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Patients at different ages have different rates of cell development and metabolisms. As a
result, age should be an essential part of how a disease diagnosis model is trained and
optimized. Unfortunately, most of the existing studies have not taken age into account.
This study demonstrated that disease diagnosis models could be improved by merely
applying individual models for patients of different age groups. Both transcriptomes and
methylomes of the TCGA breast cancer dataset (TCGA-BRCA) were utilized for the
analysis procedure of feature selection and classification. Our experimental data strongly
suggested that disease diagnosis modeling should integrate patient age into the whole
experimental design.
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INTRODUCTION

Some types of cancers grow faster in younger hosts. Renal cancer has an average growth rate of
0.3 cm per year and many clinical studies focused on the surveillance of small tumors only in elderly
patients (Mues et al., 2010; Mehrazin et al., 2014). However, renal cancers in younger patients may
grow at a much larger rate of 2.13 cm per year (Gofrit et al., 2015), which requires more frequent
follow-up examinations. Prostate cancer was mostly diagnosed at an older age (>65 years old),
but the early-onset cases (<55 years old) had a much faster growth rate and a stronger genetic
association (Salinas et al., 2014).

Breast cancer has the largest incidence rates for females in both China (Chen et al., 2016) and
United States (Siegel et al., 2018) and tends to grow faster in younger females (Weedon-Fekjaer
et al., 2008). One of twenty breast tumors may double in diameter from 10 mm within 1.2 months,
compared with 6.3 years for the same proportion with the slowest growth rates (Weedon-Fekjaer
et al., 2008). Generally, younger age was one of the risk factors for poor prognosis and high
aggressiveness (Bardia and Hurvitz, 2018; Lee et al., 2018). Even the genomic or transcriptomic
biomarkers demonstrated different associations with younger breast cancer patients compared to
older ones (Wang et al., 2018) and required age-specific treatments (Kim et al., 2018).
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Breast cancer diagnosed at its early stage may be treated with
mastectomy or lumpectomy and systematically reduces relapse
risk (Kummerow et al., 2015; Santa-Maria et al., 2015). Early-
stage breast cancer was usually diagnosed by radiological imaging
technologies (Simos et al., 2014) or molecular biomarkers (Duffy
et al., 2015). X–ray-based mammogram (Kashyap et al., 2017;
Sinthia and Malathi, 2018) and breast magnetic resonance
imaging (MRI) were the predominant choices for detecting the
candidate lesion sites of breast cancer (Wang et al., 2013; Loggers
et al., 2016). Serum microRNA and urine DNA damage were
also recently observed to have strong associations with early-stage
breast cancer (Guo et al., 2017; An et al., 2018). Unfortunately,
these early-stage breast cancer detection technologies did not
integrate the age information in the decision-making process.

This study hypothesized that the integration of age
information may improve the performance of the biomarker
detection problem, which is known as the feature selection
problem in the machine learning area (Alshawaqfeh et al., 2017;
Xu et al., 2018). Following this, we split the transcriptomic and
methylomic datasets of breast cancer into multiple age groups
and investigated whether a machine learning procedure achieved
better performance after the split of age groups.

MATERIALS AND METHODS

Summary of Datasets
This study utilized the transcriptomic and methylomic datasets
from The Cancer Genome Atlas database (TCGA) (Ma and Ellis,
2013). The level-3 transcriptomes of the TCGA breast cancer
(BRCA) project were hybridized and measured by the Agilent
244K Custom Gene Expression G4502A-07-3 array (TCGA
platform code AgilentG4502A_07_3), which was designed by
the University of North Carolina on the Agilent (Santa Clara,
CA, United States) Sure Print G3 Microarray Platform (Cancer
Genome Atlas Network, 2012). Each sample has the expression
levels of 17,814 probe sets. The developmental stage of each
sample was retrieved from the entry “tumor_stage” in the
clinical annotations of the TCGA-BRCA project at the NIH
National Cancer Institute GDC Data Portal (Cancer Genome
Atlas Network, 2012; Ciriello et al., 2015). There were 502
transcriptomic samples with the stage annotations, among which
there were 90, 291, 108, and 13 samples for stages I, II, III, and
IV, respectively.

