
fgene-10-00171 March 4, 2019 Time: 10:55 # 1

ORIGINAL RESEARCH
published: 05 March 2019

doi: 10.3389/fgene.2019.00171

Edited by:
Zhonghu Li,

Northwest University, China

Reviewed by:
James C. Crabbe,

Wolfson College, United Kingdom
Dong-rui Jia,

Yunnan University, China

*Correspondence:
Zhumei Ren

zmren@sxu.edu.cn
Xu Su

xusu8527972@126.com

Specialty section:
This article was submitted to

Evolutionary and Population Genetics,
a section of the journal

Frontiers in Genetics

Received: 04 June 2018
Accepted: 15 February 2019

Published: 05 March 2019

Citation:
Liang Y, Zhang Y, Wen J, Su X

and Ren Z (2019) Evolutionary History
of Rhus chinensis (Anacardiaceae)

From the Temperate and Subtropical
Zones of China Based on cpDNA

and Nuclear DNA Sequences
and Ecological Niche Model.

Front. Genet. 10:171.
doi: 10.3389/fgene.2019.00171

Evolutionary History of Rhus
chinensis (Anacardiaceae) From the
Temperate and Subtropical Zones of
China Based on cpDNA and Nuclear
DNA Sequences and Ecological
Niche Model
Yukang Liang1, Yang Zhang2, Jun Wen1,3, Xu Su4* and Zhumei Ren1*

1 School of Life Science, Shanxi University, Taiyuan, China, 2 Natural History Research Center, Shanghai Natural History
Museum, Branch of Shanghai Science and Technology Museum, Shanghai, China, 3 Department of Botany, National
Museum of Natural History, Smithsonian Institution, Washington, DC, United States, 4 Key Laboratory of Medicinal Animal
and Plant Resources of the Qinghai-Tibetan Plateau in Qinghai Province, School of Life Science, Qinghai Normal University,
Xining, China

To explore the origin and evolution of local flora and vegetation, we examined the
evolutionary history of Rhus chinensis, which is widely distributed in China’s temperate
and subtropical zones, by sequencing three maternally inherited chloroplast DNAs
(cpDNA: trnL-trnF, psbA-trnH, and rbcL) and the biparentally inherited nuclear DNA
(nuDNA: LEAFY ) from 19 natural populations of R. chinensis as well as the ecological
niche modeling. In all, 23 chloroplast haplotypes (M1–M23) and 15 nuclear alleles (N1–
N15) were detected. The estimation of divergence time showed that the most recent
common ancestor dated at 4.2 ± 2.5 million years ago (Mya) from cpDNA, and the
initial divergence of genotypes occurred at 4.8± 3.6 Mya for the nuDNA. Meanwhile, the
multimodality mismatch distribution curves and positive Tajima’s D values indicated that
R. chinensis did not experience population expansion after the last glacial maximum.
Besides, our study was also consistent with the hypothesis that most refugia in the
temperate and subtropical zones of China were in situ during the glaciation.

Keywords: Rhus chinensis, evolutionary history, DNA sequences, China’s temperate and subtropical zone,
ecological niche modeling

