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Although massive amounts of condition-specific molecular profiles are being

accumulated in public repositories every day, meaningful interpretation of these data

remains a major challenge. In an effort to identify the biomarkers that describe the key

biological phenomena for a given condition, several approaches have been developed

over the past few years. However, the majority of these approaches either (i) do not

consider the known intermolecular interactions, or (ii) do not integrate molecular data

of multiple types (e.g., genomics, transcriptomics, proteomics, epigenomics, etc.), and

thus potentially fail to capture the true biological changes responsible for complex

diseases (e.g., cancer). In addition, these approaches often ignore the heterogeneity

and study bias present in independent molecular cohorts. In this manuscript, we

propose a novel multi-cohort and multi-omics meta-analysis framework that overcomes

all three limitations mentioned above in order to identify robust molecular subnetworks

that capture the key dynamic nature of a given biological condition. Our framework

integrates multiple independent gene expression studies, unmatched DNA methylation

studies, and protein-protein interactions to identify methylation-driven subnetworks.

We demonstrate the proposed framework by constructing subnetworks related to

two complex diseases: glioblastoma and low-grade gliomas. We validate the identified

subnetworks by showing their ability to predict patients’ clinical outcome on multiple

independent validation cohorts.

Keywords: multi-cohort, multi-omics, meta-analysis, subnetwork identification, GBM, LGG

1. INTRODUCTION

Due to the rapid advances in high-throughput technologies, massive amounts of biological data are
currently available in public repositories for many diseases. These biological data include various
omics profiles such as genomic, transcriptomic, metabolomic, and proteomic data, each of which
describes different aspects of cellular mechanisms. Understanding the mechanism of action for a
given disease from these vast resources and subsequently identifying reliable biomarkers that can
predict the patients’ clinical outcome has become a major challenge.

Over the last decade, the number of disease-specific biomarkers reported by different research
groups has increased exponentially. However, biomarkers obtained from different studies of the
same condition often show very poor agreement with each other (Ein-Dor et al., 2006). As a result,
only a few of the proposed biomarkers are currently in clinical use (Burke, 2016). One of the
primary reasons for this reproducibility crisis is that many of the conventional biomarker discovery
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methods simply rely on selecting a list of candidate genes based
on their differential expression across the given phenotypes
(disease vs. normal, treated vs. non-treated, subtype A vs.
subtype B, etc). Better results can be obtained by utilizing gene
interaction data that became available with the introduction
of publicly available sources such as pathway knowledge
databases [e.g., KEGG (Ogata et al., 1999; Kanehisa and
Goto, 2000), Reactome (Matthews et al., 2009)] or protein-
protein interaction databases [e.g., HPRD (Peri et al., 2003),
STRING (Szklarczyk et al., 2016)].

Numerous computational methods have been proposed
that aim to address the above-mentioned challenge by
integrating known interactions between the genes and
subsequently identifying network-based markers using different
strategies. For instance, PinnacleZ (Chuang et al., 2007) and
DIAMOnD (Ghiassian et al., 2015) use greedy algorithm-
based techniques; jActiveModules (Ideker et al., 2002) and
COSINE (Ma et al., 2011) utilize evolutionary algorithms;
HotNet (Vandin et al., 2011) and ResponseNet (Lan et al., 2011)
use diffusion-flow based techniques; EnrichNet (Glaab et al.,
2012) employs random walk algorithms; etc. These network-
based approaches have been reviewed elsewhere (Mitra et al.,
2013; Nguyen T. et al., 2018). It has been demonstrated in
various disease conditions [e.g., breast cancer (Chuang et al.,
2007), colorectal cancer (Shi et al., 2012; Shafi et al., 2015), and
ovarian cancer (Jin et al., 2015)] that network-based markers
are more reproducible and reliable for predicting patients’
clinical outcome than individual gene biomarkers. Although
somewhat useful, the majority of these methods construct their
networks using only one transcriptomic experiment. Therefore,
they are unable to account for the heterogeneity that may
arise due to the biological and technical variabilities present in
independent studies of a given disease (Drăghici et al., 2006;
MAQC Consortium, 2006).

In order to account for the data heterogeneity present in
the individual studies, several meta-analysis approaches have
been proposed over the past years. These can be divided into
two main categories. The approaches in the first category
use multiple sample-unmatched studies of the same data type
(e.g., mRNA) and aim to identify robust gene signatures
that can distinguish disease-affected individuals from the
healthy ones. These approaches include classical p-value-based
approaches (Fisher, 1925; Stouffer et al., 1949; Nguyen et al.,
2016c), modern effect-size-based approaches (Haynes et al.,
2017) and rank aggregation-based approaches (Pihur et al., 2009).
However, these approaches may not be suitable for revealing
the mechanism of action for a given disease since they do not
account for the heterogeneity that is present across multiple data
types (mRNA, miRNA, DNA methylation, etc.). The approaches
in the second category combine sample-matched studies from
multiple data types and provide biomarkers that can capture
data heterogeneity present across the omic layers. Integrating
such information from multiple data types is essential for
obtaining a comprehensive overview of the given biological
system and thought to provide better prognostic markers (Berger
et al., 2013; Kristensen et al., 2014; Nguyen et al., 2016b).
For instance, it has been shown that integrating miRNA and

mRNA expression profiles results in greater statistical power
and better understanding of the underlying disease phenomena,
both in the context of biomarker discovery (Volinia and Croce,
2013; Wotschofsky et al., 2016) and pathway analysis (Calura
et al., 2014; Vlachos et al., 2015; Alaimo et al., 2016; Diaz
et al., 2016). More recently, it has been demonstrated that the
integration of long non-coding RNA (lncRNA) and mRNA plays
an important role in revealing pathogenetic mechanisms of a
given condition (Lin et al., 2014; Liu et al., 2018). However,
these approaches require the same group of individuals to be
present for each of the experiments coming from different omic
layers. Thus, they fail to utilize the information from dozens
of independent studies containing thousands of samples for a
given disease that is currently available in public repositories
such as Gene Expression Omnibus (GEO) (Barrett et al.,
2005), TCGA [http://cancergenome.nih.gov] or ArrayExpress
(Rustici et al., 2013).