Methylome was generated by the Illumina Infinium
HumanMethylation450K BeadChip, and each sample had
485,577 features (Morris and Beck, 2015). There were 765
methylomic samples with the stage annotations in the TCGA-
BRCA project, among which there were 125, 433, 196, and 11
samples for stages I, II, III, and IV, respectively.

Feature Selection Algorithms
Biomedical datasets have two major types, either a large feature
number with a small sample number or a large sample number
with a small feature number. The OMIC datasets usually extract
a large number of features for a small number of samples, and
the number of features must be reduced to avoid the overfitting

problem for machine learning modeling (Lyu et al., 2017; Ye et al.,
2017; Ali and Aittokallio, 2018; Xu et al., 2018). For the second
style of biomedical datasets, although it is not a required step,
reducing the dimensions may substantially increase modeling
performance (Guan et al., 2018; Zou et al., 2018).

Seven feature selection algorithms were evaluated for their
classification performances on the datasets with different age
groups. The F-test evaluated the analysis of variation between
two variables, or a variable and the phenotype (Lomax and Hahs-
Vaughn, 2013). The PCC (Pearson Correlation Coefficient) was
used to evaluate how significantly a feature was associated with
the phenotype (Yoon and Chung, 2013). The classic T-test was
also chosen to rank the features by their association significance
with the phenotype (Kim, 2015;Ye et al., 2017).

The Recursive Feature Elimination (RFE) strategy was
evaluated based on three different algorithms. The Support
Vector Machine (SVM) was frequently used to facilitate the
procedure of recursive feature elimination and denoted as
rfeSVM (Xu et al., 2018). The L1 regularization was known as
the least absolute shrinkage and selection operator and generated
weights for each chosen feature (Guyon and Elisseeff, 2003).
The RFE procedure based on Lasso was denoted as rfeLasso
(Sfakianakis et al., 2014). The logistic regression (LR) model was
also used to calculate how the features were eliminated by their
weights (Pandey et al., 2018).

TriVote (Tri-Step Feature Voting algorithm) was recently
proposed to perform very well on both transcriptomic and
methylomic data and evaluated on the datasets in this study
(Xu et al., 2018).

Classification Algorithms
Classification algorithms may achieve drastically different
performances on the same dataset (Ge et al., 2016; Liu et al.,
2017; Xu et al., 2018). As a result, in this study, we chose
three representative classification algorithms to evaluate the
classification performance of a given feature subset, i.e., Logistic
Regression (LR), Support Vector Machine (SVM) and Gaussian
Naïve Bayes (GaussianNBayes).

Logistic regression calculated the probability of a binary
response for a given dataset (Menard, 2018). SVM optimized
the maximal separation margin of a discrimination hyperplane
between the groups of positive and negative samples, and
the discrimination hyperplane tended to have a good binary
classification performance (Suthaharan, 2016). The Gaussian
Naïve Bayes (GaussianNBayes) assumed the inter-feature
independence and calculated the probability that a given query
sample belonged to a class (Bouckaert, 2004).

Ten-fold cross-validation was utilized to calculate the binary
classification performances (Ren et al., 2018).

Performance Measurements
A binary classification problem was usually evaluated by
the performance metrics accuracy (Acc), sensitivity (Sn), and
specificity (Sp) (Xu et al., 2017; Ye et al., 2017). There were two
classes of samples in a binary classification problem, denoted
as Positive and Negative ones, respectively. There were P and
N samples in the classes of Positive and Negative samples.
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Sensitivity (Sn) was defined as the percentage of correctly
predicted positive samples, i.e., Sn = TP/P, where TP (True
Positive) was the number of correctly predicted positive samples,
and FN (False Negative) was defined as FN = P−TP. The
measurement Specificity (Sp) was defined as the percentage of
correctly predicted negative samples, i.e., Sp = TN/N, and the
number of false positive samples (FP) was defined as FP = N−TN.
The overall accuracy was Acc = (TP+ TN)/(P+ N).

