins et al., 2008). MJD is caused by an expanded (CAG)n

in exon 10 of the ATXN3 gene (14q32.12) (Kawaguchi et al.,
1994). As in other SCAs, repeat instability of mutated/expanded
alleles has received enormous attention, due to its importance
in the clinical phenomenon of anticipation: the earlier age-at-
onset (AO) and more severe symptoms in successive generations,
as the repeat number tends to increase upon transmission to
offspring, and repeat size correlates inversely with AO. Despite
its importance, instability is not yet fully understood in MJD or
other repeat-associated disorders; only a few modifiers have been
identified (McGinty and Mirkin, 2018). In MJD, in addition to
the length of the initial repeat tract and the gender and age of the
transmitting parent (Maciel et al., 1995; Maruyama et al., 1995;
Souza et al., 2016), SNP rs12895357 near the CAG repeat has
been shown to affect repeat instability, the genotype (CAG)exp-
C/(CAG)normal-G of the transmitting parent being associated
with increased instability (Igarashi et al., 1996; Maciel et al., 1999;
Martins et al., 2008).

Given the importance of haplotype analyses (including SNPs
and STRs) to perform a comprehensive study of oligonucleotide
repeat-related diseases, we designed a strategy to identify disease-
associated haplotypes and show here the example of this
approach to analyse the ATXN3 locus.

MATERIALS AND METHODS

Samples
We optimized a protocol with DNA samples extracted from
saliva, buccal swab and peripheral blood through different
techniques, by using the QIAamp R© DNA Blood Mini kit, the
Citogen R©Blood kit, the Chelex100 chelating resin, as well as
through the standard method of salting-out. We also tested some
DNA samples stored for more than two decades at 4◦C. This
study was carried out with anonymized DNA samples available
in our laboratory, in accordance with the recommendations of
international guidelines. Previous written informed consent was
obtained from all subjects to use their DNA samples for research
purposes, in accordance with the Declaration of Helsinki. DNA
quantification was performed with Nanodrop, to prepare aliquots
with a final DNA concentration of 7.5 ng/µL.

Selection of Polymorphic Markers
We selected a set of 26 SNPs within a region of 4 kb
encompassing the (CAG)n, based on (1) minor allele frequencies
(MAF > 5%; Ensembl1); (2) recombination hotspots (within
the same haplotype block; The International Genome Sample

1www.ensembl.org
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TABLE 1 | STRs selected for MJD haplotype analysis, respective distances from
the (CAG)n and primers used for genotyping. F - Forward primer; R - Reverse
primer.

Primers Distance from
the (CAG)n

Primer sequence (5′–3′)

TAT223_F∗1 223 kb CCACACTTCCTTTGGACCAT

TAT223_R GGTAGGCACCAGCTACTTGGG

GT199_F 199 kb TTACTGGGTAGGATATACATTCC

GT199_R∗1 CAGCCTTCCCCCGAGTCC

ATA194_F 194 kb CCTTATCTAACCTCCTACATCTCAGC

ATA194_R∗2 GCAGGGCAGGCAATGAAACACG

MJD52_F CCAGTGACTACTTTGATTCG

CAG_R∗3 GTGTGAAGGTAGCGAACATGATG

AC21_F∗1 21 kb CTTCAGCTCAAATGCTATCAAAC

AC21_R CAAGGATGGCTAGTGCAGAAAT

AAAC123_F 123 kb CAGATGGGATAGGCCACAGT

AAAC123_R∗1 AGTGGAGGCTTCAACCTGTT

GT190_F∗4 190 kb GAGGGGACCTGGCCTACTAC

GT190_R ACCTACAGTAACACACTTTGCAC

AC190_F∗2 191 kb CTGGGAGGAGGAGGGTACAA

AC190_R AACCCTGACTCAACTCTCGG

Fluorescent labels ∗1FAM (6-carboxufluorescein); ∗2NED; ∗3PET; and ∗4VIC

Resource and The 1000 Genomes Project); and (3) sequence
alignments of previously analyzed patients (to include SNPs that
discriminate MJD lineages (Martins et al., 2012; Ogun et al.,
2015); Supplementary Table S1).

