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FeatSNP is an online tool and a curated database for exploring 81 million common
SNPs’ potential functional impact on the human brain. FeatSNP uses the brain
transcriptomes of the human population to improve functional annotation of human
SNPs by integrating transcription factor binding prediction, public eQTL information, and
brain specific epigenetic landscape, as well as information of Topologically Associating
Domains (TADs). FeatSNP supports both single and batched SNP searching, and
its interactive user interface enables users to explore the functional annotations and
generate publication-quality visualization results. FeatSNP is freely available on the
internet at FeatSNP.org with all major web browsers supported.
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INTRODUCTION

Genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) analyses
have identified thousands of genetic variants that are associated with a wide range of
human phenotypes, shedding lights on the understanding of the genetic effect to human
diseases. However, a key challenge for scientists in the human genetics community is to
understand the molecular mechanism connecting significant genetic variant and specific
phenotype. More than 90% of SNPs associated with human phenotypes are located in non-
protein-coding regions, and cannot be explained by alteration of amino acid sequence of
proteins (Welter et al., 2014). Recently, mounting evidence suggests that disease-associated non-
coding SNPs are highly enriched in tissue-specific regulatory elements including enhancers,
which can be detected and defined by specific chromatin modifications (Carey et al., 2015;

Frontiers in Genetics | www.frontiersin.org 1 April 2019 | Volume 10 | Article 262

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00262
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00262
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00262&domain=pdf&date_stamp=2019-04-02
https://www.frontiersin.org/articles/10.3389/fgene.2019.00262/full
http://loop.frontiersin.org/people/681265/overview
http://loop.frontiersin.org/people/9790/overview
http://loop.frontiersin.org/people/681266/overview
http://loop.frontiersin.org/people/707521/overview
http://loop.frontiersin.org/people/642595/overview
http://featsnp.org
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00262 March 29, 2019 Time: 18:50 # 2

Ma et al. FeatSNP: Database for Epigenetic Annotation of SNPs

Zhou et al., 2015; Agrawal et al., 2018). Moreover, some non-
coding SNPs are found to be located within transcription factor
(TF) binding motifs, which affect the TF binding affinity and
result in allele switching and/or allele-specific regulation of target
genes (Andersson et al., 2014; Roadmap Epigenomics et al., 2015;
Nelson et al., 2016). These evidences underscore the potential
causal role of non-coding genetic variants in affecting human
diseases and phenotypes through regulation of gene expression
(Claussnitzer et al., 2015).

Here we introduce FeatSNP, an online tool and database which
provides an interactive user interface (UI) for inquiring brain-
specific functional and epigenetic annotation of human SNPs.
Unlike traditional SNP functional annotation databases, such
as RegulomeDB (Boyle et al., 2012) and HaploReg (Ward and
Kellis, 2012), FeatSNP focuses on the collection and curation of
brain-specific functional genomics data, including epigenomes,
transcriptomes, and eQTL data, to better annotate the regulatory
potential of single SNP. Specifically, FeatSNP supplies a series of
new features to facilitate research understanding the functional
annotation of SNP on human brain (Supplementary Table S1).
FeatSNP uses human brain transcriptomes to improve and refine
the prediction of allele-specific TF binding motifs. The expression
correlation between SNP-associated gene and predicted SNP-
associated TFs was used to determine the best allele-associated
TF candidate. The interactive UI allows the users easily to browse
functional annotation and generate analysis results and high
quality figures.

METHODS

FeatSNP consists of a front end UI implemented with
HTML/PHP/JavaScript, and a backend NoSQL database
implemented with MongoDB (v3.2.7) as shown in Figure 1. The
current SNP dataset contains 81,144,876 bi-allelic SNPs from

dbSNP (V144), with SNP accession number as unique identifier
in the database. Human dbSNP build 144 was downloaded
from ftp.ncbi.nih.gov/snp, which includes 84,435,229 SNPs
records, 1,591,294 insertions records, 2,595,517 deletions
records, 33,234 indel records, and 110 Multiple Nucleotide
Polymorphisms (MNPs) records. After filtering redundant
records, 81,144,876 of 84,435,229 biallelic SNPs were used
to generate functional annotations and were curated by the
FeatSNP database. The genome coordinates (hg19) of 81,144,876
SNPs were used to associate the SNPs with their nearest genes
based on 56,642 records of GENOCDE gene annotation Release
19 (GRCh37.p13).