The balanced accuracy [bAcc = (Sn + Sp)/2] was
usually utilized to evaluate the classification model without
generating bias for a dataset with significantly different
numbers of positive and negative samples (Feng et al., 2018).
Matthew’s correlation coefficient (MCC) was defined as
MCC = (TP × TN−FP × FN)/sqrt[(TP + FP) × (TP + FN) ×
(TN + FP) × (TN + FN)], where sqrt() is the squared root (Xu
et al., 2018; Zhang et al., 2018; Zhao et al., 2018).

Experimental Design
This study modeled the early detection of breast cancer as a
binary classification problem, due to the fact that there were
much fewer samples in stage IV than the other three stages.
A binary classification problem was defined as a discrimination
function to separate samples between stages I/II and III/IV.
The investigations in this study were planned as shown in the
outline in Figure 1.

First, a given dataset was screened by variance, which was
defined as the average of the squared deviations from the mean
in the Python numpy.var(). This study supposed that an OMIC-
feature with a large standard deviation may be clinically detected
more easily. Thus, this step kept 10,000 features with the largest
standard deviations for further biomarker screening.

Then, the dataset was screened by one of the three algorithms
(F-test, PCC, and T-test) for the associations of each feature
with the class label. The top 1000 ranked features were kept for
further analysis. Iteratively, the remaining dataset was evaluated
by one of the recursive feature elimination algorithms (rfeSVM,
rfeLasso, and rfeLR), and the feature with the smallest weight
was removed from the dataset while the remaining dataset was
processed repeatedly. This study decided that the numbers of
features would be between 10 and 100 with a step size of 5.

RESULTS AND DISCUSSION

Data Preprocessing
First of all, we need to rule out the hypothesis that the sample
age was correlated with the tumor stages. The Pearson correlation
coefficient (PCC) (Mpairaktaris et al., 2017; Zhang et al., 2017)
between the sample age and the tumor stage was −0.0221 with
P-value = 0.6206 for the transcriptome samples. The methylome
samples had PCC = −0.0223 with P-value = 0.5377 between the
sample age and the tumor stage. The hypothesis was rejected for
both the transcriptome and methylome samples. The maximal
information coefficient (MIC) is very sensitive in detecting weak
or non-linear correlations (Reshef et al., 2011) and has been
widely used in feature selection (Ge et al., 2016) and inter-gene
synergy (Xing et al., 2017), etc. The MIC value was in the range
[0, 1] and a larger MIC value means a higher correlation between
the two variables. The MIC values between age and tumor
stage were 0.0591 and 0.0490 for transcriptome and methylome
samples, respectively. These two MIC values were similar to that
of the random correlations, as described in Reshef et al. (2011).

FIGURE 1 | Experimental design of this study. Pairs of three filters and three RFE feature selection algorithms were evaluated for their binary classification
performances on the datasets with different age groups. Three binary classifiers were utilized to calculate the classification performances.
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As a result, both PCC and MIC correlation measurements
rejected the hypothesis that the sample age was correlated with
the tumor stages.

Among the 502 transcriptomic samples in the TCGA-BRCA
project, there were 121 and 381 samples in the early stages (I
and II) and late stages (III and IV), respectively. This dataset was

denoted as RNA(1). The early-stage patients were regarded as the
negative class, and the late-stage ones were the positive class.

Each class of samples was split into two or three bins
with equally-sized sample age ranges, as illustrated in Table 1.
The minimum age of samples with either transcriptome or
methylome was 26, and the maximum age was 90. We used the

TABLE 1 | Samples with transcriptomes (RNA) and methylomes (Methy) were grouped using the same age bins.

