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Classification of DNA sequences is an important issue in the bioinformatics study, yet

most existing methods for phylogenetic analysis including Multiple Sequence Alignment

(MSA) are time-consuming and computationally expensive. The alignment-free methods

are popular nowadays, whereas the manual intervention in those methods usually

decreases the accuracy. Also, the interactions among nucleotides are neglected in most

methods. Here we propose a new Accumulated Natural Vector (ANV) method which

represents each DNA sequence by a point in R
18. By calculating the Accumulated

Indicator Functions of nucleotides, we can further find an Accumulated Natural Vector

for each sequence. This new Accumulated Natural Vector not only can capture the

distribution of each nucleotide, but also provide the covariance among nucleotides. Thus

global comparison of DNA sequences or genomes can be done easily in R
18. The tests of

ANV of datasets of different sizes and types have proved the accuracy and time-efficiency

of the new proposed ANV method.

Keywords: accumulated natural vector, phylogenetic analysis, alignment-free, inter-nucleotide covariance,

genomes

INTRODUCTION

With the rapid development of Next Generation Sequencing technology, more and more
information of the genome sequences is available. Studying sequence similarity is a crucial question
in research and can explain phylogenetic relationships by constructing trees. One of the most
commonly used methods, Multiple Sequence Alignment (MSA) uses dynamic programming, a
regression technique that finds an optimal alignment by assigning scores to different possible
alignments and taking the one with the highest score (Yu et al., 2013a). However, the computational
cost of MSA is extremely high and MSA may not produce accurate phylogeny for diverse systems
of different families of RNA viruses (Yu et al., 2013b). Alignment-free approaches have been
developed to overcome those limitations. Published alignment-free methods include Markov chain
models (Apostolico and Denas, 2008), chaos theory (Hatje and Kollmar, 2012), and some other
methods based on the statistics of oligomer frequency and associated with a fixed length segment,
known as k-mer (Sims et al., 2009). Yau and his team proposed the natural vector method, which
takes the position of each nucleotide into consideration. The natural vector method performs well
on many datasets (Deng et al., 2011; Yu et al., 2013b; Hoang et al., 2016; Li et al., 2016), however,
it only considers the number, average position and dispersion of positions of each nucleotide.
Relationships between nucleotides are also important, especially when the functions may be related
to interactions of nucleotides, such as the folding of a chromosome. In this paper, we propose a new
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Accumulated Natural Vector (ANV) method, which not only
considers the basic property of each nucleotide, but also the
covariance between them. In the traditional Natural Vector
(NV) method, each sequence is uniquely represented by a single
point in R

12. The traditional Natural Vector approach is firstly
introduced in Deng et al. (2011): for a sequence of length
N, nα (αǫ{A,C,T,G}) denotes the number of nucleotide α in
the sequence. s [α] [v] is the distance from the first nucleotide
(regarded as origin) to the vth nucleotide α in the DNA sequence.
Tα =

∑nα

v=1 s [α] [v] denotes the total distance of each set of

A,C,G,T from the origin, αǫ{A,C,T,G}. µα = Tα

nα
, is the mean

value of the distances of nucleotide α from the origin. Dα
2 =

∑nα

v=1
(s[α][v]−µα)

2

nα×N , is the normalized central moment of order
2, which can also be seen as the variance of the positions of
nucleotide α. Therefore, a DNA sequence can be represented by
a 12-dim vector:

(nA, nC, nG, nT ,µA,µc,µG,µT ,D
A
2 ,D

C
2 ,D

G
2 ,D

T
2 )

In this paper, we propose an Accumulated Natural Vector
approach, which projects each sequence into a point in R

18,
where the additional six dimensions describe the covariance
between nucleotides. Obviously, ANV can provide more
information than the traditional NVmethod, and doesn’t include
the human intervention, such as choosing the optimal value of
k in the k-mer method. Therefore, it can distinguish different
sequences and classify species into correct clusters with higher
accuracy and less time cost.