INTRODUCTION

The Quaternary climate oscillations occurred in the past ca. 2.58 million years ago (Mya)
have resulted in several glacial and interglacial cycles in the Northern Hemisphere (Shackleton
and Opdyke, 1973). These climatic alterations have left imprints in geographical distributions,
population structures, and demographic histories of plant and animal species (Abbott et al., 2000;
Avise, 2000; Hewitt, 2004, 2011; Qiu et al., 2011, 2013; Wen et al., 2014, 2016), which can be
traced by analyses of genetic variations within and between extant populations (Abbott et al., 2000;
Johansen and Latta, 2003; Hewitt, 2004). In Europe and North America, the fossil records of plant
species and phylogeographic analyses had indicated common patterns of geographical range shifts
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that plants retreated southward and to lower elevations during
glacial periods and while recolonized rapidly the northern areas
and higher elevations during the interglacial and postglacial
periods (Nason et al., 2002; Petit et al., 2003; Stewart et al., 2010;
Sakaguchi et al., 2011; Segovia et al., 2012; Voss et al., 2012;
Tzedakis et al., 2013; de Lafontaine et al., 2014). While in China,
especially the Qinghai-Tibet Plateau (QTP) and adjacent regions,
considerable research achievements have also been attained on
inferring the Quaternary phylogeographic histories of plant
species based on the approach of population genetics (e.g., Zhang
et al., 2005, 2015; Meng et al., 2007; Chen K.M. et al., 2008; Yang
et al., 2008; Wang et al., 2009; Opgenoorth et al., 2010; Xu et al.,
2010; Qiu et al., 2011; Zou et al., 2012; Wang G.N. et al., 2014;
Wen et al., 2014; Liu Y.P. et al., 2015; Wan et al., 2016).

The temperate and subtropical region of China is a model area
for studying plant species in response to past climate changes
(Chen S.C. et al., 2012; Li X.H. et al., 2012; Qi et al., 2012; Zhao
et al., 2013; Fu et al., 2014). Up to date, many phylogeographic
studies have been used to elucidate the impacts of the uplifts
of the QTP on the climate within the modern-day temperate
and subtropical zones, or warm temperate zones in China (e.g.,
Yellow River Basin, Chen K.M. et al., 2008 and Chen Y.Y. et al.,
2008; Yunnan-Guizhou Plateau, Fan et al., 2013; Wang W. et al.,
2014; Yangtze River, Sun et al., 2013; Wang H. et al., 2015; Qinling
Mountains, Liu J.Q. et al., 2014; Lu et al., 2016; QTP, Liu D.
et al., 2015 and Liu Y.P. et al., 2015); i.e., 23.5◦–42.0◦ N and
98.0◦–124.0◦ E (Gao et al., 2003; Shangguan et al., 2009). The
results showed that the QTP acted as a barrier against glaciation
within the warm temperate zones of China and resulted in the
arid climate for thousands of years within the Quaternary period,
which has been widely accepted nowadays (Wang et al., 2013; Yu
et al., 2013; Meng et al., 2014). Thus, the present warm temperate
region probably served as a glacial refugia for plant species in
the past time, and this hypothesis has been tested and advanced
through phylogeographic studies (e.g., Li Y. et al., 2012; Liu
et al., 2012; Qi et al., 2012; Wan et al., 2016). However, it is less
well known whether population genetic diversification of plants
within the warm temperate zone or within the glacial refugia is
due to isolation on a heterogeneous landscape or adaptation and
selection along ecological gradients (Su et al., 2015; Zhao et al.,
2016). Therefore, more phylogeographic studies of additional
plant species within the warm temperate refugial regions are
necessary in order to detect their spatial geographic patterns and
to assess the underlying causes.

Rhus chinensis belongs to the plant family Anacardiaceae
and is a common deciduous tree that is endemic to the warm
temperate zone of Asia. It widely occurs at the elevation
of 170–2700 m above sea level in Shaanxi, Shanxi, Hebei,
Sichuan, Hunnan, and Yunnan of China (Zheng and Min,
1980). Due to its commonality and widespread distribution
within the warm temperate zone, R. chinensis is thus an
ideal study case for phytogeography within this region.
In this study, we used three cpDNA regions (trnL-trnF,
psbA-trnH, and rbcL) and one nuDNA region (LEAFY) to
examine (1) the genetic diversity and structure of R. chinensis
populations in China and (2) how is the demographic history
of R. chinensis during the Quaternary climate oscillations,

and further to explore the origin and evolution of local
flora and vegetation.