DNAmethylation has been recognized to play a crucial role in
cancer progression (Esteller, 2008; Parrella, 2010). An increasing
number of computational approaches have been published
in recent years for the identification of methylation-based
biomarkers (Gevaert et al., 2015; Hao et al., 2017; Hong et al.,
2017; Shafi et al., 2018). However, to the best of our knowledge,
none of the current approaches is able to identify network-based
gene signatures considering the data heterogeneity among the
independent DNA methylation and gene expression studies. The
approach presented in this manuscript bridges this gap.

Here we propose a multi-cohort and multi-omics meta-
analysis framework that is able to integrate unmatched mRNA
and DNA methylation data obtained from many different
independent studies, and subsequently identify network-based
signatures that can capture putative mechanisms of a given
disease. We apply our proposed framework on nine independent
datasets related to glioblastoma (GBM) containing a total of
622 samples and eight independent studies related to low-grade
glioma (LGG) containing a total of 1,787 samples. The identified
network-based signatures are validated based on their ability to
predict the patients’ clinical outcome for 1,269 samples from
four completely independent validation datasets. This is done by
clustering the patients included in the validation datasets using
perturbation clustering (Nguyen et al., 2017b), which identifies
the correct number of clusters present in the data and groups the
patients accordingly. The signatures extracted from the proposed
framework are then compared with 10 other previously published
gene signature panels related to GBM and LGG. For both
diseases, the network-based signatures identified by our proposed
framework are able to separate patients associated with poor
survival from other individuals with significant Cox p-values
and outperform the other compared signatures. This suggests
that the proposed framework is able to provide better prognostic
biomarkers compared to the existing ones.

2. MATERIALS AND METHODS

The goal of the proposed framework is to identify reliable
network-based gene signatures by integrating independent

Frontiers in Genetics | www.frontiersin.org 2 March 2019 | Volume 10 | Article 159

http://cancergenome.nih.gov
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Shafi et al. Multi-cohort and Multi-omics Meta-Analysis

experiments obtained from multiple data types. The framework
takes three types of inputs: (i) mRNA datasets, (ii) DNA
methylation datasets, and (iii) known gene interaction networks.
The mRNA and DNA methylation datasets can be completely
independent, which means that they can be obtained from
different experiments performed in different laboratories and can
include samples from different cohorts of patients. The gene
interaction network is a graph in which the nodes represent
genes and the edges represent interactions between them. This
information can be obtained from any resources that describe
the known gene-gene interactions such as KEGG, Reactome,
STRING, or HPRD.

Each mRNA or methylation dataset is represented by a matrix
in which the rows represent the measured genes and the columns
represent the samples included in the given study. The value in
each cell reflects the measured expression or methylation level
of a gene for a particular sample. Each dataset includes samples
from two given phenotypes such as disease vs. healthy, treated vs.
non-treated, disease subtype A vs. disease subtype B, etc.

The overall workflow of the proposed framework is divided
into four main modules (Figure 1). The first two modules,
described in section 2.1, account for the variability across the
individual datasets coming from the same data type, while the
third and fourth modules, described in section 2.2, account for
the variability across the data types (mRNA and methylation)
and integrate network information into the framework in order
to identify impacted subnetworks. Briefly, the first module takes
the given list of mRNA datasets as input and performs a meta-
analysis to identify the genes that are differentially expressed
across the given phenotypes. Due to the heterogeneity present in
the individual mRNA datasets, the identified list of genes might
be significantly impacted by a single study, and hence might not
represent the true list of genes impacted for the given condition.
Therefore, a leave-one-out (Friedman et al., 2001) meta-analysis
is carried out to make the list of genes more reliable. The
second module takes the given list of methylation datasets as
input and utilizes the same meta-analysis pipeline to identify
the genes that are differentially methylated across the given
phenotypes. The third module combines the results obtained
from the first twomodules and identifies the genes that are driven
by their methylation profiles. This module essentially integrates
information obtained from two omic layers (transcriptomic and
epigenomic) and takes into account the heterogeneity that may
arise across these layers. Finally, the fourth module incorporates
the known interactions among the genes and identifies the
subnetworks that are affected by the methylation-driven genes.

2.1. Multi-Cohort Meta-Analysis
This section describes the first and second modules of the
framework (Figures 1A,B). The meta-analysis pipeline proposed
here utilizes both classical p-value-based and modern effect-
size-based meta-analysis to calculate gene level statistics. The
backbone of this algorithm is an extended version of the meta-
analysis framework proposed in one of our previously published
works (Nguyen et al., 2016a). The overall pipeline consists
of three steps: (i) obtaining p-values from classical hypothesis
testing, (ii) obtaining effect sizes and their p-values and (iii)

combining the two types of p-values to calculate the final gene
level statistics. The first two steps are independent of each other
and can be performed concurrently.