MATERIALS AND METHODS

Materials
The following six datasets were used to validate the method.
The Coronaviruses dataset includes 36 viral genomes, in which
34 viruses are from the exact same dataset with (Woo et al.,
2005; Yu et al., 2010; Hoang et al., 2015) and the other two
viruses are new members in Coronavirus. The second dataset
consists of the genomes of 38 Influenza A viruses, which is a
classic dataset to test if a new proposed method performs well.
The third dataset includes 72 viruses from Zheng et al. (2015),
which focuses on the classification of Ebolaviruses. The fourth
one is from our colleagues’ previous paper (Li et al., 2016)
which includes 351 viruses chosen randomly under some criteria.
The fifth one is the mitochondrial genomes of 31 mammals,
which can be clustered into seven well-known categories.
All the sequence materials can be found on NCBI with the
reference number provided in the Appendices.We also generated
different mutations by simulation in a DNA sequence and
constructed phylogenetic trees of simulated sequences to test our
ANV method.

All computations in this paper are done on a Dell laptop
equipped with Intel i7 Processor under Windows 10 Home
Premium with 8 GB RAM, together with the Matlab (version
R2017a) and Mega X.

Methods
Indicator Function
For a given genomic sequence, we first define four
Indicator Functions (u) for Adenine, Cytosine, Guanine
and Thymine, respectively:

uα (i) =

{

1, if α appears at the ith position of the sequence

0, if α doesn′t appear at the ith position of the sequence
(1)

where αǫ{A,C,T,G}, and i = 1, 2, . . . , N. HereN is the length of
the whole sequence.

For example, if the genomic sequence is “ATCTAGCT,” then
the four Indicator Functions are shown in Table 1.

Here are some simple properties about the
Indicator Functions:

1. Each column has the sum of 1.

∑

α∈{A,C,G,T}
uα (i) = 1, for i = 1, 2, . . . , N (2)

2. Each row has the sum of the number of
corresponding nucleotide.

nα =
∑N

i= 1
uα(i),α ∈ {A,C,G,T} (3)

Accumulated Indicator Function
Now we define four Accumulated Indicator Functions as
the following:

ũα (N) =
∑N

i= 1
uα (i) (4)

The four Accumulated Indicator Functions for the example above
(“ATCTAGCT”), are shown in Table 2.

Here are some properties about the Accumulated
Indicator Functions:

1. The ith column has the sum of i.

∑

α∈{A,C,G,T}
ũα (i) = i (5)

2. The last column is the total number of the nucleotideα in
the sequence.

TABLE 1 | The Indicator Functions of the sequence “ATCTAGCT”.

Sequence A T C T A G C T

Position(i) 1 2 3 4 5 6 7 8

uA (i) 1 0 0 0 1 0 0 0

uC (i) 0 0 1 0 0 0 1 0

uG (i) 0 0 0 0 0 1 0 0

uT (i) 0 1 0 1 0 0 0 1
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TABLE 2 | The Accumulated Indicator Functions of the sequence “ATCTAGCT.”

Sequence A T C T A G C T

Position(i) 1 2 3 4 5 6 7 8

ũA(i) 1 1 1 1 2 2 2 2

ũC(i) 0 0 1 1 1 1 2 2

ũG(i) 0 0 0 0 0 1 1 1

ũT (i) 0 1 1 2 2 2 2 3

ũα (N) = nα (6)

3.
N∑

i=1
ũα (i) = nα × (N + 1− µα) (7)

µk is the average position in the Natural Vector in
Deng et al. (2011).

Property 1 and 2 can be easily proved by the definition of
Indicator Function (uα) and Accumulated Indicator Function
(ũα), now we prove the Property 3, which builds up the
relationship between the Accumulated Indicator Function and
the average position of a specific nucleotide.

If we assume that the positions of nucleotide α are
t1, t2, . . . , tnα , where nα is the number of nucleotide α in the
sequence, then the basic form of Accumulated Indicator Function
should be, which satisfies 1 ≤ t1 < t2 < . . . < ti−1 < ti < . . . <

tnα ≤ N,

[0, 0, ... , 0,
︸ ︷︷ ︸

t1 − 1

1, 1, ... , 1,
︸ ︷︷ ︸

(t2 − 1) − (t1 − 1)

2, 2, ... , 2, ...