MATERIALS AND METHODS

Population Sampling
In total, leaf samples of 312 individuals were collected from
19 natural populations of R. chinensis, representing its whole
geographic distribution within the warm temperate zone of
China (see Figure 1 and Table 1). Eight to 20 individuals were
collected for each population, and all individuals were at least
15 m apart. We obtained several voucher specimens for each
population, which were deposited at the School of Life Sciences,
Shanxi University, Taiyuan, Shanxi, China. The information of
latitude, longitude, and altitude of each population were recorded
using an Etrex GIS (Garmin, Taiwan, China).

The species from Anacardiaceae were used as outgroups.
The cpDNA sequences of four species were downloaded
from GenBank, Rhus virens (EF682861, KF664327, KF664558),
Rhus typhina (AY640446, HQ427036, HQ590236), Rhus glabra
(AY640440, KF664325, KX397919), and Pistacia vera (EF193139,
KF664307, AJ235786). There are no nuclear sequences for the
above four species in GenBank, so we used another two species
Mangifera indica (GU338039) and P. chinensis (KC174710) as the
outgroups in the nuDNA analysis.

DNA Sequencing
Total genomic DNAs from approximately 20 mg of silica
gel-dried leaf materials were extracted using a Plant Genomic
DNA kit (Tiangen Biotech, Beijing, China), and three cpDNA
fragments (trnL-trnF, psbA-trnH, and rbcL) and one nuclear gene
(LEAFY) were amplified and sequenced by the following primers:
trnL-trnF (5′-CGAAATCGGTAGAGGCTACG-3′; 5′-ATTTG
AACTGGTGACACGAG-3′; Taberlet et al., 1991), psbA-trnH
(5′-GTTATGCATFAACGTAATGCTC-3′; 5′-CGCGCATGGTG
GATTCACAAATC-3′; Sang et al., 1997), rbcL (5′-ATGTCAC
CACAAACAGAGAC-3′; 5′-TCAAATTCAAACTTGATTTCTT
TC-3′; Little and Barrington, 2003), LEAFY (5′-TACACG
GCAGCGAAGATAGC-3′; 5′-CTAGAAGCAGCGGCACTAT
TG-3′; Oh and Potter, 2003). Polymerase chain reaction (PCR)
was performed in a volume of 50 µL and each reaction contained
30–50 ng genomic DNA, 25 µL amplification reaction mixture
(PCR mix kit, Tiangen Biotech, Beijing, China), and 20 µmol/L
primers, and under the following conditions: initial denaturation
at 94◦C for 3 min, 35 cycles of 30 s at 94◦C, 30 s at 54–60◦C,
90 s at 72◦C, and a final extension step of 7 min at 72◦C. All
the qualified PCR products were sent to Majorbio Bio-pharm
Technology Co., Ltd. (Shanghai) for sequencing.

Data Analysis
We aligned sequences with Clustal_X (Thompson et al., 1997)
and coded indels following the method of Simmons and
Ochoterena (2000). Indels within mononucleotide repeat regions
were deleted for phylogenetic analyses, because the homology of
these indels could not be verified (Chen S.C. et al., 2012).
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FIGURE 1 | Geographic distribution of haplotypes and genotypes for Rhus chinensis based on cpDNA (A) and nuDNA (B). Multimodality mismatch distribution
curves of cpDNA and nuDNA in the overall populations are shown in A1 and B1.

TABLE 1 | Sampling of Rhus chinensis in the present study.

Population Locality No. of samples Date Longitude(E) Latitude(N) Altitude (m)

