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Angiotensin II (Ang II)-induced damage to endothelial cells (ECs) plays a crucial
role in the pathogenesis of cardiovascular disease. This study aimed to investigate
the role of maternally expressed gene 3 (Meg3) in endothelial cell injury. A lncRNA
human gene expression microarray analysis was used to identify differentially expressed
lncRNAs in human umbilical vein endothelial cell (HUVECs). Cell viability, apoptosis,
and migration were then assessed Ang II-treated HUVECs. qRT-PCR and western
blotting were performed to detect the expression level of p53 after Meg3 knockdown
and overexpression. We observed that Ang II treatment decreased the Meg3 level
in HUVECs. Next, both knockdown of Meg3 and Ang II decreased cell viability,
increased apoptotic cell rate and impair migration function in HUVECs. Furthermore,
overexpression of Meg3 inhibited cell apoptosis, and increased cell migration by
enhancing p53 transcription on its target genes, including CRP, ICAM-1, VEGF, and
HIF-1α. Our findings indicate that Meg3 might be associated with cardiovascular
disease development.

Keywords: cardiovascular disease, HUVECs, Ang II, Meg3, p53

INTRODUCTION

Endothelial cells (ECs) are very commonly distributed in heart and other organs, which guard
relevant tissues. In addition, ECs were found to be significant in pathological and physiological
processes, such as atherosclerosis, inflammation, etc. (Borgo et al., 2016). Angiotensin II (Ang II) is
an important peptide in renin-angiotensin system (RAS), and has been found to play a significant
role in cardiovascular system (Wang et al., 2013). Previous studies have revealed Ang II-induced
endothelial dysfunction has been used in various cardiovascular models, such as hypertension, and
myocardial infarction (Dimmeler et al., 1997). Numerous factors, including reactive oxygen species

Abbreviations: Ang II, angiotensin II; CAM-1, cell adhesion molecule-1; CRP, C-reactive protein; ECs, endothelial cells;
HUVECs, human umbilical vein endothelial cells; lncRNAs, long non-coding RNAs; Meg3, maternally expressed gene 3;
RAS, renin-angiotensin system; VEGF, vascular endothelial growth factor.
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(ROS) release, DNA damage, and inflammation, were considered
to be associated with Ang II-induced endothelial apoptosis
(Paravicini and Touyz, 2006; Caporali and Emanueli, 2011;
Mendell and Olson, 2012; Wang et al., 2012), however, the
mechanisms underlying Ang II-induced EC apoptosis remains
poorly understood.

Long non-coding RNAs (lncRNAs) are very special
transcripts, with non-protein coding property and more
than 200 nucleotides. LncRNA has been considered as an
important constituent of mammalian transcriptomes (about
4–9%) (Banfai et al., 2012; Takahashi and Carninci, 2014).
Lots of studies have revealed lncRNAs have been involved
in gene expression regulation and biological processes, such
as epigenetics, and cell growth (Geisler and Coller, 2013;
Karapetyan et al., 2013; Bonasio and Shiekhattar, 2014; Wang
et al., 2014). Previous research has suggested that lncRNAs
were associated with the cardiovascular diseases since lncRNAs
were found in cardiovascular endothelial cells (Luther et al.,
2005; Visel et al., 2010; Zhao et al., 2010), however, the function
of lncRNAs in cardiovascular system needs further data
to confirm.

Maternally expressed gene 3 (Meg3), an lncRNA, is widely
expressed in many normal tissues. Previously studies have
suggested that Meg3 is a tumor suppressor lncRNA, and Meg3
is down regulated in a number of different cancers such
as breast, bladder and hepatocellular carcinoma and that its
downregulation increases cell proliferation in those types of
cancer (Zhang et al., 2003; Anwar et al., 2012; Ying et al., 2013;
Sun et al., 2016). It is part of the DLK1-Meg3 locus located
on human chromosome 14q32 (Miyoshi et al., 2000) and was
believed to be associated with ECs’ injury (Zhang et al., 2003). Its
expression level was also found to be related to downregulation
in isoprenaline treated HUVECs (Yan Y.Y. et al., 2016). However,
the role of Meg3 in HUVECs’ injury remains unclear.

In this study, we examined the roles of Meg3 in HUVECs and
its potential mechanism. It was revealed that Meg3 expression
level is reduced in HUVECs following treatment with Ang II, and
subsequent bioinformatics analysis suggested that p53 may be a
downstream target of Meg3.