(nα − 1) , (nα − 1) , ... (nα − 1)
︸ ︷︷ ︸

(tnα − 1) − (tnα − 1 − 1)

, nα , ... , nα]
︸ ︷︷ ︸

N− tnα + 1

If we add up those N elements above and denote the sum as �α

and t0 = 0, we have:

�α =

nα∑

i= 1

(ti − ti−1) × (i− 1) +
(

N − tnα + 1
)

× nα

= (t2 − t1) × 1+ (t3 − t2) × 2+ (t4 − t3) × 3+ . . .

+
(

tnα − tnα−1

)

× (nα − 1) +
(

N − tnα + 1
)

× nα

= −t1 − t2 − t3 − . . . − tnα−1 + (nα − 1) × tnα + . . .

+
(

N − tnα + 1
)

× nα

= −t1 − t2 − t3 − . . . − tnα−1 − tnα + (N + 1) × nα

= −nα × µα + (N + 1) × nα (8)

Thus, we have

∑N

i= 1
ũα (i) = nα × (N + 1− µα) (9)

Therefore, we use

ζα =
�α

nα

(10)

to describe the average position of nucleotide α, which indicates
the distance of the average position to the end of the sequence.

Inter-nucleotide Covariance
For two finite point sets with equal number of elements: A =

{a1, a2, . . . , an}, B =
{

b1, b2, . . . , bn
}

in R, which satisfy a1 <

a2 < . . . < an and b1 < b2 < . . . < bn, the covariance of
two sets can be defined as follows:

cov (A, B) =
∑n

i= 1

(ai − uA)× (bi − uB)

an × bn
(11)

where uA =
∑n

i= 1 ai/n and uB =
∑n

i= 1 bi/n.
Now we apply the covariance formula above to the

Accumulated Indicator Functions. A set is a collection of definite,
distinct objects, known as the elements or members of the set.
Now for each nucleotide, we have an array of N elements which
is the Accumulated Indicator Function for the nucleotide α ∈

{A,C,G,T}:

[0, 0, . . . , 0, 1, 1, . . . , 1, 2, 2, . . . , 2, . . . (nα − 1) ,

(nα − 1), . . . , (nα − 1), nα , . . . , nα]

However, those N elements cannot build up a set of N elements
since many of them are replicated. Hence, we extend the
definition of set to a generalized concept, where the elements
in a set can be the same. In this generalized definition, each
nucleotide has a set of N elements and they can be arranged in
the ascending order, i.e., from the smallest to the biggest number.
Thus, we can use the covariance formula (11). As the example
of sequence “ATCTAGCT,” the covariance of nucleotide A and C
can be computed in this way: the generalized set of nucleotide A
is {1,1,1,1,2,2,2,2} and of C is {0,0,1,1,1,1,2,2}. Each generalized
set has N = 8 elements and the generalized covariance would be

θA =
∑N

i= 1
ũA (i) /N =

1+ 1+ 1+ 1+ 2+ 2+ 2+ 2

8
= 1.5(12)

θC =
∑N

i= 1
ũC (i) /N =

0+ 0+ 1+ 1+ 1+ 1+ 2+ 2

8
= 1(13)

cov (A,C) =

N
∑

i= 1

(ũA (i) − θA) × (ũC (i) − θC)

nA × nC

=
1

2× 2
× [(1− 1.5) × (0− 1) + (1− 1.5) × (0− 1)

+ (1− 1.5) × (1− 1) + (1− 1.5) × (1− 1)

+ (2− 1.5) × (1− 1) + (2− 1.5) × (1− 1)

+ (2− 1.5) × (2− 1) + (2− 1.5) × (2− 1)]

=
1

2
(14)

Similarly, we can get cov (A,G), cov (A, T), cov (C,G),
cov (C, T), cov (G, T).

Compatibility of Variance and Covariance
For two nucleotides like α and β , the covariance formula is

cov (α,β) =
∑N

i= 1

(ũα (i) − θα) ×
(

ũβ (i) − θβ

)

nα × nβ

(15)

Then it is obvious that when α = β , the corresponding formula
should be

Dα = cov (α,α) =
∑N

i= 1

(ũα (i) − θα) × (ũα (i) − θα)

nα × nα
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=
∑N

i= 1
(
ũα (i) − θα

nα

)
2

(16)

The formula above defines the variance of the positions of
nucleotide α.