P1 Anxian, SC 20 2009.9 104◦54′ 31◦57′ 1009

P2 Chenggu, SAX 20 2013.8 107◦59′ 33◦09′ 1453

P3 Danzhai, GZ 17 2007.7 107◦47′ 26◦11′ 1005

P4 Emei, SC 15 2009.9 103◦31′ 29◦51′ 1100

P5 Huxian, SAX 20 2013.8 108◦50′ 33◦32′ 605

P6 Jincheng, SX 11 2009.8 112◦44′ 35◦38′ 800

P7 Jinping, YN 8 2008.10 103◦13′ 23◦46′ 1248

P8 Tianpingshan, JS 19 2009.9 120◦50′ 31◦28′ 200

P9 Longsheng, GX 20 2008.9 110◦01′ 25◦47′ 702

P10 Malipo, YN 10 2008.10 104◦42′ 23◦07′ 1619

P11 Shuifu, YN 12 2007.7 110◦14′ 28◦37′ 1644

P12 Sanhe, HEB 16 2009.8 117◦00′ 39◦58′ 877

P13 Sijiao, SX 20 2010.8 111◦40′ 35◦08′ 1100

P14 Sangzhi, HN 20 2010.8 110◦17′ 29◦40′ 800

P15 Taijiang, GZ 17 2007.7 108◦19′ ′ 26◦39′ 721

P16 Wufeng, HUB 20 2012.9 110◦40′ 30◦12′ 614

P17 Xinglong, HEB 20 2009.8 117◦58′ 40◦38′ 960

P18 Yanshan, JX 12 2013.8 117◦80′ 27◦50′ 1212

P19 Zhushan, HUB 15 2013.8 110◦14′ 32◦13′ 717

Notes: the capital abbreviations represent the different provinces, SC, Sichuan; SAX, Shaanxi; GZ, Guizhou; SX, Shanxi; YN, Yunnan; JS, Jiangsu; GX, Guangxi; HEB,
Hebei; HN, Hunan; HUB, Hubei; JX, Jiangxi.

The levels of inter- and intra-population genetic diversity (h:
haplotype diversity and π: nucleotide diversity) were calculated
for the cpDNA and nuDNA using DnaSP version 5.0 (Rozas et al.,
2003). We compared GST and NST using the U-statistic, which is
approximated by a Gaussian variable by taking into account the
covariance between GST and NST, and a one-sided test (Pons and
Petit, 1996). The former considers only haplotype frequencies
while NST also takes into account differences between haplotypes.
When NST is larger than GST, phylogeographic structure is
obvious, which indicates that closely related haplotypes were
found more often in the same area than less closely related

haplotypes (Pons and Petit, 1996). We also estimated genetic
differentiation among all populations with AMOVA and inferred
population growth and expansion according to Tajima’s D using
Arlequin version 3.0 (Excoffier et al., 2005), with 1000 random
permutations to test for significance of partitions. Genealogical
relationships among cpDNA and nuDNA haplotypes were
constructed using TCS version 1.21 (Clement et al., 2000).

The phylogenetic relationships among haplotypes and
genotypes of cpDNA and nuDNA were reconstructed with
Bayesian inference (BI) methods in MrBayes version 3.1.2
(Ronquist and Huelsenbeck, 2003). We applied the best fit
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TABLE 2 | The total haplotype and nucleotide diversity of Rhus chinensis.

cpDNA nuDNA

Population h π × 10−3 Haplotypes (No.) H π × 10−3 Genotypes (No.)

P1 0.000 0.000 M1(20) 0.616 1.140 N1(8), N2(1), N3(10), N4(1)

P2 0.719 8.810 M1(5), M2(10), M3(2), M4(3), M8(4), M21(2) 0.686 3.870 N1(2), N3(2), N5(4), N7(1), N15(11)

P3 0.550 5.230 M5(7), M6(4), M7(2) 0.422 2.270 N3(10), N14(7)

P4 0.586 5.370 M2(4), M3(4), M4(7) 0.505 2.570 N1(4), N3(6), N4(5)

P5 0.358 5.620 M1(16), M2(2), M9(2) 0.379 1.410 N3(13), N15(7)

P6 0.591 5.400 M1(5), M10(4), M11(2) 0.485 2.140 N1(4), N3(2), N7(5)

P7 0.571 3.520 M12(4), M13(4) 0.314 2.120 N3(4), N10(2)

P8 0.526 2.590 M14(10), M15(9) 0.653 2.180 N3(4), N6(3), N11(6), N12(6)