To select STRs, we used the Tandem Repeats Finder tool2 and
the following criteria for putative polymorphic repeats: consensus
size of 2–5 bp; copy number above 7; matches above 80%;
and proximity to the (CAG)n. This search was done within the
human reference ATXN3 and 250 kb up and downstream to it
(NG_008198.2). Seven STRs were selected, based on their score
(>8.5): one tetra, two tri and four dinucleotide repeats, less
than 223 kb from the (CAG)n, thus reducing the likelihood of
recombination (Table 1). Three of these STRs (TAT223, AC21
and GT190) have been analyzed in previous haplotype studies
in several MJD populations, which will be useful for future
comparisons (Martins et al., 2007).

Primer Design
We used the online software Primer3Plus to design specific
primers, to amplify and sequence previous selected polymorphic
markers, in addition to the MJD_CAG repetitive region (Table 2).
Next, the alignment tool BLAST was used to guarantee
the specificity of the designed primers: at maximum three
mismatches (or two at 3′ end) were allowed if homologous
sequences were observed. Finally, the occurrence of hairpins
and primer-dimers (including self-dimers) was tested with
AutoDimer (Vallone and Butler, 2004).

SNP Haplotypes
Genotyping of the SNPs was done with amplification of three
fragments, not including the CAG tract, which allowed equal
amplification of normal and expanded alleles. Reactions were

2https://tandem.bu.edu/trf/trf.html

TABLE 2 | Primers designed to amplify and sequence a 4 kb flanking region of the
ATXN3_CAG repeat. F - Forward primer; R - Reverse primer.

Name Primer sequence (5′–3′)

MJDcloF_F CAATTATTGGCCTTTCTGAACC

MJD52_F CCAGTGACTACTTTGATTCG

MJD653_R GCAAATGAGTGTTGGTTTATAGACCC

MJD716_F ACAGAGTCTCGCTCTGTCGCCCAG

MJD1260_R GCTGTCTGAAACATTCAAAAGTGAAG

MJD7a_R TGCTCCTTAATCCAGGGAAATTTAG

MJD1342_F CCACCAGTTCAGGAGCACTT

MJD1396_F TCATGTTCGCTACCTTCACACT

MJD2109_F GAGTTACTTTCCAGGTCTCGG

MJD2129_R CCGAGACCTGGAAAGTAACTC

MJD2552_F GATCCAGCAGTCCCAATCATGTA

MJD2646_R TGCCTGGTCAGCTATAAGCA

MJD2942_F TGGACACGGTGGCTTACGCCT

MJD3417_F CTGGGCTGGGTGGCGGTGGCTCA

MJD3936C_R CTAAAGGTTTTTATCTTGCTAGAC

MJDcloR_R AGCCTTCTCTAACACCACCTTGG

performed using the following primers, annealing conditions,
extension time, and number of cycles: MJDcloF-MJD1260R
(62◦C for 90 s; 90 s; 33 cycles); MJD1342F-MJD2646R (59◦C
for 90 s; 120 s; 35 cycles); MJD2552F-MJDcloR (61◦C for 90 s;
120 s; 35 cycles). Amplification reactions were done in a total
volume of 10 µL, with 0.2 µM of each primer, 1x of Taq PCR
Master Mix Kit Qiagen R©, 0.5x of Q-Solution for Qiagen R©, and
15 ng DNA.

Phase of SNPs on expanded chromosomes was assessed
through (1) amplification of two fragments encompassing the
CAG repeat and either up or downstream regions (which resulted
in the overrepresentation of normal alleles) and (2) allele-
specific amplification of rs7142326 (amplicon length of 1384 bp).
Reactions were performed using the following primers, annealing
conditions, extension time and cycles: MJDcloF_F-MJD7a_R
(60◦C for 90 s; 120 s; 35 cycles), MJD52_F-MJD2646_R (58◦C
for 90 s; 120 s; 20 cycles; plus, 57◦C for 90 s; 120 s; 20 cycles)
and MJD1342_F-MJD3936C_R (57◦C for 90 s; 120 s; 40 cycles).
PCRs included 0.2 µM of each primer, 1x of Taq PCR Master Mix
Kit Qiagen R©, 0.5x of Q-Solution for Qiagen R©and 15 ng DNA, in a
final volume of 10 µL.