Accumulated Natural Vector
For a given nucleotide sequence, now we can build up its
Accumulated Natural Vector. The first four dimensions describe
the number of each nucleotide, denoted as nA, nC, nG, nT , which
are the last column of the Accumulated Indicator Functions.
The second four dimensions describe the average distance
of nucleotides to the end of the sequence, denoted as ζA =
�A
nA

, ζc =
�C
nC

, ζG =
�G
nG

, ζT =
�T
nT

as formula (10). The third four

dimensions describe the divergence of each nucleotide, denoted

as DA =
∑N

i= 1 ( ũA(i)−θA
nA

)
2
,DC =

∑N
i= 1 ( ũC(i)−θC

nC
)
2
,DG =

∑N
i= 1 ( ũG(i)−θG

nG
)
2
,DT =

∑N
i= 1 ( ũT(i)−θT

nT
)
2
as formula (16).

Please note that this Dα is a little different from the Dα
2 in

the traditional Natural Vector method since the previous
definition of variance cannot be extended to a reliable
definition of covariance. The last six dimensions describe
the covariances between each two nucleotides, denoted as
cov (A,G), cov (A, T), cov (C,G), cov (C, T), cov (G, T) as
formula (15). And the universal form of Accumulated Natural
Vector is

(nA, nC , nG, nT , ζA, ζc, ζG, ζT ,DA,DC ,DG,DT ,

cov (A,C), cov (A,G), cov (A, T), cov (C,G), cov (C, T), cov (G, T))

Euclidean Distances Between Accumulated Natural

Vectors
From section 2.2.1 to section 2.2.5, we introduce how a DNA
sequence is represented by a vector in R

18 space. Therefore,

FIGURE 1 | The phylogenetic UPGMA tree using ANV method on Coronaviruses dataset.
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FIGURE 2 | (A) The phylogenetic UPGMA tree using FFP (k-mer) method when on Coronavirus dataset. (B) The phylogenetic UPGMA tree using MSA (ClustalW)

method on Coronaviruses dataset.

the distance between two sequences can be measured by the
Euclidean distance between two vectors. Suppose that now we
have two sequences in R

w (in our case, w = 18), denoted as
x = (x1, ..., xw) and (y1, ..., yw), the Euclidean distance between
them is

d
(

x, y
)

= (
∑w

i=1
(xi − yi)

2)
1
2 (17)

For a dataset ofm different sequences, we can construct a distance
matrix D = (dij)m×m, and dij(≥ 0) represents the Euclidean
distance between sequence i and sequence j. D is a symmetric
matrix and the diagonal element is zero.

Constructing Phylogenetic Trees and Comparisons
In this research, we use Mega X to build up phylogenetic
trees. In order to eliminate the influences of different
algorithms of constructing trees, we apply the Unweighted
Pair Group Method with Arithmetic Mean (UPGMA)
algorithm (Sneath and Sokal, 1973) for analysis on the
four datasets.

For comparison with other common alignment or alignment-
free method, we also perform k-mer and MSA (ClustalW or
MUSCLE) on the same dataset. The Feature frequency profile
(FFP) (Woo et al., 2005), which is based on k-mer frequency,
calculates the frequency of each k-mer in the sequence and
turns a DNA sequence into a vector in a 4k-dimensional
space. The Euclidean distance between two k-mer vectors can
also be computed by formula (17). We apply MSA method,
ClustalW on several datasets as well, with the default parameters
in Mega X. ClustalW is much slower than another MSA
algorithm, MUSCLE, while ClustalW can give a better result.
MUSCLE is applied on the fourth dataset of 351 viruses

and after we get the alignment result of the viruses, distance
matrix is calculated using Hamming distance, to find the
nearest neighbor of each virus. Hamming distance between
two strings of equal length is the number of positions at
which the corresponding symbols are different. It measures
the minimum number of substitutions required to change
one string into the other or the minimum number of errors
that could have transformed one string into the other. Since
alignment approaches are to arrange the sequences to identify
regions of similarity between the sequences, the alignment
would provide the performance of each sequence on a fixed
number of positions. Therefore, the Hamming distance can be
calculated by simply counting the number of pairwise differences
in character states.