At first, two-tailed p-values are calculated for all genes
across all studies by performing a classical hypothesis testing. A
moderated t-test provided by limma (Smyth, 2005) is utilized for
this purpose. This can also be replaced with other classical tests
such as two sample t-test, paired t-test, etc.

If the input matrix contains discrete values (e.g., data
obtained from RNA-seq experiment or bisulfite sequencing
experiment), regression-based approaches such as Poisson,
quasi-Poisson or negative binomial regression models should
be used instead (Robinson et al., 2010; Anders et al., 2012;
Klein and Hebestreit, 2015; Shafi et al., 2018). The two-tailed p-
values are then converted to one-tailed (left- and right-tailed)
p-values. Gene level p-values generated by the individual studies
are then combined by using addCLT (Nguyen et al., 2017a), an
additive approach (Edgington, 1972) based on the Central Limit
Theorem (Kallenberg, 2002) that is robust against outliers. For
each gene, this p-value represents the chance of observing its
combined differential expression (or methylation) just by chance.

To estimate the effect size, we first calculate the standardized
mean difference (SMD) of each gene across all studies.
Considering SMD instead of the raw mean difference is crucial
since the expression (or methylation) levels within each study
might be scaled differently. In this work, we use Hedge’s
g (Hedges andOlkin, 2014) as the SMD tomeasure expression (or
methylation) changes between the two given phenotypes. Central
tendencies for the effect sizes are calculated using the random-
effect model and the REstricted Maximum Likelihood (REML)
algorithm (Viechtbauer, 2010). Next, we calculate the z-scores
and left- and right-tailed p-values of the z-scores to estimate
the probability of observing such effect sizes just by chance.
This overall estimated effect size represents the expression
(or methylation) change of a gene under the effect of the
given condition.

In the third step, we combine the two types of evidence
(one obtained from classical hypothesis testing, another from
estimating the effect sizes) using a conservativemaxP (Wilkinson,
1951) method. We are using this conservative statistic because
we want a significant p-value only if the gene is significant based
on both classical p-value-based and the more modern effect-
size-based meta-analysis. The p-values are corrected for multiple
comparisons using an FDR approach. Finally, a predefined
threshold is used to select the genes that are differentially
expressed or methylated.

2.2. Multi-Omics Data Integration
This section describes the third and fourth modules of the
framework. The inputs of the third module (Figure 1C) are
two lists of genes obtained from the meta-analysis step
described in section 2.1 above. The first list includes the
differentially expressed genes (DEGs), while the second one
includes the differentially methylated genes (DMGs) across the
given phenotypes. From these two lists of genes, we first select
the genes that are present in both lists, i.e., the genes that are both
differentially expressed and methylated. Next, we filter them by
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FIGURE 1 | Overall workflow of the proposed framework. Module (A) takes multiple independent mRNA datasets and performs a leave-one-out meta-analysis to

identify reliable differentially expressed genes (DEGs). Similarly, module (B) takes multiple independent DNA methylation datasets and identifies differentially

methylated genes (DMGs). DEGs and DMGs are then systematically integrated in module (C) to identify methylation-driven genes (MDGs). Finally in module (D), the

MDGs are used as inputs in a network propagation algorithm to identify the proposed subnetworks.

selecting the genes for which themRNA andmethylation changes
occurred in opposite directions. This is motivated by the fact
that methylation correlates negatively with gene expression (Shafi
et al., 2018). In other words, when a CpG site is methylated in

the promoter regions, it typically represses the transcriptional
activity of that region by restricting the binding of specific
transcription factors (TFs). Alternatively, when a CpG site is
unmethylated in the promoter regions, it allows for the binding
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of those TFs (Jones, 2012). Finally, we identify the methylation-
driven genes (MDGs) by filtering the genes that have unsigned
effect sizes lower than a given threshold. This is an optional
step of the framework. The default threshold is set to zero (no
filtering).

IdentifiedMDGs can be thought of as individual genemarkers
that can distinguish the phenotypes of a given disease, based
on both individual mRNA and methylation data. However, to
better understand the underlying disease mechanisms, and to
better predict patient prognosis, it is important to incorporate
known information about the interactions between the genes
(Mitra et al., 2013).

The fourth module of the framework (Figure 1D) uses the
identified MDGs, DEGs and the given network information
to identify the subnetworks that are perturbed by the signals
propagated through the edges of the MDGs. For each MDG,
we create its own DE neighborhood by selecting the DEGs
that are directly connected with it. All identified subnetworks
are then merged together into a larger network. This concept
of network propagation has been used by several research
groups for active subnetwork identification using transcriptomic
data (Komurov et al., 2012; Ansari et al., 2017) and mutational
hotspot identification in human cancers (Ciriello et al., 2012).
Finally, within this larger network, we select the genes that are
part of the largest cliques as our proposed signature. This idea is
driven by the fact that cliques are fully-connected subnetworks
in which all nodes are connected in a pairwise fashion; and
therefore, genes that are part of a clique are more likely to be
functionally related (Pradhan et al., 2012).

