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The concept of biological age has been used more and more frequently in aging
research in attempts to measure the progress of the biological aging process as
opposed to the simple passage of time. Several approaches to quantify biological
age have been utilized, including the use of biomarkers in the form of serum analytes,
epigenetic markers, and deficit or frailty indices. Among these methods, the deficit index
possesses a theoretical basis grounded in systems biology by incorporating networks,
with their emergent properties, to describe the complex aging system. Application of
the deficit index in human aging studies points to the increased energetic demands
posed by an aging system that is losing integration. Different aspects of mitochondrial
function appear to be responsible in males and females. The gut microbiome loses
complexity in tandem with the host, as biological age increases, with likely impact on
host metabolism and immunity. Specific DNA methylation changes are associated with
biological age. They suggest declining connectivity within the aging network, at the
cellular level. The deficit/frailty index may account for at least part of the departure at
older ages of the observed mortality in the population from the exponential increase
modeled by the Gompertz equation.

Keywords: deficit index, frailty index, biological age, complexity, network, gut microbiome, DNA methylation,
healthy aging

INTRODUCTION

Even to the untrained eye it has always been apparent that different people age differently. What
this really means is that the perceived age may vary from the actual chronological age, based on
the usual presentation of individuals at a given calendar age in any given time and place. Subjective
evaluation of age rather accurately assesses the ravages of time and coincides quite adequately to
more objective metrics (Christensen et al., 2009). Nevertheless, we would like to be able to reference
such objective measures to examine in greater detail the dimensions of aging.

The dimensions of aging encompass at least three different aspects. The first incorporates
prediction of survival or mortality. In other words, we want to be able to relate a process, aging,
to an outcome, longevity. This has long been a domain of aging research, and it continues to engage
biodemographers. The second attempts to relate an aging process to the ability to function. So-
called healthy aging derives from this approach. Finally, the need to evaluate potential therapies or
interventions to extend this healthspan is yet another dimension.

There are two facets of this discussion that have not been explicitly addressed thus far. One
is the accommodation of change that occurs with time. Any measure of aging must be able to
allow us to incorporate this dynamic feature of the aging process. Indeed, the capacity to treat
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aging as a process requires this. Secondly, we must acknowledge
that aging occurs at different levels of inquiry, biological,
psychological, sociological, etc. All these levels address
functioning, but from different vantage points. Thus, the
direction we take should be applicable from these several
points of observation.

Our focus in this article is biological or physiological.
However, the direction we take can be readily utilized in other
disciplinary venues. An illustrative example in this regard is the
use of two terms that refer to the measure of functional aging we
explore in detail below. Originally, this metric was called a deficit
index, a very generic term. However, the moniker of frailty index
was attached to it to explain its relevance to geriatric medicine
which deals with frailty, disability, and morbidity. In similar
fashion, indices of psychological aging can readily be constructed,
for example. The various functional indices simply explore aging
at various levels of organization. This reflects a systems approach
to aging with its inherent emergent properties.

FUNCTIONAL DECLINE AND
FUNCTIONAL HETEROGENEITY IN
BIOLOGICAL AGING

Physical function ability declines with age. This has been assessed
variously, but its impact is most obvious when it is examined in
terms of activities of daily living (Andersen-Ranberg et al., 1999).
Cognitive function also becomes less effective with age (Park and
Bischof, 2013). This is not surprising. However, the extent to
which function decline varies from individual to individual is less
so, and this is apparent for both physical function and cognitive
function (McArdle, 2011; Lowsky et al., 2014). At a more basic
level, physiologic functions all display gradual failure with age,
albeit at different rates of decline (Shock, 1967).

Discrete biomarkers, usually assessed as the level of circulating
serum analytes, also show changes with chronological age. In
many cases, however, the profiles of change over time are not
linear and often display a so-called U-shape (Arbeev et al., 2011).
This suggests that at a more granular level functional change with
age is complex, and it may reflect the operations of a non-linear
system in which interactions between components make their
presence known. The important question is how to incorporate
this granularity in a meaningful way that does not surrender the
ability to interpret the model. One approach to this dilemma
uses a multivariate measure of the individual’s divergence
from a population centroid that reflects a baseline or normal
physiological state at any given age. This multivariate statistic
can be interpreted in terms of physiological dysregulation, and it
is associated with the transition from a healthy to an unhealthy
state (robustness) more so than survival in an unhealthy state
(resilience) (Arbeev et al., 2019).