In the simulated dataset, we use the pairwise alignment
distance by the “seqpdist” function inside MATLAB
Bioinformatics toolbox, which uses the Jukes-Cantor algorithms
as the correct tree, since the sequences are simulated according to
a base sequence. Then the distance matrices are compared using
Robinson-Foulds distances, which can measure the congruence
to the reference topology.

RESULTS

We apply the Accumulated Natural Vector method on five
datasets, and compare the results with common methods,
such as MSA, k-mer (FFP) and the traditional Natural Vector
method. From comparison, the results of Accumulated Natural
Vector are more accurate and the calculation cost is very
small compared to others. A dataset of 351 viruses has also
been tested, and laptop cannot bear such a heavy burden of
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FIGURE 3 | The phylogenetic UPGMA tree using ANV method on Influenza A viruses dataset.

calculation of aligning them but alignment-free can still be
done in a reasonable time. We also use a server to align

segments of 351 sequences, to compare the results to ANV
and other methods. ANV also gives the best performance

on this dataset. Besides, we simulate another dataset of 20

sequences from a randomly generated sequence with length
of 1,000bp, and test the phylogenetic trees from this and
other methods.

We have chosen those datasets of different sizes (number of
sequences, and lengths of sequences), which to test if ANV can be
suitable in all cases. Most datasets have been analyzed by previous

researches, therefore we can compare our results to others to
evaluate the performances. Four datasets consist of viruses that
are closely related to human health, and the mammal’s dataset
and simulated dataset show that this method can perform on
other types of sequences as well.

Coronaviruses Dataset
Coronavirus belongs to the subfamily Coronavirinae in the
family Coronaviridae, in the order Nidovirales. In this paper, we
construct a dataset with 36 Coronaviruses, in which 34 viruses are
from the exact same dataset with (Woo et al., 2005; Yu et al., 2010;
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FIGURE 4 | (A) The phylogenetic UPGMA tree using the k-mer (k = 5) method on Influenza A viruses dataset. (B) The phylogenetic UPGMA tree using MSA

(ClustalW) method on Influenza A viruses dataset.

FIGURE 5 | The Natural Graph using ANV method on Influenza A virus dataset.

Hoang et al., 2015). The other two viruses are two new members
in Coronavirus. Details of the Coronaviruses can be found in
Table S1. The new ChinaGD01 (Lu et al., 2015) was identified in

Guangdong Province (China) in 2015 and is an imported Middle
East respiratory syndrome Coronavirus. The other one MERS-
CoV/KOR is from South Korea (Kim et al., 2015). As of 15 June
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FIGURE 6 | (A) The phylogenetic UPGMA tree using ANV method on Ebolaviruses dataset. (B) The phylogenetic UPGMA tree using the traditional Natural Vector (NV)

method on Ebolaviruses dataset.

TABLE 3 | Comparison of ANV and k-mer methods on 351 viruses dataset.

METHOD ANV 6-MER 7-MER 8-MER MSA

(MUSCLE)

Family 94.87% 71.23% 25.36% 16.24% 72.08%

Genus 83.19% 65.24% 21.65% 12.25% 65.53%

Computing Time

(seconds)

2466.73 4179.24 8636.13 24011.70 Unable to

compute on

laptop

2015, the MERS-COV was spreading in South Korea, and the
ChinaGD01 case was a South Korean national who traveled to
Guangdong in May 2015. Therefore, those two members were
considered highly correlated with each other. The genomic size of
Coronaviruses ranges from about 9 to 31 kbp, with the average of
27,567 nucleotides. Using our Accumulated Natural Vector and
UPGMA method (Sneath and Sokal, 1973), we can build up a
phylogenetic tree as shown in Figure 1.

Figure 1 shows that the two new members are clustered
together with Group 4, which is also well-known as SARS (Severe
Acute Respiratory Syndrome). Between November 2002 and July
2003, an outbreak of SARS in southern China caused an eventual
8,098 cases, resulting in 774 deaths reported in 37 countries.
Both MERS-CoV and SARS viruses are beta-Coronaviruses,
however, they belong to different lineages, for more details
please see (Drexler et al., 2013; Hilgenfeld and Peiris, 2013).
The phylogenetic tree indicates that the ChinaGD01 and MERS-
CoV/KOR forms a monophyletic clade, sister to the SARS clade,
which may possibly be a variant from some SARS viruses.