P9 0.589 5.700 M5(4), M16(4), M17(12) 0.605 2.580 N3(1), N4(7), N6(1), N14(5)

P10 0.400 4.970 M12(3), M13(6), M18(1) 0.389 2.980 N3(6), N9(2), N10(2)

P11 0.636 6.560 M1(1), M5(1), M6(3), M7(7) 0.236 1.360 N3(7), N4(5)

P12 0.533 2.730 M19(9), M20(7) 0.321 2.540 N1(3), N4(4), N7(9)

P13 0.689 6.320 M1(5), M2(7), M19(8) 0.000 0.000 N13(20)

P14 0.554 5.690 M1(8), M5(5), M6(6), M23(5) 0.300 2.150 N3(3), N4(19), N6(1)

P15 0.694 8.220 M1(5), M6(1), M17(6), M18(2) 0.221 0.970 N3(15), N4(2)

P16 0.645 8.700 M1(2), M6(3), M8(5), M21(3), M23(8) 0.774 3.000 N3(4), N4(9), N6(3), N14(11)

P17 0.442 2.260 M19(6), M20(14) 0.395 1.740 N3(15), N4(5)

P18 0.318 2.510 M1(2), M22(2), M23(5) 0.268 1.400 N3(10), N14(2)

P19 0.681 7.820 M1(4), M2(5), M4(4), M21(2) 0.281 1.830 N3(12), N7(3)

Total 0.738 6.910 0.614 3.050

π: nucleotide diversity, h: haplotype diversity.

model, GTR + I + G, which was inferred by Modeltest 3.7
under the Akaike information criterion (Posada and Crandall,
1998; Ronquist and Huelsenbeck, 2003). The BI consisted of two
parallel runs with four incrementally heated chains and three
million generations sampled every 1000 generation. The output
was diagnosed for convergence using TRACER v.1.3 (Rambaut
and Drummond, 2007), and summary statistics and trees were
generated using the last two million generation in MrBayes
version 3.1.2 (Ronquist and Huelsenbeck, 2003). In order to
distinguish the haplotypes and genotypes clearly, the branches
with high bootstrap value (>0.95) were classified as new clades
based on the phylogenetic trees (Porter et al., 2005; Pyron, 2011;
Ye et al., 2017).

The divergence times within R. chinensis were estimated using
a molecular clock and fossil data. Three fossils of Rhus were
used to calibrate the node ages of R. typhina and R. glabra
(6.0 Mya), R. typhina and R. virens (38.1 Mya), and R. typhina
and P. vera (49.1 Mya) for cpDNA data, respectively (Yi et al.,
2004), while one fossil (49.1 Mya) was used as the divergence
time between Rhus and Pistacia for nuDNA data. Both the strict
and relaxed molecular clock rates were tested in MEGA6 (Tamura
et al., 2013) using the BI summary tree, and they could not be
rejected for either the cpDNA or nuDNA data. Therefore, the
strict and relaxed clocks were both applied to the two datasets in
the BASEML and MCMCTREE programs of PAML (Yang, 2007),
and used our BI summary tree as the guide tree.

Ecological Niche Modeling
We compared the current distributions of R. chinensis with
its inferred distributions during the last glacial maximum

TABLE 3 | Analysis of molecular variance (AMOVA) of Rhus chinensis populations
based on nucleotide sequences.

Gene types Source of
variation

d.f. SS VC PV FST

Chlorotype 0.63931∗

Among regions 4 1425.914 4.95009 30.05

Among
populations

14 1396.234 5.58051 33.88

Within
populations

293 1740.808 5.94132 36.07

Total 311 4562.955 16.47192

Genotypes 0.70675∗

Among regions 3 321.790 1.02156 29.33

Among
populations

15 146.323 0.5.815 14.59

Within
populations

293 427.270 1.95386 56.09

Total 311 895.383 3.48357

Notes: d.f., degrees of freedom; SS, sum of squares; VC, variance components;
FST, correlation within populations relative to total; ∗P < 0.01.