Age thresholds [20, 55) [55, 90]

k = 2 RNA P 51 70

N 153 228

Methy P 93 114

N 222 336

Age thresholds [20, 44) [44, 67) [67, 90]

k = 3 RNA P 21 71 29

N 56 227 98

Methy P 31 121 55

N 67 345 146

Samples in the early stages (I and II) were denoted as positives, and the other samples in the late stages (III and IV) were the negatives.

FIGURE 2 | Classification performances of rfeSVM screening of top-ranked 1000 features by T-test. The accuracy was calculated by the 10-fold cross validation of
three classifiers, i.e., LR, SVM, GaussianNBayes. The horizontal axis was the number of features screened by rfeSVM, and the vertical axis was accuracy. The plots
were for the datasets (A) RNA(1), (B) RNA(2)(0), (C) RNA(2)(1), (D) RNA(3)(0), (E) RNA(3)(1), and (F) RNA(3)(2).

TABLE 2 | The number of times each classifier achieved the best accuracy for the RFE-screened features of a given dataset.

rfeSVM LR SVM GaussianNB rfeLasso LR SVM GaussianNB rfeLR LR SVM GaussianNB

RNA(1) 6 13 0 RNA(1) 8 11 0 RNA(1) 10 9 0

RNA(2)(0) 3 16 0 RNA(2)(0) 16 2 1 RNA(2)(0) 13 6 0

RNA(2)(1) 10 9 0 RNA(2)(1) 7 11 1 RNA(2)(1) 10 9 0

RNA(3)(0) 4 15 0 RNA(3)(0) 10 9 0 RNA(3)(0) 11 8 0

RNA(3)(1) 6 13 0 RNA(3)(1) 15 4 0 RNA(3)(1) 11 8 0

RNA(3)(2) 10 9 0 RNA(3)(2) 12 7 0 RNA(3)(2) 10 8 1

Total 39 75 0 Total 68 44 2 Total 65 48 1

There were 19 feature subsets screened by rfeSVM/rfeLasso/rfeLR, with the numbers of features 10, 15, 20, . . ., 100.

Frontiers in Genetics | www.frontiersin.org 4 March 2019 | Volume 10 | Article 212

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00212 March 22, 2019 Time: 17:59 # 5

Feng et al. Age Improves Transcriptomic/Methylomic Biomarkers

TABLE 3 | Summary of whether each classifier achieved the best classification
accuracy on the 19 feature subsets of each dataset.

Dataset RFE MaxAcc Classifiers

RNA(1) rfeSVM 0.9183 SVM

RNA(1) rfeLasso 0.7669 LR

RNA(1) rfeLR 0.8725 SVM

RNA(2)(0) rfeSVM 0.9951 SVM

RNA(2)(0) rfeLasso 0.8284 SVM

RNA(2)(0) rfeLR 0.9363 LR, SVM

RNA(2)(1) rfeSVM 0.9732 LR

RNA(2)(1) rfeLasso 0.7718 LR

RNA(2)(1) rfeLR 0.9094 SVM

RNA(3)(0) rfeSVM 1.0000 SVM

RNA(3)(0) rfeLasso 0.8961 SVM

RNA(3)(0) rfeLR 0.9740 LR, SVM

RNA(3)(1) rfeSVM 0.9732 LR

RNA(3)(1) rfeLasso 0.7819 LR

RNA(3)(1) rfeLR 0.9228 SVM

RNA(3)(2) rfeSVM 1.0000 LR, SVM

RNA(3)(2) rfeLasso 0.9055 LR

RNA(3)(2) rfeLR 0.9685 SVM

Column “MaxAcc” provides the maximal accuracy achieved by the three classifiers
on the 19 feature subsets screened by the RFE algorithm given in the Column
“RFE”. The column “Classifiers” provides the algorithms achieving the maximal
accuracy in the column “MaxAcc.” More than one classifier may achieve the
same best accuracy. Best model of each dataset was illustrated in bold.

upper integers of (20 + 70 × i/k) as the thresholds. The age bins
for k = 2 were [20, 55) and [55, 90], while the age bins for k = 3
were [20, 44), [44, 67), and [67, 90].