2.3. Perturbation Clustering
In order to evaluate the prognostic value of the proposed
signature, we use the genes present in the signature to identify
disease subtypes from the independent patient cohort. For
clustering, we use PINS (Nguyen et al., 2017b; Nguyen H. et al.,
2018) to perform perturbation clustering that was developed in
our research lab for tumor subtyping. PINS can automatically
determine the number of clusters and then identify subtypes
that are the most stable against noise and data perturbation.
PINS is developed based on the observation that small changes
in any kind of quantitative assay will be inherently present
between individuals, even in a truly homogeneous population in
the absence of any molecular subtypes. Therefore, well-defined
subtypes of a disease have to be stable with respect to small
changes in the measured values. In order to identify robust
subtypes, PINS repeatedly perturbs the data by adding Gaussian
noise and then clusters the patients. PINS yields subtypes and
patient patterns that are least affected by data perturbation. More
details of the algorithm can be found in Nguyen et al. (2017b).

Here, the input of the subtyping algorithm is a matrix in
which the rows represent the patients and the columns represent
the signature genes identified by our framework. Different gene
signatures yield different matrices (same set of patients/rows but
different sets of genes/columns).We expect that a better signature
will provide better subtyping, i.e., subtypes with more significant
survival differences. The number of clusters (k) is automatically

determined by PINS. We simply used the default settings of the
PINS R package (Nguyen H. et al., 2018).

3. RESULTS

We demonstrate the performance of the proposed framework
by constructing network-based signatures for two diseases:
glioblastoma multiforme (GBM) and low-grade glioma (LGG).
In the GBM study, we included only the stage IV glioma tumors,
whereas in the LGG study we included stage II and III glioma
tumors. This is consistent with others such as TCGA (Cancer
Genome Atlas Research Network et al., 2015), Noushmehr et al.
(2010) and Garkavtsev et al. (2004), who also considered stage II
and III glioma tumors as LGG. All staging is based on the World
Health Organization (WHO) standard. All discovery datasets
used in this manuscript were obtained from GEO (Barrett et al.,
2005). Dataset summaries and preprocessing techniques are
described in the Supplementary Materials. We downloaded the
protein-protein interaction (PPI) networks from the STRING
database version 10.5 to obtain information about the gene
interactions. STRING provides a confidence score (ranging from
0 to 1,000) for each interaction in the network. Here we used a
score of 900 to select the high confidence interactions, resulting
in a network of 9,941 genes and 227,186 interactions (top 4.9%
interactions).

One of the most widely accepted techniques to evaluate the
prognostic performance of a gene signature is to test its ability to
predict patients’ survival in independent datasets (Chang et al.,
2005; Shedden et al., 2008; Szász et al., 2016). In order to achieve
this goal, we used PINS (described in section 2.3) on independent
gene expression validation datasets obtained from three different
sources: (i) TCGA, (ii) GEO, and (iii) CGGA (Yan et al., 2012;
Sun et al., 2014). None of these datasets have been used in the
original training datasets. PINS can automatically determine the
number of clusters (denoted by k). We use only the list of genes
present in the proposed subnetwork as features, instead of all
genes present in the datasets. Survival analysis is performed using
Kaplan–Meier survival analysis (Kaplan and Meier, 1958) and
their statistical significance is assessed using a Cox regression
model (Cox, 1972).

3.1. Glioblastoma (GBM) Study
We first identify 2,183 DEGs by performing leave-one-out
meta-analysis (section 2.1) on four mRNA datasets (GSE7696,
GSE4290, GSE90598, and GSE22866). Similarly, we analyze
five methylation datasets (GSE60274, GSE22867, GSE50923,
GSE79122, and GSE36278) and identify 1,205 DMGs. These
nine discovery datasets include a total of 622 samples: 533
samples from GBM patients and 89 from healthy (non-tumor)
individuals. Descriptions of these datasets are provided in
Table S1. We use a stringent threshold of 0.1% for both
differential expression and methylation.

Next, we identify the list of methylation-driven genes (MDGs)
based on the three following criteria: (i) genes present in
the list of DEGs with absolute mRNA effect sizes > 1, (ii)
genes present in the list of DMGs with absolute methylation
effect sizes > 1, and (iii) genes that have opposite mRNA
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and methylation effect sizes (i.e., genes with positive mRNA
effect sizes need to have negative methylation effect sizes, while
genes with negative mRNA effect sizes need to have positive
methylation effect sizes). The identified list contains 45 MDGs.
Each of these identified MDGs are then used as seeds in the
network propagation step to build neighbor networks of DEGs
(section 2.2). These subnetworks are then merged together to
form a larger network, containing a total of 214 candidate genes.
Finally, within the larger network, the largest cliques contain 46
genes which constitute the proposed network-based signature for
this disease (Figure 2).

We demonstrate the utility of the proposed signature on
two independent gene expression datasets; one, downloaded
from the TCGA GBM cancer site (The Cancer Genome Atlas
Research Network, 2013), contains gene expression profiles of
525 individual patients, and the other one, GSE4412 (Freije et al.,
2004), was downloaded from GEO and contains gene expression
profiles of 59 individual patients. For both datasets, our proposed
signature combined with PINS is able to identify two groups
of patients with significantly different survival rates using the
Cox regression model. The Cox p-value for TCGA datasets is
7.38E-04, whereas the Cox p-value for GSE4412 is 9.70E-03.