(LGM; ∼21,000 years BP) with ecological niche modeling in
Maxent version 3.3.3 (Phillips et al., 2006). To perform this
modeling, we first obtained the geocoordinates of 73 occurrence
data of R. chinensis from the Chinese Virtual Herbarium1

and Global Biodiversity Information Facility2. Subsequently, we
constructed the models using 19 bioclimatic variables from

1http://www.cvh.org.cn
2http://data.gbif.org
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the WorldClim database3 (Hijmans et al., 2005) representing
the present (averaged from 1950) and the LGM according
to the Community Climate System Model (CCSM; Collins
et al., 2006). We employed 20 replicates based on 80% of the
distribution coordinates for training and 20% for testing, and
adopted the model with the best AUC values (Phillips et al.,
2006). We performed a jackknife test to estimate the percent
contributions of bioclimatic variables to the prediction for the
distributional models. Meanwhile, we also employed the “10
percentile presence” threshold logistic approach as determined by
Maxent in order to distinguish the threshold between suitable and
unsuitable habitats for further analyses. We drew Graphics for
each predicted SDM using DIVA-GIS 7.5 (Hijmans et al., 2005).

RESULTS

Genetic Diversity and Structure
Aligned cpDNA dataset consisted of 2051 bp with 70 nucleotide
substitutions and two indels. We detected 23 different haplotypes
(M1–M23) based on combined cpDNA dataset from 19

3http://www.worldclim.org/

populations. The LEAFY gene region varied from 412 to 645 bp
and had an aligned length of 682 bp, which contained 14
nucleotide substitutions. Our sequences of LEAFY comprised 15
genotypes (N1–N15). Based on cpDNA and nuDNA sequences,
the total haplotype diversity of R. chinensis was estimated to be
0.738 and 0.614, and the total nucleotide diversity was inferred
to be 6.910 × 10−3 and 3.050 × 10−3, respectively (Table 2).
We found the highest levels of haplotype and nucleotide diversity
in four populations: P2, P11, P14, and P16 (Table 2). The
most widespread haplotypes and genotypes were M1 (in 11
of 19 populations, cpDNA) and N3 (in 18 of 19 populations,
nuDNA; Table 2), respectively. Based on cpDNA and nuDNA
sequences, M1 and N3 were the primary haplotype and genotype,
respectively (Figure 1).

AMOVA analysis indicated that genetic variation in
R. chinensis was greater within populations than among them
(P < 0.01; Table 3). The mismatch distribution (Figures 1A1,B1)
and positive values of Tajima’s D value (1.19, 0.05 < P < 0.10 for
cpDNA; 2.37, P < 0.01 for nuDNA) of all populations rejected a
sudden expansion model, and positive Tajima’s D may indicate
population admixture. Phylogeographic structure is not obvious
at the species level for both sets of genetic markers. For the
cpDNA data, NST (0.382) was slightly higher than GST (0.375),

FIGURE 2 | Phylogenetic trees of Rhus chinensis calculated by Bayesian inference (BI) of (A) cpDNA and (B) nuDNA. Numbers above the branches indicate the
bootstrap values (>0.95). Clades of cpDNA and nuDNA representing haplotypes and genotypes are discussed in the text.
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while for the LEAFY, the difference between the two indices was
not significant (NST = 0.321, GST = 0.319, P > 0.05).