The 121 negative samples were split into two groups with
51 and 70 samples. Moreover, the two groups of positive
samples had 153 and 228 members. This dataset was denoted
as RNA(2). The two pairs of negative and positive groups
were denoted as RNA(2)(0) and RNA(2)(1). The dataset

TABLE 4 | Summary of whether each classifier achieved the best classification
accuracy on the 19 feature subsets of each dataset.

Dataset FS MaxAcc Classifiers

RNA(1) T-test 0.9183 SVM

RNA(1) F-test 0.9422 SVM

RNA(1) PCC 0.9223 SVM

RNA(2)(0) T-test 0.9951 SVM

RNA(2)(0) F-test 1.0000 LR, SVM

RNA(2)(0) PCC 0.9951 SVM

RNA(2)(1) T-test 0.9732 LR

RNA(2)(1) F-test 0.9966 SVM

RNA(2)(1) PCC 0.9765 SVM

RNA(3)(0) T-test 1.0000 SVM

RNA(3)(0) F-test 1.0000 LR, SVM

RNA(3)(0) PCC 1.0000 SVM

RNA(3)(1) T-test 0.9732 LR

RNA(3)(1) F-test 1.0000 SVM

RNA(3)(1) PCC 0.9765 SVM

RNA(3)(2) T-test 1.0000 LR, SVM

RNA(3)(2) F-test 1.0000 LR, SVM

RNA(3)(2) PCC 1.0000 SVM

Column “MaxAcc” provides the maximal accuracy achieved by the three classifiers
on the 19 feature subsets screened by rfeSVM. The initial subset of 1000 features
was ranked by the algorithm given in the Column “FS.” The column “Classifiers”
provides the algorithms achieving the maximal accuracy in the column “MaxAcc.”
More than one classifier may achieve the same best accuracy. Best model of each
dataset was illustrated in bold.

RNA(1) was also split into three bins with equally-sized
sample age ranges, which was denoted as RNA(3). The three
groups of negative samples in RNA(3) had 21, 71 and 29
members, respectively, and the positive class was split into
three groups with 56, 227 and 98 members. The three pairs
of negative and positive groups were denoted as RNA(3)(0),
RNA(3)(1) and RNA(3)(2).

FIGURE 3 | Comparison of early-stage breast cancer detection models with different age groups based on transcriptome data. The patients were split into (A) two
groups and (B) three groups with equally-sized age ranges. The horizontal axis shows the numbers of features chosen by rfeSVM and the vertical axis shows the
10-fold cross validation accuracy of the classifier SVM. F-test was used to generate the initial subset of the 1000 top-ranked features.
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FIGURE 4 | Comparison of early-stage breast cancer detection models with different age groups based on methylome data. The patients were split into (A) two
groups and (B) three groups with equally-sized age ranges. The horizontal axis depicts the numbers of features chosen by rfeSVM and the vertical axis depicts the
10-fold cross-validation accuracy of the classifier SVM. F-test was used to generate the initial subset of the 1000 top-ranked features.

FIGURE 5 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data. Transcriptomes
of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The methylomes were split into (C) two groups and (D) three
groups in the same way. The horizontal axis shows the numbers of features chosen by TriVote and the vertical axis shows the 10-fold cross-validation accuracy of
the classifier SVM. F-test was used to generate the initial subset of the 1000 top-ranked features.
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The 765 methylomic samples had 207 early-stage and 558 late-
stage samples and were denoted as the dataset Methy(1). The two
classes in Methy(1) were split into two bins with equally-sized
sample age ranges, which was denoted as the dataset Methy(2).
There were 93 and 114 members in the two negative groups. The
sizes of the two positive groups were 222 and 336. Thus, we had
two pairs of negative and positive groups, denoted as Methy(2)(0)
and Methy(2)(1). The dataset Methy(3) was constructed by
splitting the two classes of samples in Methy(1) into three bins
with equally-sized sample age ranges. There were 31, 121 and
55 members in the three negative groups. The sizes of the three
positive groups were 67, 345 and 146. The three pairs of negative
and positive groups Methy(3)(0), Methy(3)(1) and Methy(3)(2)
refer to the three split datasets.