Another approach that utilizes discrete biomarkers assembles
them into predictive algorithms (Levine, 2013; Belsky et al.,
2015). Often, these algorithms incorporate chronological age.
This makes them excellent predictors of mortality (Levine, 2013).
This is not surprising, as the Gompertz equation clearly shows
that survival decreases exponentially with chronological age

(Gavrilov and Gavrilova, 1991). An important application of this
approach is its use in predicting functional decrements early
in life that are likely to be associated with health later in life,
in both cross-sectional and longitudinal modes (Belsky et al.,
2015). This has particular value for clinical trials of therapies and
interventions that can alter the progress of aging.

DNA methylation marks have also been collected into arrays
predictive of chronological age (Hannum et al., 2013; Horvath,
2013). In their various renditions, they are referred to as DNA
methylation clocks. The extraordinary coincidence of assigned
age using these epigenetic predictors with actual chronological
age is unsurprisingly dependent on the heavy conditioning on
chronological age of the choice of methylation marks and the
predictive algorithm itself. This conditioning is sometimes subtle
(Levine et al., 2018). The value of these epigenetic predictors
resides in their ability to assign calendar age to samples of
unknown origin. They have not been found to predict mortality,
or when they do the effect sizes are tiny and only observed
with very large samples sizes, usually gathered in meta-analyses
(Chen et al., 2016).

The use of predictive algorithms based on biomarkers as
applied to young and middle-aged individuals is quite apt. After
all, evaluation of the efficacy of a therapeutic or an intervention
would reasonably be applied to such individuals before they
progress too far along an aging trajectory. Also, we would want to
be able to assess the potential outcome early, before late effects on
survival are observed many years later. Nevertheless, it is essential
to ultimately validate any predictive algorithm according to the
“gold standard” in aging research, survival itself. The Gompertz–
Makeham equation is the starting point for the derivation of the
only universal in aging, to utilize a term from physics (Azbel,
2002). Thus, survival or mortality will always be the “yard stick”
in aging research. Certainly, it has propelled many of the major
discoveries in the field (Jazwinski, 1996).

The Gompertz equation conceals an inherent conundrum.
Despite the exponential increase that the equation depicts, there
is always a deviation that it ignores when individual, real-world
values are examined. Furthermore, there is a systematic departure
from actual mortality rates which becomes apparent around
90 years of age for humans. This departure ultimately becomes
a plateau from around 105 years of age on (Barbi et al., 2018).

TOP-DOWN MODELING OF AN AGING
SYSTEM

Organisms display complex adaptive behavior, and they interact
with the environment. This is the result of their organization,
which arises from a multitude of simple, self-assembled local
relationships. These function in interactive arrays that are
governed by non-linear dynamics. Another way of putting this
is that these arrays display emergent properties. Aristotle already
recognized this by stating: “The whole is greater than the sum
of its parts.” Interactions at a lower level give rise to higher
level objects or properties: interactions of molecules form cells,
interactions of cells form tissues, interactions of tissues lead to
organs, interactions of organs result in the organism, and so on.
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Capturing the components at any of the scales of organization
is not sufficient to arrive at the behavior at that scale. One must
also account for the interactions that make the system complex,
non-linear, and hence indeterminate at that scale. This is most
readily achieved from a top-down vantage point. Having made
this statement, it is important to acknowledge that this must take
a top-down, minus-one level approach, because a level is defined
by its interacting components.

Deficit indices constitute an uncomplicated way in which
to describe the behavior of a complex aging system. Deficit
indices have a long history in human aging research and
in geriatrics (Rockwood et al., 1999; Mitnitski et al., 2001).
They are even being applied to understand rodent aging
(Rockwood et al., 2017). A deficit index is constructed from
a number of signs, symptoms, marks, and manifestations.
The number can be relatively small, about twenty, or much
larger, as long as it is statistically sufficient. These deficits
should encompass many different body or physiological systems.
The deficit index arises by summing the deficits counted and
dividing by the total number of deficits assessed. Increasing the
number of deficits scored improves deficit index performance
(Mitnitski et al., 2017).