Phylogeography and Divergence Time
In the cpDNA phylogeny, eight haplotypes (M2–M4, M9–M11,
and M19–M20) were clustered into clade I (Figure 2A). M21
and M8 were separately defined into clade II and clade III
(Figure 2A). M1 independently belonged to clade IV, which was
probably the ancestral haplotype (Figure 2A). Clade V included
ten haplotypes (M5–M7, M14–M18, and M22–M23), while clade
VI only contained two haplotypes (M12–M13) (Figure 2A).
Based on nuDNA data, five clades were redefined (Figure 2B).
Nine genotypes (N2, N4–N5, N7–N8, N11–N13, and N15)
were clustered into clade I (Figure 2B). Clade II and III, each
included two genotypes, namely, N6 and N14 existed in clade
II, while N9 and N10 occurred in clade III (Figure 2B). N1
and N3 were individually defined into clade IV and clade V
(Figure 2B). In addition, the divergence time of R. chinensis
estimated with a strict molecular clock was highly consistent with
that based on a relaxed molecular clock. According to the cpDNA
phylogenetic tree, the crown age of R. chinensis was dated to be
4.2 ± 2.5 Mya, when the clade VI (P7 and P10–P11, Yunnan
populations) split from all other clades (Figure 2A). Similarly,
for the LEAFY gene, the crown age of R. chinensis was dated to
be 4.8± 3.6 Mya (Figure 2B). Additionally, the clade III (P7 and
P10–P11, Yunnan populations) diverged from clade I and clade
II at 3.8± 3.0 Mya (Figure 2B).

Ecological Niche Modeling
The inferred past (LGM) and current distributions of R. chinensis
are illustrated in (Figure 3). The AUC values based on
both training and test presence data for the present and at
the LGM were all higher than expected (not shown), which
demonstrated good model performance. It was notable that the
current distribution model indicated that R. chinensis mainly
occurred in the warm temperate zone of China, which also
suggested that it should occur in the same region during the
LGM period (Figure 3A). In the comparison with the two
simulated distributions, the LGM distribution model predicted
that the species was mainly concentrated in Yunnan and central
China including Shaanxi, Sichuan, Hubei, and Jiangxi provinces,
and it had slightly shrunk in these regions during the LGM
period (Figure 3B).

DISCUSSION

We did not detect a clear phylogeographic structure among
the 19 populations of R. chinensis sampled in the present
study. We found a somewhat lower differentiation among
R. chinensis populations (NST = 0.382 for cpDNA, NST = 0.321
for nuDNA) compared to sympatric species such as Platycarya
strobilacea (Chen S.C. et al., 2012) and Cotinus coggygria
(Wang W. et al., 2014). Limited phylogeographic structure
within a metapopulation may be due to high levels of geneflow
and/or of geophysical connectedness (Avise et al., 1987). High
levels of gene flow among R. chinensis populations may be due

to the seed dispersal mechanism, which has been implicated
in high levels of gene flow in many other plant species (e.g.,
Lopez et al., 2007; Song et al., 2013; Johnson et al., 2017).
R. chinensis can produce 1000 seeds per plant on average, and
the seeds are dispersed by animals, including mammals and
birds, and by water (Huang and Qiu, 1994; Wang W. et al.,
2014). Therefore, it is possible that relatively limited population
differentiation may be due to the movement of seeds, including
maternal and bi-parental genetic material, throughout the warm
temperate zone. Geophysical connectedness within the range of
R. chinensis may also be responsible for high levels of gene flow
among populations. Stated another way, there may be limited
barriers to dispersal. In the distributional area of R. chinensis,
no obvious geographic barriers have been observed. Therefore,
R. chinensis does not appear to be geographically isolated,
allowing ecological niche modeling to be used in the assessment
of species status (Li X.H. et al., 2012; Liu L. et al., 2014; Wang
W. et al., 2014). Ecological niche models suggested the suitable
habitats of R. chinensis were continuous in the present time
while compressed during the LGM period, demonstrating
multiple possible isolated glacial refugia (Figure 3). The response
to impact of cold and warm times on the distribution of
R. chinensis was validated in the simulation of ecological niche
modeling, although we only used the simulated environment
of current and LGM period (Figure 3). This pattern of range