The 17,814 features were first reduced to the 10,000 with
the largest variance, as described in the Section “Materials
and Methods.”

An Initial Investigation of
T–Test-Selected Features on
Transcriptomes
The T-test was widely used to evaluate how significantly a
feature was associated with the phenotype for various biomedical

data types, including transcriptome (Ye et al., 2017), methylome
(Aref-Eshghi et al., 2015), imaging data (Beheshti et al., 2016),
etc. As described in the above Section “Materials and Methods,”
the top 1000 features ranked by the T-test were further screened
by the three RFE algorithms, i.e., rfeSVM, rfeLasso, and rfeLR.

Figure 2 demonstrated that the classifier GaussianNBayes did
not perform very well on the features screened by rfeSVM. For
the first dataset of 10 rfeSVM-screened features, GaussianNBayes
(Acc = 0.7629) performed slightly worse than the other two
classifiers LR (Acc = 0.7849) and SVM (Acc = 0.7769).
When more features were chosen by rfeSVM, GaussianNBayes
performed even worse classification. It is interesting to observe
that LR and SVM seemed to have performed similarly well. As
a result, we generated a more precise summary of how the three
classifiers performed, as shown in Table 2. The data suggested
that SVM achieved maximal accuracy in 75 cases while LR
achieved the same in 39 cases. Unfortunately, GaussianNBayes
did not achieve maximal accuracy at any point.

Table 2 also suggested that GaussianNBayes outperformed the
other two classifiers SVM and LR only on very few feature subsets
screened by rfeSVM/rfeLasso/rfeLR. For most of the feature
subsets chosen by the three RFE algorithms, the two classifiers
SVM and LR performed similarly well. We further generated
another summary table to demonstrate whether each of the three

FIGURE 6 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data. Transcriptomes
of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The methylomes were split into (C) two groups and (D) three
groups in the same way. The horizontal axis shows the numbers of features chosen by TriVote and the vertical axis shows the 10-fold cross-validation accuracy of
the classifier RFC. F-test was used to generate the initial subset of the 1000 top-ranked features.
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classifiers achieved the best accuracy across the 19 feature subsets
of each dataset, as shown in Table 3. We may observe that the
best classifier was usually SVM or LR, and sometimes these two
classifiers performed the same best accuracy. Moreover, for all
six datasets, rfeSVM outperformed the other two RFE feature
selection algorithms. As a result, the following sections would use
rfeSVM as the RFE screening choice.

Comparison of T-Test, F-Test, and PCC
for Association Evaluation
A comparison was carried out to evaluate whether the choice of
the top 1000 features was important for the binary classification
problem of early-stage breast cancer detection, as shown in
Table 4. The pair comprised of the feature selection algorithm
F-test and the classifier SVM achieved the best accuracies for all
six datasets. The classifier LR also achieved the same best accuracy
for the three datasets RNA(2)(0), RNA(3)(0), and RNA(3)(2).
Thus, the default modeling procedure in the following sections
started with the top 1000 features ranked by F-test. Then, rfeSVM
was utilized to find the number of features with the best accuracy
calculated by the 10-fold cross-validation of the classifier SVM.