We also performed the same procedure with k-mermethod on
the Coronaviruses dataset. However, how to choose an optimal

k-value is an interesting topic that requires manual intervention.
Sims et al. showed in Woo et al. (2005) that the location of the
peak in the distribution of k-mers, i.e., the k with the largest
vocabulary, is related to the sequence length N. The k with
maximum information is empirically determined but may be
closely approximated by

kHmax = log4N (18)

where 4 is the alphabet size. They have shown in Sims et al. (2009)
that reliable tree topologies are typically obtained with k-mer
resolutions where k > kHmax whereas lengths below kHmax yield
unreliable trees. The upper limit of resolution can be empirically
determined by a criterion that the tree topology for feature length
k is equal to that of k+1, i.e., tree topologies converge.

According to this principle, we have 7 ≤ k ≤ 9. We show
the result of k = 7 in Figure 2A, and the results of k =

8 and k = 9 are in the Figures S1, S2. The four outgroup
viruses cannot be clustered together as another branch from the
tree of Coronaviruses, meanwhile the Group 1 was divided into
smaller groups. The traditional ClustalW algorithm of Multiple
Sequence Alignment (MSA) is also applied on the same dataset,
and the result is shown in Figure 2B. MSA cannot cluster
viruses from same groups together either. From this example,
we can see that our ANV method is better than the k-mer and
MSA method.

Influenza A viruses
Influenza A viruses are single-stranded RNA viruses, which
have been a major health threat to both human society and
animals (Hoang et al., 2015). Influenza A viruses’ nomenclature
is based on the surface glycoproteins: hemagglutinin (HA) and
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FIGURE 7 | (A) The phylogenetic UPGMA tree using ANV method on mammals mtDNA dataset. (B) The phylogenetic UPGMA tree using FFP (k-mer) method when

K = 8 on mammals mtDNA dataset.

neuraminidase (NA) (Obenauer et al., 2006). HA has 15 subtypes
and NA has 9 subtypes, which forms 135 different combinations.
The NCBI number of the analyzed 38 Influenza A viruses can
be found in Table S2. Our result agrees with previous work by
Hoang et al. (2015). Furthermore, we find that all the Influenza
A viruses are clustered with the same H and N type in Figure 3,
with only one exception of A/turkey/Minnesota/1/1988(H7N9).
There is no specific research about this virus and we infer
that it may be the intermediate from H7N3 to H7N9. H7N3
had an outbreak in July 2012, causing millions of poultry’s
infection, but there is no report of infection from human
to human yet. However, H7N9 was identified in Shanghai,
China at the end of March 2013. Considering that the HA
glycoprotein of those two subtypes are the same and the close
outbreak date, we indicate that the H7N9 on March 2013
might be a variant from H7N3, and A/turkey/Minnesota/1/1988
(H7N9) plays a key role in this variation. We get the same
conclusion in another work as well (Dong et al., 2018).
More biological research on this virus should be done to
deepen our understanding of Influenza A viruses to accelerate
the invention of an effective vaccine and to prevent more
dangerous variants.

The k-mer method and MSA are also performed on this
dataset as shown in Figures 4A,B. The k-value is determined
in the same procedure as in the Coronaviruses dataset as 5.
In Figure 4A, the viruses from H1N1 and H5N1 are mixed
up together with each other, while MSA has a worse result in
Figure 4B. The results also indicate that k-mer and MSA cannot
reveal the real relationships among the viruses.

To get a direct image of the relationships between Influenza
A viruses, we draw the Natural Graph of them. Natural Graph
was first introduced by Zheng et al. (2015). In Figure 5, the
blue lines represent the 1-level connected components and the
red ones 2-level. Classes are marked in different colors and it is
obvious that after the construction of two levels, the Influenza A
viruses with the same H and N are clustered together, including
the A/turkey/Minnesota/1/1988(H7N9) which is Number 34 in
Figure 3. H7N9 and H7N3 are clustered together in Level 2,
indicating that they have a closer relationship, which accords with
our previous conjecture.