We compare our signature with the following 7 previously
published GBM gene signature panels: 9 methylation-based gene
signature proposed by Shukla et al. (2013), 13 methylation-
based gene signature proposed by Etcheverry et al. (2010), 14
prognostic gene signature proposed by Arimappamagan et al.
(2013), 35 methylation based gene signature proposed by Smith
et al. (2014), 35 prognostic gene signature proposed by Fatai
and Gamieldien (2018), 36 methylation-based gene signature
proposed by Chiang et al. (2014) and 48 gene signature proposed
by Crisman et al. (2016).

The comparison based on the prognostic performances of
these gene signature panels is shown in Table 1. Related survival
curves are shown in Figure 3. PINS identifies the optimal number
of clusters based on the given input, which is denoted by k in

the table. The cells highlighted in yellow represent the Cox p-
values that are significant (< 0.01). The cells highlighted in green
show the best signature (i.e., lowest Cox p-value) for each dataset.
These results show that in both datasets, the proposed signature
achieves the best results. Furthermore, in the GSE4412 dataset,
only the proposed signature is able to achieve a significant
Cox p-value.

3.2. Low-Grade Glioma (LGG) Study
Similar to the previous study, here we perform leave-one-
out meta-analysis on five mRNA datasets (GSE16011_cohort1,
GSE16011_cohort2, GSE4290, GSE68848, and GSE4271) and
three DNA methylation datasets (GSE90496, GSE109379, and
GSE53227), and identify 1,564 DEGs and 2,721 DMGs

TABLE 1 | Prognostic performance of different gene signature panels related

to GBM.

TCGA GSE4412

(525 patients) (59 patients)

Gene signatures Number of genes k Cox p-value k Cox p-value

Proposed signature 46 2 7.38E-04 2 9.70E-03

Shukla et al. 9 5 3.76E-03 5 1.12E-02

Etcheverry et al. 13 5 3.42E-03 3 7.50E-01

Arimappamagan et al. 14 2 3.14E-03 5 4.67E-01

Smith et al. 35 3 9.26E-03 3 6.07E-01

Fatai et al. 35 3 1.01E-01 3 3.93E-01

Chiang et al. 36 4 8.88E-01 4 9.98E-02

Crisman et al. 48 5 3.61E-02 5 4.17E-01

Clustering is performed by using PINS. The number of clusters identified by the algorithm is

denoted by k. The cells highlighted in yellow represent the Cox p-values that are significant

(<0.01). The cells highlighted in green represent the best signature (i.e., lowest Cox p-

value) for each dataset. These results indicate that the proposed signature is able to

achieve the lowest Cox p-values on both independent datasets.

FIGURE 2 | Proposed network-based signature for GBM, containing a total of 46 genes organized in two different cliques. Each node in this graph represents a gene,

while each edge describes the interaction between a gene pair. The interactions are retrieved from the STRING database. The colors of the nodes represent the effect

sizes obtained from the meta-analysis step described in Figure 1A: red represents genes with a positive effect size while blue represents genes with a negative

effect size.
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FIGURE 3 | Kaplan–Meier survival analysis on GBM studies, using different gene signature panels. (A) TCGA dataset which contains gene expression profiles from

525 individual patients. (B) GSE4211 dataset which contains gene expression profiles from 59 individual patients. The horizontal axes represent the time (in days) from

the start of the study, whereas the vertical axes represent estimated survival percentage. Yellow colors represent the Cox p-values that are significant (<0.01). The

green color indicates the best signature (i.e., lowest Cox p-value) for the given dataset. These results show that the proposed signature yields the best separation

between aggressive and less aggressive disease on both datasets.

respectively. These eight datasets contain a total of 1,787 samples.
Among them, 1,026 samples are from LGG patients while 761
from either GBM patients or healthy (non-tumor) individuals.

Descriptions of these datasets are provided in Table S2. In this
study, we use a threshold of 5% for differential expression
and methylation.
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After integrating DEGs and DMGs in the third module,
we find 52 methylation-driven genes (MDGs). Next, we
perform network propagation to construct the subnetworks that
contain the DEGs directly connecting to MDGs. After merging
these subnetworks, we obtain a list of 110 candidate genes.
Finally, 20 genes are selected based on the maximum clique
present in the network which is the proposed signature for
this study. The identified network-based signature is shown
in Figure 4.

To demonstrate the utility of the proposed signature, we use
two independent gene expression datasets; one from TCGA LGG
cancer site (Cancer Genome Atlas Research Network et al., 2015)
that contains a total of 515 patients, and the other one from
CGGA that contains a total of 170 patients. We use PINS to
perform a perturbation clustering using the genes present in
the proposed network as features. Similar to the GBM study,
for both datasets, the groups of patients identified based on the
given signature have significantly different survival profiles. For
the TCGA dataset, the Cox p-value is 5.48E-09 with 4 clusters
whereas for the CGGA dataset, the Cox p-value is 1.82E-04
with 5 clusters.

We compare our proposed signature with the following 3
published LGG gene signature panels: a set of 6 genes identified
by Olar and Sulman (2015), a meta-signature of 20 genes
proposed by Wang et al. (2017) and a panel of 24 genes
proposed by Liu et al. (2011). The comparison between the
results obtained with these signatures is shown in Table 2. The
related survival curves are shown in Figure 5. In the TCGA
dataset, the proposed signature and the signature proposed by
Liu et al. achieve significant Cox p-values. In CGGA dataset,
significant Cox p-values are achieved by the proposed signature
and the signature proposed by Olar et al. These results show

FIGURE 4 | Proposed network-based signature for LGG, containing a total of

20 genes organized in a clique. Each node in this graph represents a gene,

while each edge describes the interaction between a gene pair. The

interactions are retrieved from the STRING database. The colors of the nodes

represent the effect sizes obtained from the meta-analysis step described in

Figure 1A: red represents genes with a positive effect size while blue

represents genes with a negative effect size.

that in both datasets, the proposed signature achieves the
best results.