Age Grouping for Transcriptomes
We first split the negative and positive samples into two equally-
sized groups, as shown in Figure 3A. The SVM models trained

over RNA(2)(0) and RNA(2)(1) were much better than that
on the whole dataset RNA(1). The averaged improvement in
accuracy was 0.0900 for the dataset RNA(2)(0) compared to
RNA(1). The model accuracy of RNA(2)(1) was also improved by
0.0654 in accuracy on average. If we chose the best model of each
dataset as the final result, both RNA(2)(0) and RNA(2)(1) were
improved at least 0.0544 in accuracy compared against RNA(1).
The best model of RNA(1) used 100 features to achieve 0.9422 in
accuracy, while only 40 features were needed for both RNA(2)(0)
and RNA(2)(1) to outperform this model.

Similar results were observed for the experiment of splitting
RNA(1) into three equally-sized groups of samples, as shown
in Figure 2B. The averaged improvements in accuracy were
0.1078, 0.0673, and 0.1086 for the three datasets RNA(3)(0),
RNA(3)(1), and RNA(3)(2). A minimum 0.0578 improvement
in accuracy was achieved for all three datasets compared with
the best model of RNA(1). Only 50 features were required for
the three datasets RNA(3)(0), RNA(3)(1), and RNA(3)(2) to
outperform the complete dataset RNA(1) (0.9422 in accuracy
with 100 features).

Age Grouping for Methylomes
The same default classification procedure on the datasets
with smaller age groups outperformed that of the complete
dataset Methy(1), as shown in Figure 4. A minimum 0.0524

FIGURE 7 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data. Transcriptomes
of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The methylomes were split into (C) two groups and (D) three
groups in the same way. The horizontal axis shows the numbers of features chosen by TriVote and the vertical axis shows the 10-fold cross-validation accuracy of
the classifier XGB. F-test was used to generate the initial subset of the 1000 top-ranked features.
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FIGURE 8 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data using the
classifier SVM on the training datasets. Transcriptomes of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The
methylomes were split into (C) two groups and (D) three groups in the same way. The horizontal axis shows the numbers of features chosen by rfeSVM and the
vertical axis shows the 10-fold cross-validation accuracy of the classifier SVM. F-test was used to generate the initial subset of 1000 top-ranked features.

FIGURE 9 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data using the
classifier SVM on the independent test datasets. Transcriptomes of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges.
The methylomes were split into (C) two groups and (D) three groups in the same way. The horizontal axis shows the numbers of features chosen by rfeSVM, and the
vertical axis shows the accuracy of the classifier SVM on the independent test dataset. F-test was used to generate the initial subset of 1000 top-ranked features.
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FIGURE 10 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data using the
classifier SVM on the dataset TCGA-HNSC. Transcriptomes of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The
methylomes were split into (C) two groups and (D) three groups in the same way. The horizontal axis shows the numbers of features chosen by rfeSVM and the
vertical axis shows the 10-fold cross-validation accuracy of the classifier SVM on the independent test dataset. F-test was used to generate the initial subset of the
1000 top-ranked features.

improvement in accuracy was achieved against the complete
dataset Methy(1), if the dataset was split into two groups with
equally-sized age ranges. The best model for Methy(1) achieved
0.8745 in accuracy with 100 features, while the classifier SVM
achieved 0.9910 and 0.9353 in accuracy for the two datasets
with smaller age groups, i.e., Methy(2)(0) and Methy(2)(1). Even
better improvements were achieved for datasets with smaller
age groups. The classifier SVM achieved 1.0000, 0.9958, and
1.0000 in accuracies for the three smaller datasets Methy(3)(0),
Methy(3)(1), and Methy(3)(2), respectively. Only 40 features
were needed by these three datasets to outperform that of the
complete dataset Methy(1).

TriVote Selected Features for Both
Transcriptomes and Methylomes
A comparison between different age groups was also conducted
using a recently published feature selection algorithm, TriVote
(Xu et al., 2018), as shown in Figure 5. TriVote selected
features with very good accuracies on both transcriptomes and
methylomes calculated by the best classifier SVM, mentioned
above. We have a similar pattern in that a biomedical
classification problem may be improved simply by splitting

the samples into multiple groups with equally-sized age
ranges. The best model on the dataset RNA(1) with the
accuracy 0.9223 was achieved by 95 features, as shown in
Figure 5, while the two smaller groups RNA(2)(0) and
RNA(2)(1) achieved their best accuracies, 0.9412 and 0.9664,
with only 35 and 65 features, respectively. Moreover, the
best models of both datasets outperformed the best model
of RNA(1), with at least 0.0508 in accuracy. An average
improvement of 0.0676 was achieved by merely splitting
the dataset RNA(1) into three smaller groups with equally-
sized age ranges.