To predict impact of allele-specific TF binding affinity by
SNPs, the Position Weight Matrix (PWM) of 519 vertebrate TFs
were collected from JASPAR (Core Vertebrate 2016) (Mathelier
et al., 2016). After evaluating the motif weight PWM of 519 TFs
at base-pair resolution (Supplementary Figure S2), the reference
and alternate alleles for every SNP with flanking 10 bp of genomic
sequences both upstream and downstream were obtained from
the UCSC Genome Browser. FIMO (Grant et al., 2011) was
used to scan the 21 bp sequence to identify binding motifs
matching any of the 519 TF PWMs, and calculate the TFBS
motif scores. Only instances where a motif in the sequence
(i) passed the threshold of P < 1e-2 in either the reference
or the alternate allele, and (ii) contained the SNP location
and (iii) the difference of motif scores between the reference
and the alternate allele was greater than 2, were recorded
in the database.

1,259 transcriptome datasets of 13 brain tissues generated
by the GTEx consortium (Gibson, 2015) were used to calculate
the Pearson correlation between each SNP associated gene and
predicted binding TFs. The lowly expressed gene and TFs
(expression of all samples in one tissue less than 0.2RPKM) were
removed. The correlation and gene expression in 13 brain tissues
were visualized by using JavaScript package Highcharts (v5.0.2).

FIGURE 1 | Analysis flowchart and infrastructure of FeatSNP.
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FIGURE 2 | Information of SNP rs8070723 retrieved from FeatSNP. (A) Genomic information of rs8070723, with external links to NCBI dbSNPs and GWAS Catalog.
(B) DNA sequence around rs8070723. (C) Predicted TFs binding motifs containing rs8070723 with A/G alleles.

eQTL data of 10 brain tissues generated by GTEx consortium
were negative-log10 transformed and further visualized by using
Highcharts (v5.0.2).

Histone modification ChIP-seq data of 10 brain tissues were
downloaded from NIH Roadmap Epigenomics data portal.
Bedtools was used to identify SNPs residing in peaks of 7
histone modification marks (H3K4me3, H3K36me3, H3K27me3,
H3K4me1, H3K27ac, H3K9me3, and H3K9ac) that were
identified by macs2 (Zhang et al., 2008) with default parameters.
To enhance the user experience, the WashU epigenome browser
(Zhou et al., 2015) was embedded in the UI to display
epigenetic landscape in a 200 bp region surrounding each
SNP. The browser also displays DNA methylation data (Whole
Genome Bisulfite Sequencing) of 4 neuronal progenitor and

brain tissues generated by Roadmap Epigenomics Project,
enhanced epilogos visualization1 of all 127 epigenomes, and
topologically associating domains (TAD) data of GM12878,
IMR90, and Hap1 cell lines (Rao et al., 2014; Sanborn et al.,
2015). eQTL data of 10 brain tissues generated by GTEx
consortium were also visualized on the embedded WashU
epigenome browser.

The association records of SNP and human disease/traits
(V1.0.2) were downloaded from GWAS Catalog. 33,894
associations with p-value smaller then 5E-8 were kept and
classified based on 1,374 human disease/traits categories.
The functional annotations of these 33,894 SNPs were

1epilogos.altiusinstitute.org
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FIGURE 3 | Expression information of SNP rs8070723 tagged gene retrieved from FeatSNP. (A). Pearson Correlation Matrix between rs8070723 tagged MAPT and
potential bound TFs. (B). Scatter plot of gene expression of MAPT and PBX1 in anterior cingulate cortex, frontal cortex, and nucleus accumbens.

reported on FeatSNP.org/html_file/disease_classification.html
(Supplementary Figure S3).

RESULTS

To illustrate the use of FeatSNP, we performed the analysis
using rs8070723 as an example. rs8070723 is an intronic A/G
SNP (major allele A frequency 0.881, minor allele G frequency
0.119) in MAPT, the gene that encodes the microtubule-
associated protein tau, and is associated with Progressive
Supranuclear Palsy (Hoglinger et al., 2011) and with Parkinson’s
Disease (UK Parkinson’s Disease Consortium et al., 2011).

To better understand the regulatory potential of this human
disease-associated SNP, we inquired the epigenetic annotation
of rs8070723 in FeatSNP through Single SNP ID Searching
function on SNP Query Page (Supplementary Figure S4). The
database first reported the basic information of SNP rs8070723,
including genomic location, allelic frequency, surrounding DNA
sequence, and associated gene (Figures 2A–C). Users can further
access the genetic information and associated human disease
or traits of inquired SNPs on dbSNP and GWAS Catalog
through external links.