MATERIALS AND METHODS

Animals
C57BL/6 mice were obtained from Shanghai Slac Laboratory
Animal Co. Ltd. (SCXK (Hu) 2018-0015). All animals were
housed in a pathogen-free room with a controlled ambient
temperature (23 ± 2◦C) and humidity (55 ± 5%), and
performed in accordance with the Guide for the Animal Research
Committee of Changhai Hospital (Shagnhai, China).

Animal Models and Treatment
Ang II was dissolved in 0.9% NaCl, and subcutaneously infused
(1.4 mg /kg per day) for 4 weeks using an osmotic minipump
(Alzet model 2004, Alza Corp) to obtain Ang II-induced cardiac
hypertrophy. Saline-infused animals were used as controls with

same procedure of Ang II-induced cardiac hypertrophy, except
for the Ang II uses.

Echocardiographic Measurements
Echocardiography was recorded based on previous study (Wu
et al., 2018). Briefly, 1.5–2.5% isoflurane was continuously
inhaled using Pour Fill R500IP (RWD lifescience, China).
M-mode tracings derived from the short axis of the LV at the
level of the papillary muscles were recorded. The left ventricular
(LV) end-diastolic dimension (LVEDd) and LV end-systolic
dimension (LVESd) were measured at the largest and smallest LV
areas, respectively.

Histological Analysis
Hearts were sectioned and stained with hematoxylin-eosin
staining (HE). The cross-sectional areas of myocytes and fibrotic
areas were measured using a digital image analysis system
(Image-Pro Plus, version 6.0) from images captured from HE-
stained sections.

Cell Culture and Ang II Treatment
Human umbilical vein endothelial cells (HUVECs) were obtained
from the Cell bank of Chinese Academy of Sciences (Shanghai,
China) and were grown in Dulbecco’s modified Eagle’s medium
(ScienCell Co., United States) that was supplemented with
10% fetal bovine serum (FCS) (Gibco Co., United States) in a
humidified incubator with 5% CO2 at 37◦C. HUVECs at passages
3–10 are used in the present study. The cells were treated with
various concentrations (0.1–100 µM) of Ang II (Sigma-Aldrich,
United States) for different incubation times (24, 48, 72 h).

RNA Extraction and Quantitative Reverse
Transcription PCR
Total RNA was harvested from HUVEC using TRIzol
reagent (Invitrogen, Carlsbad, CA, United States) and the
RNeasy Kit (Qiagen Co., Hilden, Germany) according to the
manufacturer’s instructions, including a DNase digest ion
step. Total RNA from each cell line was quantified using a
NanoDrop ND-2000 (OD 260 nm, NanoDrop, Wilmington,
DE, United States) RNA integrity was assessed using standard
denaturing agarose gel electrophoresis, and the purity was
judged by the ratio of absorbance at 260 nm to 280 nm
(A260/A280). Reverse transcription was performed using
0.55 µg reverse transcription primes Odigo(dT) and 1
µg total RNA using K1622 revert aid first strand cDNA
synthesis kit (Thermo Scientific Fermentas, United States).
Quantitative real-time PCR (qRT-PCR) was performed using
SYBR Premix EX TaqTM (TaKaRa, Dalian, China). Primers
of Meg3 and other genes as well a hACTB as control were
presented in Supplementary Table S2. The expression level
of each gene was represented as the fold change using the
2−MMCt methods.

Plasmid Construction and Transfection
The pcDNA-si-MEG3, pcDNA-MEG3-OE, pcDNA-si-p53, and
their respective control vector were purchased from Guangzhou
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RiboBio Co., China. Cell transfection was performed with
POLO3000 (Shanghai Ruisai Biotech Co., China) according to
the manufacturer’s instructions.

High Throughput lncRNA Expression
Profile Analysis
The Affymetrix Human OE lncRNA (OE Biotech. Co., Shanghai,
China) was used. Briefly, total RNAs were transcribed to double
strand cDNAs and then synthesized cRNAs. Then, the 2nd cycle
cDNAs were synthesized from cRNAs. Followed fragmentation
and biotin labeling, the 2nd cycle cDNAs were hybridized onto
the microarray. After washing and staining, the arrays were
scanned by the Affymetrix Scanner 3000 (Affymetrix). The
differential LncRNAs were screened out by using the following
parameters: p < 0.05 and fold > 1.5. Hierarchical clustering
analysis was employed on differentially expressed lncRNAs. The
raw data of the microarray have been uploaded to GEO with the
series record GSE123679.