To sequence the amplified fragments, we started by
purification with thermosensitive Alkaline phosphatase:
Exonuclease I, ExoFastAP (Thermo Scientific) (1:5) at 37◦C for
15 min, followed by 15 min at 80◦C to inactivate the enzyme.
Sequence reactions were done with 0.5 µL BigDye R©Terminator
Cycle kit (Applied Biosystems), according to manufacturer’s
instructions.

A final purification of DNA was performed using a
cross-linked dextran matrix (IllustraTM SephadexTM G-50, GE
Healthcare), with centrifugation for 4 min at 4400 rpm.
After loading the sequencing product, the same conditions
of centrifugation resulted in a deposit containing the final
product, ran in an ABI PRISM 3130x/Genetic Analyzer (Applied
Biosystems) with Hi-DiTM formamide.
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STR Haplotypes
STRs were all amplified together with the CAG repeat, in a
multiplex PCR reaction, in a final volume of 10 µL, using 0.25 µM
(AAAC123, AC21, GT199, and GT190), 0.125 µM (TAT223,
ATA194, and AC190), and 0.2 µM (CAG, and MJD52_F)
of each primer, 1x of Taq PCR Master Mix Kit Qiagen R©,
0.5x of Q-Solution for Qiagen R©, and 7.5 ng DNA. The initial
denaturation was performed at 95◦C for 15 min, followed by 35
cycles of denaturation at 94◦C for 30 s, annealing at 62◦C for 90 s
and extension at 72◦C for 60 s; with a final extension at 70◦C
for 30 min. Analysis of fragment length was performed with ABI
PRISM 3130x/Genetic Analyzer (Applied Biosystems). A mix of
GeneScanTM 500 LIZTM size standard (Thermo Scientific):Hi-
DiTM formamide (Applied Biosystems) (1:20) was added to
2 µL of PCR product and run in matrix G5, analyzed with
GeneMapper v4.0. Allelic phases associated with the expansion
were assessed by segregation and bioinformatically, using PHASE
v.2.1.1 whenever DNA samples from relatives were not available.

PROTOCOL DESIGN AND
APPLICATIONS

Analysis of the genetic background of expanded alleles at
repetitive loci is important for a comprehensive study of repeat-
associated neurological disorders. Most approaches, however, are
rather ad hoc and lack a strategy to get the most from such
valuable SNP and/or STR data from patients. Thus, we designed
a pipeline to characterize the haplotype background of repetitive
disease-associated loci that can be used to study any of these
neurological disorders; a step-by-step protocol, optimized to
assess genetic backgrounds of MJD patients, is here detailed as
an example.

Process Overview
Our strategy focused first on the selection of SNPs to identify
stable genetic backgrounds, defining lineages. Given the low
mutation rate of SNPs (∼2.5 × 10−8), events on the origin
of these polymorphic markers are considered unique during
the evolution of a species (Nachman and Crowell, 2000). It
is important that SNPs are selected within a distance to the
pathogenic repeat small enough to lie within a single haplotype
block, thus avoiding recombination to play a relevant role on the
lineages identified. Next, analysis of STRs allows differentiating
a high number of haplotypes inside each lineage. Fast-evolving
STRs flanking the disease locus should have a high potential to
be pure, simple stretches, in order to be reliable as molecular
clocks. By following this two-level strategy (STRs analyzed
within stable SNP lineages), it is possible to achieve a high
discrimination power, not compromising the discrimination of
haplotypes identical-by-state (not by-descent) (Figure 1).

Protocol to Identify MJD Haplotype
Backgrounds
We applied the strategy described to optimize a protocol to assess
disease-associated haplotypes in MJD. While sequence, frequency