FIGURE 3 | Maps showing the potential distribution by ENM. (A) The present.
(B) Last glacial maximum.
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shifts indicated a likely scenario of repeated glacial compressions
followed by interglacial expansions for R. chinensis during
the Quaternary climatic oscillations. It is interesting that the
geographic distribution of the cpDNA haplotypes differs from the
nuDNA genotypes (Figure 2). Mismatch distributions between
organellar DNA haplotypes and nuclear DNA genotypes have
been reported in other groups such as Sophora davidii (Fan et al.,
2013), Cycas diannanensis (Liu J. et al., 2015), and Osteomeles
schwerinae (Wang Z.W. et al., 2015). Therefore, we thought that
the forest birds and mammals were known as seed dispersers
for many species in Anacardiaceae (Wang W. et al., 2014),
which might have directly impacted the genetic structure with
biparental inheritance.

The populations originated from Yunnan occurred at the
China–Vietnam border and split from other clades at 4.2 ± 2.5
and 3.8 ± 3.0 Mya according to the cpDNA (clade VI)
and nuDNA (clade III), respectively (Figures 2A,B). Early
diverging populations in Yunnan have been detected in other
genera or species such as Ceratotropis (3.62 Mya, Javadi et al.,
2011), Incarvillea sinensis (4.4 Mya, Chen S. et al., 2012), and
Stuckenia filiformis (3.93 Mya, Du and Wang, 2016). Within
these species, the uplift of the QTP has been implicated as the
main mechanisms of driving diversifications, but the estimated
divergences were more recent than the last phase of the uplift (7–8
and 13–15 Mya; Harrison et al., 1992; Shi et al., 1998; Spicer et al.,
2003). So, we thought that the geographical isolation of Yunnan
populations was caused by the isolation of the QTP uplift in
late Pliocene. Furthermore, the suitable climate in the temperate
and subtropical zone could have subsequently facilitated the
Pliocene-Pleistocene diversification of R. chinensis into different
eco-geographic populations (Javadi et al., 2011).

Previous phylogeographic studies have widely supported
hypotheses that climatic changes during the LGM forced plants
into refugia within Central China, where they were protected by
the QTP from the brunt of the ice age (Tian et al., 2009; Liu
et al., 2012). After the glaciers retreated, the plants expanded
their ranges rapidly (Hewitt, 2000; Li Z.H. et al., 2012; Qi et al.,
2012). Our results showed that the range of R. chinensis had
increased since the LGM (Figure 3) but did not support a rapid
expansion based on the mismatch distribution (Figure 1) and
Tajima’s D (1.19, 0.05 < P < 0.10 for cpDNA; 2.37, P < 0.01 for
nuDNA). Refugia in the warm temperate China may have been
dominated by evergreen forest or temperate deciduous forest
during the LGM (Liu, 1988). Thus, southern Shaanxi, northern
Sichuan, Yunnan, and Jiangxi could have supported R. chinensis
during the LGM and been its main center of diversity. Just as
P. strobilacea (Chen S.C. et al., 2012), Cercidiphyllum (Qi et al.,

2012), and C. coggygria (Wang W. et al., 2014), the plants were
slightly affected and were able to survive in situ at the period of
the glaciation. So, the characterized phylogeographic structure of
R. chinensis was consistent with the second hypothesis, which was
that they survived in situ and occupied multiple localized glacial
refugia during the glaciation.

CONCLUSION

We used cpDNA and nuDNA sequences, and ecological niche
modeling to investigate the evolutionary history of R. chinensis
distributed in the warm temperate zone of China. The cpDNA
and nuDNA data separately revealed six and five clades
corresponding to the geographic regions. The divergence among
haplotypes and genotypes of R. chinensis occurred at the Pliocene
based on cpDNA and nuDNA data. Our ENMs showed enlarged
potential distributions in the present compared to LGM, but
we did not detect a sudden demographic expansion after the
glaciation according to the molecular data. Our results suggest
that R. chinensis was not affected by glacial cycles seriously and
survived in situ and occupied a few main refugia.
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