Western Blotting
Cells were lysed using lysis buffer supplemented with
phenylmethylsulfonyl fluoride (1 mM) on ice. Then, the protein
lysates were electrophoresed by using 10% SDS polyacrylamide
gels and transferred to a PVDF membrane (Millipore, Billerica,
MA, United States). Membranes were blocked in 5% non-fat
milk solution at room temperature for 1 h and then incubated
with the primary antibodies at 4◦C overnight. Next, membranes
were incubated with secondary antibodies labeled with HRP
for 1 h at room temperature after three 5 min washes in
triethanolamine buffered saline solution with Tween (TBS-T).
Finally, the signals were detected by using an ECL kit (Pierce
Biotech., Rockford, IL, United States) and the membranes were
scanned and analyzed using Odyssey LICOR CLX infrared
imaging system (Gene Co., United States). Tubulin was used as
an internal control. The antibodies used for western blotting are
listed in Supplementary Table S3.

Transwell Migration Assay
Cell migration was determined using a transwell chamber
(8 × 8 µm pore size). After digestion, a total of 4 × 103

cells in 100 µL serum-free medium were plated to the upper
chambers and 600 µL of medium containing 10% serum was
used as a chemoattractant in the lower chambers. After 5 h, the
cells on the upper side of the membrane were removed using
cotton swabs, and the invaded cells on the lower side of the
membrane were fixed, stained with GENMED crystal violet, and
counted by using an using an GENMED crystal violet staining
and inverted microscope at 100× magnification. The OD value
was determined using a microplate reader at 570 nm.

Apoptosis Analysis
Apoptosis was analyzed by flow cytometry using the Annexin
V-PI detection kit. After transfection, cells were harvested
for Annexin V-PI staining according to the manufacturer’s
instructions (Tianjin Sungene Biotech Co., China). The apoptosis
rate was calculated by flow cytometric data and the cell counts.

Data Preprocessing
Unpaired t-tests were conducted applying GraphPad Prism
version 6.00 for Windows, (GraphPad Software, La Jolla,
CA, United States)1. Asterisks in figures summarize P-values
(∗∗P < 0.01; ∗P < 0.05).

RESULTS

Meg3 Is Downregulated in HUVECs and
Mice Treated With Ang II
We first investigated the effect of Ang II treatment on the
cell viability by CCK-8 assay. Ang II decreased cell viability
in a concentration-dependent manner (Figure 1A). Compared
with the control, Ang II, at concentrations of 1, 10, and
100 µM, significantly reduced HUVECs’ viability (P < 0.01).
Moreover, Annexin V-FITC/PI data revealed that HUVECs
incubation with Ang II for 48 h resulted in apoptotic rate
to 18.16 ± 0.95%, 18.11 ± 1.27%, and 18.45 ± 0.69%, for
concentrations of 1, 10, and 100 µM, respectively (Figure 1B).
In addition, the incubation time of Ang II, including 24, 48,
and 72 h, was also investigated in our research (Supplementary
Figure S1). Both 48 and 72 h showed significant cell viability
reduction (P < 0.01), compared with the control group. Thus,
in the following experiment, we incubated the HUVECs with
Ang II of 1 µM for 48 h. To identify potential molecular
factors associated with Ang II induced injury in HUVECs,
we used Affy lncRNA gene expression microarray (Affymetrix
Company, United States) to analyze differentially expressed
lncRNAs in both normal and Ang II induced HUVECs. Then
differentially expressed probes were calculated and 92728 genes
were identified. As shown in Figure 1C, hierarchical clustering
analysis showed the differential expression of 293 non-coding
RNA transcripts (123 up- and 170 downregulated), with the
P < 0.05 and absolute fold change (FC) > 1.5 (Supplementary
Table S1). Among the differential lncRNAs, Meg 3 was decreased
over 2.5-fold in the Ang II induced group compared to the
control group. In addition, 4 weeks of Ang II infusion in
mice led to significantly increased cell cross-sectional area
(csa), left ventricle end-diastolic dimension (LVEDd), and LV
end-systolic dimension (LVESd) (Figures 1D–F). Consistently,
qRT-PCR analysis showed that Meg 3 was significantly down-
expressed in Ang II induced group compared to control
group (Figure 1G). Also, Meg 3 was significantly down-
expressed in Ang II infusion group compared with saline
controls (Figure 1H).