and population data are widely available for SNPs in databases
such as Ensembl and The 1000 Genomes Project, the search for
STRs must rely on the potential PIC that a repetitive sequence
harbors, since there are not many data available regarding allele
frequencies and repeat configuration of non-deleterious STRs.
For this reason, we selected potential STRs from Tandem Repeat
Finder and tested their heterozygosity value by genotyping a
set of random samples. After confirming their high potential to
discriminate alleles identical-by-state, we sequenced at least one
allele size per STR from two major ethnic groups: Europeans
and Asians. Further analyses included exclusively pure STRs (or
STRs with regular repeat configurations), without any additional
source of size variation (such as indels or other tandem repeats)
within the amplicon that includes the STR of interest. While
optimizing the protocol, we performed three standard PCRs,
to obtain SNP genotypes of MJD patients; followed by two
PCRs encompassing the (CAG)n (Figure 2A) and an allele-
specific PCR (Figure 2B), to assess alleles that segregated with
the MJD expansion. This way, even in families with a single DNA
sample available from the proband, we were able to infer directly
alleles in cis with the expansion (i.e., lineages). For genotyping
of STRs, we optimized a single multiplex reaction, to amplify
all 7 STRs and the MJD_CAG repeat together (Figure 3), this
way reducing quantity of DNA, time, reagents and sample’s
manipulation.

We validated our pipeline for MJD haplotyping by testing
the optimized protocol in a randomly selected subset of 100
MJD families from our large cohort. Genotypes of SNPs and
STRs were obtained in 92 families, a successful rate for SNP
and STR amplification of 92% - taking into account the
long-term storage of most DNA samples analyzed (most for
over two decades), we considered 8% a low failure rate. We
have also estimated success rate for haplotype inference, given
the importance of assessing allelic phase of polymorphisms
segregating with the pathogenic expansion: following our strategy
of SNP allele-specific amplification, MJD lineages were accurately
identified in all 92 families; as for flanking STRs, we were able
to reconstruct haplotypes in 85% of the families genotyped
(78/92); of note is the fact that 48% (44/92) of the families
were composed solely by the proband and that in other 15%
(14/92) only a single relative was available. Therefore, we
may conclude that, following this protocol, complete extended
haplotypes (SNPs-STRs) can be inferred in a larger number
of MJD families, even in very small families or isolated
patients.

Usefulness and Perspectives of
Application

(1) Genetic epidemiology. Geographical differences in
disease prevalence may be explained by haplotype
studies, as shown for Huntington disease (HD),
with the highest risk HD haplogroups being found
in Europe, while absent in East Asia (Warby et al.,
2011). In MJD two de novo expansions seem to have
occurred, and, so far, its presence in remote and
ethnically diverse populations has been explained

Frontiers in Genetics | www.frontiersin.org 4 February 2019 | Volume 10 | Article 38

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00038 February 1, 2019 Time: 17:47 # 5

Costa et al. Haplotypes in Repeat Expansion Diseases

FIGURE 1 | Strategy followed to identify mutational origins in repeat-associated diseases by assessing SNP and STR haplotype backgrounds associated to
expanded alleles.
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FIGURE 2 | Electropherograms showing (A) SNP rs7153374 genotyped by a standard PCR versus (CAG)n-biased PCR and (B) SNP rs8004149 genotyped by a
standard PCR versus allele-specific PCR.

FIGURE 3 | Electropherograms showing amplified products from the optimized multiplex PCR for the analysis of the CAG repeat of ATXN3 and seven flanking STRs.

by genetic drift and founder effects (Gaspar et al.,
2001; Martins et al., 2007, 2012; Ogun et al., 2015);
This optimized protocol could clarify remaining
questions about the origins and history of MJD
mutations. By following the same pipeline to study
other expanding loci, one could understand better disease
prevalence and provide a clearer scenario about the
occurrence of de novo expansions (Venkatesh et al.,
2018).

(2) Mechanisms of de novo expansion. Analysis of SNPs
and STRs flanking ATXN3 suggested a multistep
mutation mechanism for the evolution of the CAG
repeat responsible for MJD (Martins et al., 2006). Also
based on the analysis of flanking haplotypes, other
authors explained the origin of a rare intermediate
MJD allele (45 CAGs) after a gene conversion event
(Mittal et al., 2005). In other expansion diseases, risk
SNP haplotypes seem to predispose to large jumps,
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namely large expansions into the pathogenic range in
HTT (responsible for HD) (Warby et al., 2009) and
in C9orf72 (the most common known genetic cause of
amyotrophic lateral sclerosis and frontotemporal lobar
degeneration) (Xi et al., 2015) or large contractions
into the normal range in fragile X (Maia et al.,
2017).