3.3. Network-Based Signature vs.
Methylation-Driven Genes (MDGs)
To demonstrate the contribution of the network information in
our framework, we compare the prognostic performance of the
proposed network-based signature with the performance of a
signature derived from methylation-driven genes (MDGs) alone.
Table 3 shows the Cox p-values obtained by using these two
types of signatures on the four independent datasets used in the
above two studies. PINS was used to group the samples. For
GBM, the MDGs and the proposed signature contain 45 and 46
genes respectively, while for LGG, the MDGs and the proposed
signature contain 27 and 20 genes, respectively. Results indicate
that, for both diseases (each disease contains two independent
datasets), network-based signatures outperform the individual
markers (i.e., MDGs) based on their ability to predict the patients’
clinical outcome.

4. DISCUSSION

One widely used technique to combine multiple independent
studies is to perform a horizontal meta-analysis (i.e., combining
sample-unmatched studies of the same data type). This approach
is unable to combine studies coming from multiple data types.
Hence, it is not suitable for the identification of the mechanism
of action of a given disease. Another technique is to perform a
vertical meta-analysis (i.e., combining sample-matched studies
from multiple data type) which accounts for the heterogeneity
that may arise across different omic layers. However, the latter
technique requires each data type to be available for each
individual patient, which is expensive and impractical for the
studies with large sample sizes. To overcome these challenges,
in this manuscript, we propose a multi-cohort and multi-
omics meta-analysis framework that identifies network-based
signatures using independent mRNA and DNA methylation
studies available in the public repositories. The identified
signatures are evaluated based on their ability to distinguish

TABLE 2 | Prognostic performance of different gene signature panels related

to LGG.

TCGA CGGA

(515 patients) (170 patients)

Gene signatures Numer of genes k Cox p-value k Cox p-value

Proposed signature 20 4 5.48E-09 5 1.82E-04

Olar et al. 6 5 6.97E-02 5 5.43E-03

Wang et al. 20 2 1.42E-01 4 8.07E-01

Liu et al. 18 5 3.21E-06 2 1.12E-02

Clustering is performed by using PINS. The number of clusters identified by the algorithm is

denoted by k. The cells highlighted in yellow represent the Cox p-values that are significant

(<0.01). The cells highlighted in green represent the best signature (i.e., lowest Cox p-

value) for each dataset. These results indicate that the proposed signature is able to

achieve the lowest Cox p-values on both independent datasets.
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FIGURE 5 | Kaplan–Meier survival analysis on LGG studies, using different gene signature panels. (A) TCGA dataset which contains gene expression profiles from

515 individual patients. (B) CGGA dataset which contains gene expression profiles from 170 individual patients. The horizontal axes represent the time (in days) from

the start of the study, whereas the vertical axes represent estimated survival percentage. Yellow colors represent the Cox p-values that are significant (<0.01). The

green color indicates the best signature (i.e., lowest Cox p-value) for the given dataset. These results show that the proposed signature yields the best separation

between aggressive and less aggressive disease on both datasets.

TABLE 3 | Prognostic performance of network-based signatures vs. individual markers.

GBM study LGG study

TCGA GBM GSE4412 TCGA LGG CGGA

Gene signatures m k Cox P k Cox P m k Cox P k Cox P

Meth. driven genes (MDGs) 45 4 9.36E-03 3 1.18E-01 27 3 3.22E-06 2 1.43E-03

Network-based signature 46 2 7.38E-04 2 9.70E-03 20 4 5.48E-09 5 1.82E-04

Clustering is performed by using PINS. Number of clusters identified for a given dataset is denoted by k, while the number of genes for a given study is denoted by m. Cells highlighted

in green represent the best signature (i.e., lowest Cox p-value) for each dataset. Results indicate that incorporating network information leads to better prognostic gene markers.

patients with different survival profiles on independent
validation datasets.

One of the inputs required for the proposed framework is
the known interactions between the genes. This information
can come from any protein-protein interaction database for the
given organism and is independent of the specific experiment
or condition. In our case, this type of data came from the
STRING database, which would be suitable for any experiment
involving more than 2,000 organisms. The discovery datasets
used in this manuscript are downloaded from GEO. We have
included all gene expression and methylation studies related to
GBM and LGG that have a total number of samples measuring
20 or more after data preprocessing. Datasets from any other
resources such as TCGA, ArrayExpress (Rustici et al., 2013),

etc., can also be used as long as they contain samples from
two phenotypes (disease vs. normal, treated vs. non-treated,
etc.). The framework is appropriate for the disease conditions
whose mechanisms of actions are known to be triggered by the
change in DNA methylation. Due to the important role of DNA
methylation in glioma (Heyn and Esteller, 2012; Turcan et al.,
2012), we demonstrate our proposed framework on two subtypes
of glioma; the most aggressive one, GBM, and the comparatively
less aggressive LGG. However, this framework can be used to
identify network-based markers for other disease conditions
as well.