Knockdown of Meg3 Reduces Viability,
Promotes Apoptosis, and Impairs
Migration in HUVECs
To explore the functional effects of Meg3 on HUVECs, the
expressions of Mg3 in HUVECs were altered by transfection
with three different sequences of Meg3 siRNA (si-Meg3#1,

1www.graphpad.com
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FIGURE 1 | Effect of angiotensin II (Ang II) on human umbilical vein endothelial cells (HUVECs). (A) HUVECs were treated with Ang II at different concentrations (1,
10, and 100 µM) (n = 3/group). (B) Ang II-induced apoptosis of HUVECs (n = 3/group). (C) LncRNA expression profiles were generated from two groups of HUVECs
(n = 3/group). (D) Histological analysis of heart slices by HE staining to assess cardiomyocyte cross-sectional areas in the hypertrophy and saline groups (n = 6 mice
per group magnification). (E) Statistical results for the cell cross-sectional area in hypertrophy and saline groups (n > 100 cells per group). (F) Echocardiographic
measurements of left ventricle end-diastolic dimension (LVEDd) and LV end-systolic dimension (LVESd) in hypertrophy and saline groups (n = 6 mice/group). (G) The
expression level of Meg3 in hypertrophy and saline groups (n = 6 mice/group). (H) The expression level of Meg3 in two groups of HUVECs (n = 3/group). The data
are shown as the mean ± SD, Student’s t-test, ∗P < 0.05; ∗∗P < 0.01 vs. control group.

si-Meg3#2, and si-Meg3#3). After transfection, the expression of
Meg3 in cells was measured by QRT-PCR, and we found that
both si-MEG3#1 significantly reduced Meg3 expression when
compared to the si-NC group (P < 0.01, Figure 2A). Thus
si-Meg3#1 transfected cells were used as a test group for the
following experiments.

Next, we detected the impacts of Meg3 silence on HUVECs
viability, migration, and apoptosis. As shown in Figure 2B, the
cell viability was inhibited from days 3 to 5 by both Ang II
and si-Meg3, which suggested that Ang II may inhibit HUVECs
growth through Meg3 suppression. This hypothesis was further
supported by HUVECs migration, and apoptosis induced by
Ang II and Meg3 silence. Both Ang II and Meg3 silence
could inhibit migration (Figure 2C) and increase apoptotic

cell rate (Figure 2D), with significant differences compared to
control group, respectively (P < 0.05, P < 0.01) (Figures 2E,F).
These data indicated Ang II may inhibit HUVECs growth and
migration, and increase apoptotic cell rate via downregulated
Meg3 expression.

Overexpressed Meg3 Increases Viability,
Inhibits Apoptosis, and Enhances
Migration Function in HUVECs Treated
With Ang II
Since Meg3 was downregulated in HUVECs treated with Ang
II, wegenerated Meg3-overexpressed HUVECs to observe its
function. We generated Meg3-OE by stable transfection of
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FIGURE 2 | Suppression of Meg3 inhibited cell viability, migration, and promoted apoptosis in HUVECs. (A) HUVECs were transfected with three different sequences
of Meg3 si-RNA (si-MEG1#1, si-MEG1#2, and si-MEG1#3), the expression of Meg3 in the transfected cells were then measured by qRT-PCR (n = 3/group). (B) Cell
viability was determined by CCK-8 (n = 3/group). (C) Transwell assays on Meg3-silenced and Ang II-induced HUVECs (n = 3/group). (D) Apoptosis assay on
Meg3-silenced and Ang II-induced HUVECs (n = 3/group). (E) Quantitative analysis of migration in Ang II-induced HUVECs (n = 3/group). (F) Quantitative analysis of
the percentage of apoptotic cells in Ang II-induced HUVECs (n = 3/group). The data are shown as the mean ± SD, Student’s t-test, ∗P < 0.05; ∗∗P < 0.01.