Recently, the deficit index has acquired a strong theoretical
underpinning. The deficits are represented by the components of
a network, in which they can be damaged or undamaged (deficits
per se) (Rutenberg et al., 2018). By definition, the components are
connected by edges. Some of them have more edges than others,
performing a more critical role in the network. Damage in this
network, whether partial or complete, is propagated across the
network or system because of the edges. This rational, systems
biology-based nature of the deficit index distinguishes it from
other quantitative measures of biological age. In addition, the
deficit index is uncomplicated mathematically, as opposed to
most of the other measures, and it predicts mortality without the
incorporation of chronological age as one of its items.

We have constructed a deficit index we call frailty index-
34 (FI34), consisting of 34 health and function variables (Kim
et al., 2013). The reference to frailty in the name stresses the
relevance of the index as a measure of relative health. FI34 is a
good predictor of mortality (Kim et al., 2013), so it is a measure
of biological age as defined earlier. It increases exponentially with
calendar age, as we would expect of a predictor of mortality
(Kim et al., 2013). Moreover, it distinguishes different patterns of
aging, and it is heritable (Kim et al., 2013). FI34 also captures the

FIGURE 1 | Cox proportional hazards of death. Censored survival data for 262 subjects aged 60–103 from the Louisiana Healthy Aging Study (LHAS) are presented
as Z scores. Age, FI34, DNA methylation age (DNAm Age), Age Acceleration Difference (Age Diff), and Age Acceleration Residual (Age Resid) are included as
covariates in the regressions, as indicated. (A) All 262 subjects, (B) nonagenarians only (N = 161). ∗p < 0.05; ∗∗p < 0.01; and ∗∗∗p < 0.001. This figure has been
reproduced from Jazwinski and Kim (2017) under the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
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individual variability or heterogeneity of aging among individuals
(Kim and Jazwinski, 2015). Although constantly increasing with
chronological age across a population, it shows variation among
individuals in cross-section and longitudinally.

METABOLIC DIMENSIONS OF
BIOLOGICAL AGE

It is known that energy metabolism slows down with calendar
age. We expect that of physical activity energy expenditure, as
older individuals are generally less active than younger ones.
However, this decline extends to resting metabolic rate (RMR)
as well, and thus total energy expenditure is lower in older
adults (Kim and Jazwinski, 2015). RMR is ascribed to the energy
required to maintain basic body function, and it constitutes
60–70% of total energy expenditure.

The decline in RMR with chronological age that is seen
overall manifests itself differently depending on an individual’s
biological age (Kim et al., 2014). Counterintuitively, higher FI34
in nonagenarians is positively correlated with higher RMR. This
is the case in males and females, and this association remains after
adjusting for body composition, thyroid hormone levels, insulin-
like growth factor 1 (IGF-1), and circulating creatine kinase levels
(CK). Thus, there appears to be a metabolic compensation for
declining health and the loss of integrated function which the
increase in deficits indicates. Damaged components or nodes
in the network model of the deficit index are tantamount
to loss of edges or connections that measure the functional
integration of the system.

The finding that RMR increases with biological age begs
the question of the nature of the underlying mechanism(s).
Although this relationship occurs in both males and females,
these mechanisms differ phenotypically. In males, there is a
positive association of CK with FI34 in the presence of RMR
increase (Kim et al., 2014). This is not observed in females
in whom instead there is a negative association of fat-free
mass associated with increased FI34 and RMR that is not
found in males. Thus, in males, tissue damage suggested by
increased CK, appears to be involved, while in females it is
loss of muscle mass.