Similar patterns were also observed on the TriVote-selected
feature subsets, as shown in Figures 5C,D. TriVote achieved
average accuracy improvements of 0.0607 and 0.0965 for the cases
of two and three groups with equally-sized age ranges.

We further evaluated our hypothesis using two more
classifiers, Random Forest Classifier (RFC) (Pal, 2005; Gislason
et al., 2006) (Figure 6) and XG boost (XGB) (Chen and Guestrin,
2016) (Figure 7). A similar pattern was observed, but RFC
achieved weaker improvements in Acc, as shown in Figure 6.
RFC also did not achieve Acc higher than 0.8500. Even weaker
improvements in Acc were performed by the age-specific models
trained by the classifier XGB, as shown in Figure 7. For example,
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only 0.0123 and 0.0294 in Acc improvements were achieved by
the age-specific XGB models.

SVM Models on the Independent Test
Datasets Using the Features Selected by
F-Test and rfeSVM
This section covers the investigation of the best algorithms on
the independent test sets. Features selected by F-test and rfeSVM
tended to achieve the best performances, as demonstrated in
Figures 3–5. Table 4 suggests that the classifier SVM usually
achieved the best classification accuracies. A stratified splitting
strategy was used to get 10% of samples as an independent
test dataset, which was used for evaluating the model trained
over the other samples. The classification performances were
iteratively calculated over the next 10% of samples to ensure that
all samples were tested.

Figure 8 demonstrates that the age-specific models
outperformed the age-dependent models for both transcriptomes
and methylomes on the total dataset, while Figure 9 suggests that
a similar relationship was observed between the age-independent
models and the age-specific models.

Comparison of Age-Independent and
Age-Specific Models on the Head-Neck
Squamous Cell Carcinoma (HNSC)
Samples
We further analyzed the TCGA-HNSC (Head-Neck Squamous
Cell Carcinoma) dataset for our hypothesis to see whether the
age-specific models outperformed the age-independent ones,
as shown in Figure 10. The analysis procedure with the best
performance was utilized for the TCGA-HNSC dataset, i.e., the
SVM classifier on the F-test+ rfeSVM feature selection duet.

The age-independent model in the solid lines in Figure 10
demonstrated very good accuracies (Acc = 0.9223 for
transcriptome and Acc = 0.8758 for methylome). However, at
least a 0.05 improvement in Acc may be achieved by building
two age-specific transcriptome models, as in Figure 10A. The
averaged improvement 0.0676 in Acc may be achieved if the
transcriptome dataset is split into three age groups, as in
Figure 10B. The classification accuracy of the age-independent
methylome model may be improved by 0.0607 and 0.0965 on
average for the two-group and three-group age-specific models,
respectively (Figures 10C,D).

CONCLUSION

This study carried out a series of extensive modeling experiments
and demonstrated that age was an essential factor in selecting
biomarkers. A biomarker-based disease diagnosis model may

be improved by simply splitting the samples into multiple
groups with smaller age ranges. SVM achieved the largest Acc
improvements compared with the other classification algorithms.
It should be further investigated how age could be directly
integrated into the biomarker selection and diagnosis modeling.

We have tried to investigate the discrimination model
between cancer and control samples. Unfortunately, there only 1
transcriptome and 6 methylome control samples contained both
stage and age data, respectively. These sample numbers were
much fewer than those of the cancer samples. We regret that we
did not find the dataset to compare cancer and normal samples
with our proposed age-specific models.
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