We leverage the concept of the network propagation
algorithms mentioned in Mitra et al. (2013) to identify
candidate subnetworks from the methylation-driven genes.
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The final network-based markers are selected based on the
maximum clique. Cliques are complete graphs in which all
nodes are connected in a pairwise fashion, and therefore,
genes that are part of a clique are likely to be functionally
related. In previous years, the utility of using cliques has been
demonstrated in multiple disease conditions such as breast
cancer (Shi et al., 2010), colorectal cancer (Pradhan et al., 2012),
etc. Other subnetwork identification techniques, such as greedy
algorithms (e.g., PinnacleZ, Chuang et al., 2007), clustering-
based methods (e.g., SAMBA, Tanay et al., 2004), scoring based
on centrality measurements (e.g., Wang et al., 2011), etc., can
be utilized as well. A comprehensive review of the currently
available tools for subnetwork identification can be found
in Nguyen et al. (2019).

We investigate how the groups of patients identified in the
TCGA GBM dataset, using our proposed signature (Figure 3A),
relate with the available histopathological variables or treatments.
Table S3 shows the confusion matrix of the two groups of
patients associated with the proposed GBM signature and the
five GBM subtypes recognized by the original authors (The
Cancer Genome Atlas Research Network, 2013). Enrichment
analysis using Fisher’s Exact Test (FET) indicates that the
group of patients with lower survival rate is enriched with
Mesenchymal subtype (p = 1.04E-19), whereas the group of
patients with higher survival rate is associated with Proneural
(p = 1.98E-14) subtype and G-CIMP tumors (p = 4.27E-10).
This confirms the fact that G-CIMP tumors belong to the
Proneural subtype (Noushmehr et al., 2010; Verhaak et al.,
2010). In addition, the better survival group is enriched with
IDH1 mutation (p = 1.80E-06) and relatively younger patients
(Wilcoxon rank sum (WRS) test p = 0.01), which is also
acknowledged by others (Noushmehr et al., 2010; The Cancer
Genome Atlas Research Network, 2013). Furthermore, we
investigate patients’ responses to Temozolomide (TMZ), a drug
which is FDA approved for the treatment of GBM. We do this
by calculating the survival Cox p-value for each group (the
better survival group and the lower survival group) based on the

patients treated with and without TMZ (treated with other drugs
or untreated). The results indicate that only one group of patients
(not both) is associated with favorable TMZ drug response, which
is reflected by significantly different survival rates of the drug-
responders and the drug-resistants (Cox p-value = 7.34E-06). Our
finding explains why it has previously been noted that there is a
group of patients who do not respond well to TMZ (Kitange et al.,
2009; Lee, 2016).

Similarly, to investigate the groups of patients identified on
TCGA LGG, we obtained clinical information from TCGA that
includes three subtypes of glioma: IDH wild-type, IDH mutant-
codel, and IDH-mutant-non-codel (Ceccarelli et al., 2016).
Enrichment analysis using FET reveals that the groups of patients
with lower survival rates (cluster “1-2” and “2-1” in Figure 5A)
are enriched with wild-type IDH (p = 2.30E-16 and 1.94E-06)
and MGMT promoter unmethylation (p = 4.99E-06 and 0.001).
These results confirm the findings previously reported by TCGA
and others (Hegi et al., 2005). In addition, we found that the lower
survival rates are associated with a higher tumor purity score
(WRS p-value = 0.007). Previously, it has been shown by others
that a higher tumor purity score is associated with tumor growth,
disease progression and drug resistance (Yoshihara et al., 2013).

We also investigate the novelty of our identified signatures
by checking their overlap with other published signature genes
(Figure 6). For GBM, none of the genes proposed in this
manuscript are present in the other three top (based on the
Cox p-value on TCGA dataset) gene signature panels (i.e.,
panels of gene signatures proposed by Shukla et al., Etcheverry
et al., and Arimappamagan et al.). Similarly for LGG, none
of the genes proposed in this manuscript are present in the
panels of gene signatures proposed by Olar et al., Wang et al.,
and Liu et al.

One of the main reasons for this is that the types of
evidence used by our proposed framework are different from
other relevant studies. Our proposed framework identifies gene
signatures using evidence from three different sources: (i) mRNA
expression, (ii) DNA methylation, and (iii) protein-protein

FIGURE 6 | The overlap between the proposed signatures and other previously published signatures. For GBM, none of the genes proposed in this manuscript are

present in the signatures proposed by Shukla et al., Etcheverry et al., and Arimappamagan et al. Similarly for LGG, none of the genes proposed in this manuscript are

present in the signatures proposed by Olar et al., Wang et al., and Liu et al. (A) GBM signatures. (B) LGG signatures.
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interactions (PPI). In addition, it combines heterogeneous
independent studies within each data type (mRNA and DNA
methylation) using an effect-size-based meta-analysis approach.
In contrast, none of the relevant studies identify their gene
signatures considering all three types of evidence that we used.
They are based on frameworks that either do not integrate
information from multiple data levels or do not combine

multiple studies within one data level, or both. Therefore, a
very small or no overlap between the signatures proposed by
our framework and the signatures proposed by other relevant
studies is to be expected. Furthermore, the existing signatures
have little or no overlap among themselves, even though many
of them are based on the same type of evidence. In spite of
the fact that our proposed genes have not been previously

FIGURE 7 | Interesting putative mechanisms are identified by iPathwayGuide (www.advaitabio.com) on the Glutamatergic synapse and the Chemokine signaling

pathways. The colors of the nodes represent the effect sizes obtained from the meta-analysis step described in Figure 1A of the manuscript: red represents genes

with a positive effect size while blue represents genes with a negative effect size. The edges highlighted in red represent the coherent edges between the genes,

which indicate the edges for which the measured effect changes are consistent with the phenomena described by the pathway.
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reported, they provide the best ability to distinguish between
aggressive and less aggressive disease in all independent datasets
that we used.