lentivirus Meg3. QRT-PCR results confirmed that the expression
level of Meg3 in Meg3-OE was upregulated by ∼2800-fold
(Figure 3A). Compared with HUVECs transfected with non-
specific scramble control (NC), CCK-8 assay showed that
overexpression of Meg3 in HUVECs significantly increased

the cell growth from days 2 to 5 treated with Ang II
(Figure 3B). In addition, Annexin V-FITC/PI assay showed that
overexpression of Meg3 could remarkably inhibit cell apoptosis
(Figures 3D,F). Transwell assay showed that HUVECs migration
was remarkably impaired in those transfected with Meg3
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FIGURE 3 | Meg3 overexpression suppresses cell viability, migration, and promoted apoptosis in HUVECs treated with Ang II. (A) qRT-PCR analysis of the
expression of Meg3 in control or Meg3 stably transfected HUVECs (n = 3/group). (B) Cell viability was determined by CCK-8 (n = 3/group). (C) Transwell assay
evaluates the effect of Meg3 overexpression on Ang II treated HUVECs (n = 3/group). (D) Apoptosis of HUVECs was determined by Annexin V/PI staining followed
by flow cytometric analysis in HUVECs treated with Ang II (n = 3/group). (E) Quantitative analysis of migration in Ang II-induced HUVECs (n = 3/group).
(F) Quantitative analysis of the percentage of apoptotic cells in Ang II-induced HUVECs (n = 3/group). The data are shown as the mean ± SD, Student’s t-test,
∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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FIGURE 4 | Ectopic expression of Meg3 regulates the level of p53 in HUVECs
treated with Ang II. (A) qRT-PCR analysis of Meg3 after ectopic expression of
Meg3 (n = 3/group). (B) Western blot analysis of Meg3 after ectopic
expression of Meg3 (n = 3/group). The data are shown as the mean ± SD,
Student’s t-test, ∗P < 0.05; ∗∗P < 0.01.

compared with those transfected with the control (Figures 3C,E).
Taken together, these data suggested that overexpressed Meg3
could regulate HUVECs’ growth, apoptosis and migration treated
with Ang II.

FIGURE 5 | Ectopic expression of Meg3 regulates the downstream proteins
level of p53 in HUVECs treated with Ang II. (A) qRT-PCR analysis of mRNA
levels after ectopic expression of Meg3 (n = 3/group). (B) Western blot
analysis of CRP, ICAM-1, p-p53, and HIF-1α after ectopic expression of Meg3
(n = 3/group). The data are shown as the mean ± SD, Student’s t-test,
∗P < 0.05.

Meg3 Regulates the p53 Pathway in
HUVECs Activated by Ang II
Previous studies have suggested that Meg3 functions through
the activation of p53, leading to an increase in p53 protein
level and stimulated p53-dependent transcription in a variety
of cancer cells (Zhou et al., 2007; Lu et al., 2013; Hu et al.,
2016; Li et al., 2016). The involvement of p53 in HUVECs
was indicated by aforementioned Ang II induction, Meg 3
silence and Meg 3 overexpression. The relative expressions
(2−11Ct) of p53 mRNA in the Ang II, si-Meg3#1, and Ang II
+NC groups were 2.15 ± 0.33, 1.34 ± 0.13, and 1.66 ± 0.17,
respectively, which were significantly higher than the control,
si-NC, and Ang II +Meg3-OE groups, respectively (P < 0.05,
Figure 4A). Western blotting demonstrated that Ang II
led to increased levels of p53 in HUVECs compared to the
control group (Figure 4B). This increase was eliminated
by the upregulated Meg3, which specifically targets Meg3
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FIGURE 6 | Ectopic expression of Meg3 regulates p53’s transcriptional activation. (A) The expressions of p53 in p53 silenced cells were then measured by qRT-PCR
(n = 3/group). (B) The expression of Meg3 in the transfected cells were then measured by qRT-PCR (n = 3/group). (C) The expression of p53 in the transfected cells
were then measured by qRT-PCR (n = 3/group). (D) The expression of p53’ downstream genes in the transfected cells were then measured by qRT-PCR
(n = 3/group). The data are shown as the mean ± SD, Student’s t-test, ∗P < 0.05.

(Meg3-OE, Figure 4B). In addition, Meg3 silence also
increased the level of p53 compared to the scrambled Meg3
siRNA (si-NC). These data indicate that Meg3 induces the
upregulation of p53 and enhances its transcription activity
in HUVECs.