(3) Instability of expanded alleles. Once expanded,
the haplotype background seems to affect (CAG)n
intergenerational instability, since cis-elements in
different haplotypes may regulate instability at that locus.
In paternal transmission of MJD, opposite biases towards
further expansion or contraction have been observed on
specific SNP backgrounds: TTACAC versus GTGGCA
haplotypes (Martins et al., 2008); this shows the relevance
of further exploring the effect of flanking sequences
on repeat instability. Haplotypes can serve as tags of
cis or trans elements influencing de novo expansion
or biasing towards further expansion or contraction,
but can also have a direct effect. In the SCA7 gene,
CTCF binding-sites cis to the expansion were shown
to regulate ATXN7_CAG hyperinstability (Libby et al.,
2003, 2008). Also, a haplotype study in fragile X has
shown the direct influence of a flanking SNP on the
replication of CGG repeats, due to its location within
a medium reiterative element 1B sequence, proved to
affect chromatin structure (Ennis et al., 2007). Through
the identification of haplotypes, either with direct or
indirect effect on repeat instability, we can improve genetic
counseling, by predicting further expansion or contraction
in offspring, but also understand better the mechanisms
behind such events.

(4) Phenotype modifiers. Expanded repeat disorders
frequently show an inverse correlation between expansion
size and AO; however, this correlation explains only part
of AO variation (Du Montcel et al., 2014). Haplotype
background may play a direct role in disease expressivity;
even after correcting for the known effect of expansion
size; this is the case when a given SNP lies in the
promoter or regulatory sequences of repeat-associated
loci, which can affect binding of transcription factors,
thus altering gene expression and disease presentation.
In HD, SNP rs13102260 was identified as a modifier
of AO. This SNP is located in a NF-κB binding site
that regulates HTT promoter transcriptional activity.
In vitro data showed a direct effect of rs13102260
on NF-κB binding and huntingtin expression, this
way affecting disease presentation (Becanovic et al.,
2015).

(5) Clinical laboratory diagnosis. The analysis of
polymorphisms flanking the disease-causing repeat
may also be helpful in diagnosis. A new genetic tool
using 13 STRs flanking the expansion repeat has been
proposed to help fragile X detection, avoiding ambiguity
due to allele dropout (Rajan-Babu et al., 2017). Analysis
of genetic markers is also important for predictive testing,
namely to solve cases of apparent homoallelism, i.e., when

a single peak may represent two normal alleles of the
same size or a second allele expanded beyond the range
of detection of the assay (Maciel et al., 2001; Smith et al.,
2013).

(6) Allele-specific therapies. The urgency to develop
direct therapies to prevent or slow progression of
neurodegeneration led some authors to propose the
sub-expression of the causative gene as a potential
approach (Evers, 2015). In the case of ataxin-3, however,
depletion of the gene results in cell death, by accumulation
of ubiquitinated material, cytoskeletal disorganization
and loss of cell adhesion (Alves et al., 2008). Therefore,
the development of small interfering RNAs, based
on the presence of a SNP that discriminates between
wild-type and mutant transcripts, could be an efficient
strategy for treatment of MJD. There are several SNPs
described flanking the ATXN3_CAG repeat; however,
for allele-specific therapy, patients must be heterozygous
for the target SNP. The protocol optimized here for
MJD may be used to identify the most informative SNPs
for each population; the same pipeline can be followed
to perform similar analysis in other repeat-associated
diseases.

CONCLUSION

Identification of mutational haplotype backgrounds is key to
unravel the mechanisms behind repeat-associated diseases. The
strategy proposed was based on the analysis of fast evolving
STR markers, placed within stable SNP-based lineages. By using
the example of MJD, we have shown the procedure to assess
allelic phases of both SNPs and STRs segregating with expanded
alleles. Haplotype definition is crucial in dominant diseases,
since normal alleles are not on the mutational background
where de novo expansion(s) took place but are inherited from
the non-affected parent. This is also relevant for recessive
diseases, since two mutations (expanded alleles) in homozygosity
may not share a common ancestral origin. When the gene of
interest is on the X chromosome, that allows to infer haplotypes
directly in males (e.g., when analyzing the CAG expansion in
the androgen receptor, responsible for SBMA) (Santos et al.,
2014).
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