Importantly, our proposed GBM signature contains several
genes that play crucial roles in the underlying mechanisms of
GBM. For instance, according to Deng et al. (2016), ADCY2
is known to be involved in the progression of diffuse intrinsic
pontine glioma; ANXA1 has shown to be involved in GBM
apoptosis by Festa et al. (2013); Pan et al. (2017) demonstrated
that CCL5 is responsible for creating an autocrine circuit for
Mesenchymal GBM growth; Xie et al. (2015) investigated the
role of CSC20 and found its crucial role in tumor-initiating
cell (TIC) proliferation in GBM; CXCR4, LPAR1 and TRIM21
play important roles GBM cell proliferation as demonstrated
by Ehtesham et al. (2009), Loskutov et al. (2018), and Lee
et al. (2017), respectively; Kim et al. (2018) demonstrated
the therapeutic role of RNF138 in GBM; Mahajan-Thakur
et al. (2017) reviewed the role of S1PR1 in GBM and found
that its over-expression is associated with improved GBM
prognosis; SOCS1 plays a vital role as a tumor suppressor
in GBM, as investigated by Baker et al. (2009); STUB1 has
shown to be involved in glioma cell proliferation by Syed et al.
(2015); etc. Similarly, our proposed LGG signature contains
genes that are known to be related to glioma. For instance,
according to Shi et al. (2006), EIF3F is downregulated in
most human tumors including glioma; EIF5 and RPS12 are
known to be involved in brain metastasis in primary breast
tumors (Sanz-Pamplona et al., 2011); Shahbazian et al. (2010)
has shown that EIF4B is a potential target for anti-cancer
therapies; etc.

Furthermore, we use iPathwayGuide (Advaita Corporation,
2019) to perform an extensive pathway analysis to identify
the mechanisms captured by the proposed signatures.
iPathwayGuide uses an impact analysis that calculates the
true impact of a pathway by combining two types of evidence.

The first type of evidence is the classical over-representation of
DE genes in each pathway. The second type of evidence captures
several other important biological factors such as the position of
all the genes on each pathway, the magnitude of their expression
change, the direction and type of the signals transmitted between
genes as described by the pathway, etc. The impact analysis has
been shown to be able to identify the significantly impacted
pathways much better than classical over-representation alone
(Drăghici et al., 2007; Tarca et al., 2009).

Among the pathways reported as significant, interesting
putative mechanisms are identified by the impact analysis on
the Glutamatergic synapse pathway and the Chemokine signaling
pathway. These are shown in Figure 7. The colors of the nodes
represent the effect sizes obtained from the meta-analysis step
described in Figure 1A: red represents genes with a positive
effect size while blue represents genes with a negative effect
size. The edges highlighted in red represent coherent edges. A
coherent edge is an edge for which the measured effect changes
are consistent with the phenomena described by the pathway. For
example, if gene A inhibits gene B, and if gene A is upregulated,
gene B is expected to be downregulated. If the measured changes
are consistent with this inhibition, the edge corresponding to
this interaction is referred to as being coherent. Several such
coherent edges form coherent chains of perturbation propagation
which can be thought of as putative mechanisms. Figure 8 shows
a closer look of the coherent edges within the two pathways
mentioned above.

For LGG, two pathways are significantly impacted with
the proposed gene signature after correcting for multiple
comparisons: the Ribosome pathway and the RNA transport
pathway (Figures S1, S2). The reason for having only two
pathways as significantly impacted could be explained by the
fact that LGG is an early stage of glioma and, therefore, the
differences across the given phenotypes are not reflected in the
pathway level.

FIGURE 8 | The mechanisms involving the proposed GBM signature in the Glutamatergic synapse (A) and the Chemokine signaling (B) pathways, as identified

by iPathwayGuide (www.advaitabio.com). The colors of the nodes represent the effect sizes obtained from the meta-analysis step described in Figure 1A. The edges

represent molecular actions between the genes obtained from the STRING database. The edges highlighted in red indicate the coherent edges between the genes.

Frontiers in Genetics | www.frontiersin.org 12 March 2019 | Volume 10 | Article 159

www.advaitabio.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Shafi et al. Multi-cohort and Multi-omics Meta-Analysis

5. CONCLUSION

In an effort to identify disease-specific biomarkers that can
explain the underlying biological mechanism and predict
associated patients’ survival, several computational approaches
have been proposed over the past few years. The majority
of the approaches have limited clinical applicability since
they do not fully utilize the crucial information that is
currently available in public repositories. In this manuscript,
we propose an integrative framework that is able to identify
network-based biomarkers for a given disease condition,
utilizing information from three different sources: (i) multiple
independent mRNA studies, (ii) multiple independent DNA
methylation studies and (iii) protein-protein interactions.
We demonstrate the utility of the proposed framework
by constructing subnetworks related to GBM and LGG,
using 17 independent mRNA and DNA methylation studies
containing a total of 2,409 samples. We validate our proposed
signatures on four independent gene expression datasets
containing a total of 1,269 patients. The results indicate that
our proposed network-based signatures are able to better
predict patients’ survival than other published signatures for
these diseases.
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