72 Ebolaviruses Dataset
To illustrate that the new proposed ANVmethod is an important
improvement of the traditional Natural Vector method, a 72
Ebolaviruses dataset is tested, which is a subset of the 163
viruses used in Zheng et al. (2015). It consists of 38 Ebola
virus (EBOV), 11 Sudan virus (SUDV), 9 Reston virus (RESTV),
1 Taï Forest virus (TAFV), 6 Bundibugyo virus (BDBV), 6
Marburg virus (MARV) and 1 Lloviuvirus (LLOV). Details of this
dataset are shown in Table S3. In Figure 6A, the phylogenetic
tree shows that from the novel Accumulated Natural Vector
method classifies all viruses into the right groups, however, in
Figure 6B, the traditional Natural Vector method divides EBOV
class into two clusters and SUDV is misclassified with some
EBOV virus. This is an indication that including covariance
between nucleotides helps improve the accuracy of classification.
Hence this is an important improvement to the traditional
Natural Vector and other alignment-free methods.
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351 Viruses Dataset
We also test a large dataset of 351 viruses in Li et al. (2016), and
the details of this dataset can be found in Table S4. The average
length of them is 11,952 nucleotides and it makes alignment
methods on a laptop impossible. Only server or cloud computing
can finish such a task. Here we use 1-Nearest Neighbor (1-NN)
method (Li et al., 2016) to see the accuracy of the prediction. This
evaluation is inspired by the high rate of missing labels in many
databases of viruses. For example, if a virus with missing family
label has been added to the database, and it should share the
same family label with the virus (stored in the database already)
that is closest to it, then we can predict the missing family label
according to the information of its nearest neighbor. Therefore,
for a dataset with no missing labels, we can count how many
viruses share the same label with its neighbor. “Nearest neighbor”
of a specific virus can be defined as the virus that has the smallest
Euclidean distance in the dataset to it for the alignment-free
methods. For alignment results, we use the Hamming distance to
measure the distance between two sequences. If the virus shares
its distance with its neighbor, we consider it as a “correct” one,
since even if its label is missing we can still predict it from its
nearest neighbor. The accuracy can be computed by dividing the
number of correct ones by the number of all viruses, in this case,
by 351.We compare the result of ANV to the k-mermethod since
they are all alignment-free methods, and the results are shown in
Table 3. The optimal choice of k is made by the same procedure
in the other datasets. From Table 3, it is evident that ANV has
much higher accuracy than the k-mer method, meanwhile using
much less time. Thus, we have proved that ANV can apply to
practical use with high time-efficiency and high-accuracy. For the
alignment in this part, we tried to align all the sequences with full
length on our server, but it fails to give a reliable result. Therefore,
we extract 3,000 bp from the beginning and align 351 pieces
of segments all with length of 3,000 bp. The results are shown
in Table 3 as well and the accuracy is still not as good as what
ANV gives.

Mammals
Our Accumulated Natural Vector performs well not only on
virus datasets, but also on other common species. We extract
31 mammalian mitochondrial genomes with the average length
of 16,696 nucleotides, and the NCBI numbers of them can
be found in Table S5. The genomes are from seven known
clusters: Primates, Carnivora, Cetartiodactyla, Perissodactyla,
Eulipotyphla, Lagomorpha, and Rodentia.

The Accumulated Natural Vector method can still distinguish
the differences among the seven clusters, as shown in Figure 7A.
FFP (k-mer) method has also been tested as well (the optimal
k-value for this dataset is 8), as shown in Figure 7B. Since the
species that includes in different paper are not all the same, it
is hard to compare the whole topology of phylogenetic trees,
however, our work still only has a small difference from the
previous work in Murphy et al. (2001) and Tarver et al. (2016).
The difference can be attributed to that mitochondrial genomes
in mammals may not always reflect the organismal evolutionary
history (Morgan et al., 2014), however, it still keeps more
information than k-mer does in Figure 7B, since the distance
within each group is smaller than the distances among groups,

TABLE 4 | Description of DNA sequence mutation in simulated tests.