FeatSNP found four potential TF binding motifs harboring
rs8070723 with A allele, including PBX1, Hoxa9, Dux, and EN2.
All four TF binding motifs had high TFBS scores in A allele,
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FIGURE 4 | Epigenetic annotation and eQTL information of SNP rs8070723 tagged genomic loci retrieved from FeatSNP. (A) Clustering visualization of epigenetic
annotation to the genomic loci tagged by SNP rs8070723. (B) WashU EpiGenome Brower view of genomic loci tagged by rs8070723. Top: DNA methylation level of
CpG sites in four neuronal cells. Middle track: Epilogos visualization of chromHMM predicted chromatin status. Followed eQTL tracks: log10 transformed p-value of
eQTL in 10 brain regions. TAD track: Topological Associated Domain tracks of GM12878, IMR90, and Hap1. Bottom: RefSeq gene annotation track. (C) Complete
eQTL information of SNP rs8070723 in 10 brain regions.

and the TFBS motifs were destroyed with G allele with low TFBS
scores (Figure 2C). PBX1 encodes a nuclear protein that belongs
to the PBX homeobox family of transcriptional factors, and
studies suggested PBX1 regulates the patterning of the cerebral
cortex (Golonzhka et al., 2015) and its transcriptional network
controls dopaminergic neuron development in Parkinson’s
disease (Villaescusa et al., 2016). EN2 encodes homeodomain-
containing proteins and has been implicated in the control of
pattern formation during development of the central nervous
system (Genestine et al., 2015). Hoxa9 is an important homeobox
transcription factor and plays important roles in myeloid
leukemogenesis (Siriboonpiputtana et al., 2017). Dux-family
transcription factors were recently identified to regulate zygotic
genome activation in placental mammals (De Iaco et al., 2017).
Thus, PBX1 and EN2 could be the potential master TFs affected
by the SNP rs8070723.

Since FeatSNP curated 1,259 transcriptome data of 13
brain tissues generated by the GTEx consortium (Gibson,
2015), we were able to further check the expression level
of PBX1 and EN2 in multiple brain regions in FeatSNP
database. EN2 was only expressed in the cerebellum of the

brain (Supplementary Figure S1A) and did not correlate with
expression level of MAPT (Figure 3A). We found that PBX1
highly expressed in different brain regions (Supplementary
Figure S1B), and we also found the expression of MAPT
had strong and specific correlation with PBX1 in multiple
brain regions (Figure 3A), especially in anterior cingulate
cortex (r = 0.808), nucleus accumbens (r = 0.768), and
frontal cortex (r = 0.768) (Figure 3B), which were considered
as major affected regions of Progressive Supranuclear Palsy
(Salmon et al., 1997).

We further explored the epigenetic annotation of the
genomic regions tagged by rs8070723 in 10 brain regions by
using epigenome data generated from Roadmap Consortium,
which were also curated in FeatSNP database. We found the
regions tagged by SNP rs8070723 enriched for strong active
histone modification signals including H3K4me1, H3K9ac, and
H3K27ac in 8 brain tissues (Figure 4A). Such active histone
modifications were generally associated with active enhancer
and promoter functions. Chromatin epigenetic status prediction
based on chromHMM (Ernst and Kellis, 2012) suggested that
the regions tagged by SNP rs8070723 could be considered
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as strong enhancers (Figure 4B). Finally, we explored the
eQTL data in 13 brain tissues, and found rs8070723 was
associated with several genes’ expression, including MAPT
(Figures 4B,C). MAPT gene mutations have been associated
with several neurodegenerative disorders such as Alzheimer’s
disease and Parkinson’s disease. Our result suggests that
rs8070723 G allele might influence MAPT expression level by
reducing the binding affinity of upstream regulatory protein
PBX1, therefore providing a mechanistic association with
neurodegenerative diseases including Progressive Supranuclear
Palsy and Parkinson’s Disease.

CONCLUSION

In summary, FeatSNP is an interactive database providing
brain-specific functional genomics resources to investigate the
regulatory potential of human SNPs. This database provides a
multitude types of functional annotations, including TF binding
motif prediction, epigenetic landscape, expression correlation
and eQTL information. We anticipate that this database will
facilitate scientists to investigate the functional impact of their
candidate genetic variants in a more streamlined, rapid, and
efficient fashion.
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