By considering the association of Meg3 with p53’s activation,
we next detected the effects of knockdown and overexpression
of Meg3 on downstream gene expression of p53, including
CRP, ICAM-1, VEGF, and HIF-1α. Interestingly, the mRNA
expressions of CRP and ICAM-1 were upregulated after Meg3
silence, while VEGF, and HIF-1α were downregulated in the
si-Meg3#1 group, compare to the scrambled Meg3 siRNA (si-
NC) (Figure 5A). Ang II also has the same changes with the
Meg3 silence in HUVECs. Western blotting demonstrated that
both Ang II and si-Meg3 caused increase of CRP, ICAM-1,
and p-p53 and reduction of HIF-1α. These protein changes
were also eliminated by the overexpressed Meg3 (Meg3-
OE, Figure 5B).

Knockdown of Meg3 Regulates p53’s
Transcriptional Activation
To validate the necessity of p53 in Meg3-mediated processes,
si-p53 (p53 mutant lacking transcriptional activity) were
constructed and confirmed by qRT-PCR (Figure 6A). As showed

in Figure 6B, block of p53 (si-p53) had no effect on Meg3
expression, while Meg3 silence increased the expression of
p53 (Figure 6C), suggesting that Meg3 was targeting p53. In
consistent with previous result, the mRNA expressions of CRP
and ICAM-1 were downregulated after p53 silence, while VEGF
and HIF-1α were upregulated in the si-p53 group (Figure 6D).
All these changes were also eliminated by the inhibition of Meg3.
Thus, silence Meg3 could directly increase p53 expression.

DISCUSSION

Non-coding RNAs are a promising class of regulators. The
distribution of lncRNA of varying size greater than 200 nt in
tissues and cells plays an important role in regulating the growth
and development of the organism. Extensive and systematic
research confirmed that lncRNAs may be involved in multiple
processes, including growth, development, metabolism, function,
and apoptosis in cells (Manrique et al., 2009; Marampon et al.,
2013; Cimen et al., 2016).

Ang II activates diverse signaling cascades by binding to the
Ang II type 1 receptor, leading to ECs dysfunction, including
apoptosis (Li et al., 2014), however, the mechanisms underlying
this process are complex. The present study revealed the same
phenomenon that Ang II produced an elevation in the rate of
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apoptosis of HUVECs. Of note, certain previous studies have
investigated several lncRNAs have involved in the ECs’ function.
Michalik et al. (2014) suggested that MALAT1 was significantly
increased by hypoxia and silenced MALAT1 increased migration
and inhibited proliferation of ECs. Furthermore, knockdown
of MALAT1 in vivo inhibited proliferation of endothelial cells
and reduced neonatal retina vascularization (Michalik et al.,
2014). In addition, Yan Y.Y. et al. (2016) have found arrest-
specific transcript 5 (GAS5) and Meg3 were significantly
downregulated in isoprenaline treated HUVECs. In view of
this, we directly screened normal and Ang II treated HUVECs
and identified a significantly downregulated lncRNA, Meg3, in
the Ang II (Figure 1 and Supplementary Table S1), which
was confirmed by qRT-PCR analysis. In present study, we
investigated the association between Meg3 and Ang II-induced
HUVECs’ injury. We have reported, for the first time to
our knowledge, the Meg3 expression was decreased following
Ang II treatment. This reduction was accompanied by a
decrease in cell viability and migration. Apoptosis of ECs has
been considered a crucial progress of endothelial dysfunction,
because endothelial cell apoptosis is an initial step and a well-
acknowledged mechanism of microvascular obliteration (Wang
et al., 2010). Considering of this, inhibition of endothelial cell
apoptosis may be a therapeutic method to prevent cardiovascular
diseases, including hypertension. In the present study, Ang II
treatment significantly induced apoptosis, which is consistent
with previous study (Liu et al., 2013). The mechanisms of
action of Meg3 in HUVECs still remain controversial, some
studies found that overexpression of Meg3 in endothelial cells
caused a decrease in cell proliferation, while Meg3 knockdown
in HUVECs significantly induced proliferation and inhibited
apoptosis (He et al., 2017; Wu et al., 2017; Wang et al., 2018).
In our research, Meg3 knockdown in HUVECs significantly
induced apoptosis and inhibited proliferation, which is similar
to previous study (Ruan et al., 2018). Thus, the role of Meg3
seems to be complex although in same cell line, and we
need more time to figure out the mechanism of Meg3, and
the cell growth condition maybe contribute to the different
roles of Meg3.