Sequence Name Description

A_original 200 point mutations from the randomly generated

sequence with length 1,000 bp

A1 2 random nucleotide substitutions in A

A2 2 random nucleotide substitutions in A

A3 5 random nucleotide substitutions in A

A4 5 random nucleotide substitutions in A

A5 10 random nucleotide substitutions in A

A6 10 random nucleotide substitutions in A

B_original 200 point mutations from the randomly generated

sequence with length 1,000 bp (different from A_original)

B1 2 random nucleotide substitutions in B_original

B2 2 random nucleotide substitutions in B_original

B3 5 random nucleotide substitutions in B_original

B4 5 random nucleotide substitutions in B_original

B5 10 random nucleotide substitutions in B_original

B6 10 random nucleotide substitutions in B_original

B7 10 bp Deletion from positions 51:60 in B_original

B8 10 bp Deletion from positions 601:610 in B_original

B9 20 bp Insertion at position 51 in B_original

B10 20 bp Insertion at position 601 in B_original

B11 50 bp Transposition from position 1 to 50 in B_original

B12 100 bp Transposition from position 601 to 700 in

B_original

FIGURE 8 | The phylogenetic UPGMA tree using Jukes-Cantor pairwise

alignment method on simulated dataset.

we can still distinguish clusters based on current dataset. In
Ladoukakis and Zouros (2017), point out that most of the
information researchers gained about the tree of life through the
use of mtDNA remains valid, while we should pay more attention
to its role in the function of the organism and its value as a tool
in the study of major evolutionary novelties in the history of life.
Therefore, the result implies that our ANV method can capture
the key information hidden inside the DNA sequences and gives
us a reliable topology among mammals.
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FIGURE 9 | (A) The phylogenetic UPGMA tree using ANV method on simulated dataset (B) The phylogenetic UPGMA tree using FFP (k-mer) method when K = 4 on

simulated dataset.

TABLE 5 | Robinson-Foulds distances between trees by alignment-free methods

and the reliable alignment tree.

Method Alignment ANV 4-mer 5-mer 6-mer

distance 0 23 27 29 29

Simulated Dataset
To verify is the similarity distance by our method can be used for
clustering DNA sequences effectively, we also generated different
mutations in DNA sequences and constructed phylogenetic trees
by various methods. We simulated a sequence of length 1,000
bp as a base sequence, and generated two new sequences named
“A_original” and “B_original” using point mutations. Both A
and B have 100 nucleotides different from the original sequence.
We then similarly evolved A and B into different mutants by
four different mutations (substitutions, deletion, insertion, and
transposition) as did in Yin et al. (2014). Table 4 is the detailed
description on the simulated DNA sequences with different
mutations. Since the sequences are mutated slightly based on
an exon sequence, we take the aligned result as the “correct”
relationships among the sequences, and the alignment is done
by the “seqpdist” function in MATLAB Bioinformatics toolbox.
This function uses the classical Jukes-Cantor algorithm and we
calculate the pairwise alignment distance. For comparison, we
use the ANV method, FFP method (we test k = 4,5,6 in this
case, since the lengths of sequences are about 1,000 bp). The
UPGMA trees of alignment, ANV and FFP (k=4) methods are
shown in Figures 8, 9A,B separately. Among these trees, it is not
very obvious which one is more similar to the alignment results,
therefore we calculate the Robinson-Foulds distances between
the distance matrix and the “correct” matrix and the results are
shown in Table 5. Here we apply the program named “Robinson-
Foulds” (Robinson and Foulds, 1981) when calculating Table 5.
The simulated dataset is in Table S6. Actually, the differences
among trees mainly lie in the branch of sequences generated
from B, and ANV gives a more similar result, since the order
is slightly disorganized by B5 and the transpositional sequences,

while in Figure 9B, the whole branch of B is different from the
alignment result.

DISCUSSION

In this paper, we propose a novel vector named Accumulated
Natural Vector to analyze sequences, genomes and their
phylogenetic relationships. Results from our analysis largely
agree with the earlier studies, which indicates that our approach
can detect the similarity and difference among sequences.
Therefore, constructing phylogenetic trees only by sequence data
could be done accurately in a very reasonable time, without using
large computing platforms or conducting biological experiments
of high cost. Our method can be applied in a global comparison
of all genomes and provide a new powerful tool by including
the correlations of nucleotides. We are working on extending
the ANV method to protein sequences, nevertheless, for a
protein sequence, it would produce an 1,830-dim vector for each
sequence. The calculation cost for this is too large under the
current technology. The covariance for three amino acids at a
timemay be more reasonable, since three consequent nucleotides
can also become a codon in expression region of a sequence.
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