We next explored the mechanism of Meg3 in Ang II treated
HUVECs. P53 is well-known for mediating cell apoptosis,
promoting non-apoptotic cell death, and programming necrosis
(Sturm et al., 1999; Zhao et al., 2015; Yan H. et al., 2016).
In our research, activated p53 is shown in Ang II treated
and Meg3 silenced HUVECs, while overexpressed Meg3 was
shown to attenuate or even reverse Ang II-induced upregulated
p53 level. Therefore, it is likely that knockdown Meg3
activates p53 through inhibition of p53 ubiquitination and
blockage of p53 degradation. Indeed, as the most intensive
transcription factor, p53 tetramers bind to a variety of regulatory
elements recruit multiple transcriptional co-regulatory factors,
such as chromatin remodeling complexes, histone modification
enzymes, and transcription. Knockdown Meg3 can activate p53’s
transcriptional activity, which is active as a homotetramer whose
tetramerization is pivotal for its function and plays a vital role in
the regulation of p53 activity. However, previous study showed
Meg3 knockdown in HUVECs significantly downregulated

p53 expression under high glucose induction (Wang et al.,
2018), which suggested p53 expression was partially involved
in external environment, and the effects between external
environment and Meg3 on p53 expression need more research
to confirm.

Cell adhesion molecule-1 (CAM-1) is very common in
human atherosclerotic plaques and can be regulated by various
stimuli (Haverslag et al., 2008), suggesting that ICAM-1
plays a role in atherosclerosis. Previous study has revealed
that ICAM-1 expressed in parallel with the p21, which
is a target of p53, and induced by p53 in an NF-κB-
independent manner in senescent human cells (Gorgoulis
et al., 2005). High expressed serum C-reactive protein (CRP)
has been considered as a sensitive cardiovascular risk factor
(Liuzzo et al., 1994; Thompson et al., 1995; Koenig et al.,
1999). Liang et al. (2006) elegantly presented data on the
signaling pathway of CRP in ECs. Meanwhile, increasing
numbers of criticisms have been raised on the use of
commercial preparations of CRP concerning to the incompletely
defined and biologically active contaminants. Our experimental
data shows that in absence of proper p53 activity, silenced
Meg3 plays auxiliary role in upregulating ICAM-1 and
CRP levels in HUVECs.

Vascular endothelial growth factor (VEGF) plays an important
role in mediating various response in the vascular endothelial
cells, including migration, which is necessary for atherosclerosis
and tumor angiogenesis (Ferrara et al., 2003; Soda et al., 2013;
Bartolotti et al., 2014). Accordingly, depletion of VEGF by
anti-VEGF treatment may induce compensatory physiological
responses. VEGF and VEGFR levels following anti-VEGF
treatment would be a key indicator of treatment outcome
for intraocular neovascular diseases. Our results show that
Meg3 down-regulation induced the down-regulated VEGF
and HIF-1α expression. Meg3 overexpression rescued ANG-
II-induced alteration in gene expression, confirming the
important role of Meg3 in ANG II-mediated endothelial
cell injury. Moreover, our data indicate that p53 is an
important regulatory factor of Meg3 function. Compared
with the control group, Meg3 knockdown induced p53 up-
regulation, leading to the down-regulation of VEGF and
HIF-1α and the up-regulation of CRP and ICAM-1. In
contrast, Meg3 overexpression induced p53 down-regulation,
leading to VEGF and HIF-1α up-regulation and CRP and
ICAM-1 down-regulation. These results confirm that, in
endothelial cells, Meg3 signaling is mediated by p53, leading
to the regulation of p53-targeted genes, VEGF, HIF-1α,
CRP, and ICAM-1.

CONCLUSION

Our study confirms that the Meg3 is an important regulator
of Ang II-induced endothelial cell injury and confirmed that
Meg3 signaling is mediated by p53, leading to alteration of the
expression of p53-related genes, VEGF, HIF-1α, CRP, and ICAM-
1. Our findings provide novel insights on the role of Meg3 in
endothelial cell injury and suggest Meg3 as a potential target
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to prevent and repair endothelial cell damage for the prevention
and treatment of cardiovascular diseases.
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