Genetic analysis has been applied to access the underlying
mechanisms at a more granular level. In males, the CK was
associated with regulatory variants in the genes XRCC6 and
LASS1 (Kim et al., 2016b). XRRC6 encodes the protein Ku70
which can bind to Bax preventing Bax from binding to
mitochondria and initiating an apoptotic cascade that would
result in release of creatine kinase from cells thus increasing
CK. In females, a different mechanism appears to be involved.
Regulatory variants in UCP2 and UCP3 are associated with
FI34, and this association is not found in males (Kim et al.,
2016a). These two genes encode mitochondrial inner membrane
proteins that are called uncoupling proteins. They function
as transporters. The variation in UCP2 portends a switch in
substrate utilized for respiration from glucose to glutamate
(Vozza et al., 2014) as FI34 increases. There is an interaction
between RMR and a UCP3 variant in the positive association with

FI34 that indicates an intensification in respiration (Kim et al.,
2016a), such that more energy is expended when FI34 increases.
The relevant variant of UCP3 is associated with a higher hazard
ratio for mortality, which we will come back to later.

THE GUT MICROBIOTA IN BIOLOGICAL
AGING

Energy metabolism cannot be adequately addressed without
consideration of the gut microbiota (Kim and Jazwinski, 2018).
These symbiotic denizens of our digestive tract process our
diet enhancing its assimilation. They also produce a wide array
of signaling molecules. The impact of the gut microbiota goes
beyond metabolism to influence inflammation and immunity,
leading to age-related degenerative disorders associated with
unhealthy aging. The gut microbiota shows relative stability
within individuals, but it can vary widely among individuals.
The composition of the functional, core gut microbiome is
relatively constant in individuals across geographic regions and
chronological ages. However, the overall diversity and variability
of the gut microbiota increases with calendar age. This increase
in the heterogeneity in gut microbiota composition mirrors the
increase in individual variation of host physical and cognitive
abilities during aging, noted earlier.

Because the relationship of energy metabolism and
chronological age is diametrically different from its relationship
to biological age, it is important to examine the gut microbiota in
the latter context as well. Interestingly, the richness (α-diversity)
or intra-individual variation in the gut microbiota declines
as a function of biological age (FI34), while showing little
or no difference with chronological age (Maffei et al.,
2017). At the same time, certain bacterial co-abundance
networks become apparent with increased biological age,
which may be associated with frailty or unhealthy aging.
These co-abundance networks may be responsible for the
metabolic changes and inflammatory responses that are
characteristic of unhealthy aging by disrupting the beneficial
interactions of the gut microbiome with host signaling
pathways. In other words, the microbiome is an integral
part of the network that the deficit index describes. Indeed,
the declining richness of the gut microbiota with biological
age mirrors the loss of components of this network and the
connections they support.

THE EPIGENETIC INTERFACE BETWEEN
THE AGING ORGANISM AND THE
ENVIRONMENT

The epigenome is often described as the interface between
the organism and the environment. The gut microbiota
communicates with its host through various signaling pathways
and by epigenetic mechanisms (Kim and Jazwinski, 2018). One
of these epigenetic mechanisms that has been examined in some
detail in the context of biological aging is DNA methylation.
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FIGURE 2 | Conceptualization of the deficit/frailty index as a network description of a complex aging system. Complexity declines as a function of biological age.
The result is loss of components of networks at various levels of organization, leading to weaker integration due to loss of connections. The aging system consists of
the host and its gut microbiome, with the epigenome comprising the interface between them. Losses in integrated function of the aging system pose energetic
demands to keep it functioning. This results in the increased resting metabolic rate (RMR) associated with progressing biological age. RMR is the energy expenditure
for maintenance of basic body functions. It accounts for 60–70% of total daily energy expenditure.

A genome-wide analysis of individual DNA methylation sites
and methylated regions in old twins uncovered an association
with biological age, as measured using the frailty index, of
DNA methylation at CpG sites within the promoter of the
PCDHGA3 gene (Kim et al., 2018). This gene belongs to a cluster
of protocadherin genes on chromosome 5. Methylation in this
large gene cluster has been associated with age and age-related
phenotypes, and it can modulate gene expression. Protocadherins
are cell adhesion proteins that appear to also be involved in
intracellular signaling. The identification of DNA methylation
of protocadherin as a potential player in biological aging is
significant because it conjures up the network model of the deficit

index. In this case, the protocadherins mediate the interactions
between the cells that are the components of the network at this
level of organization, by leading to the formation of tissues with
their emergent properties.

The specific DNA methylation of protocadherin described
above that is associated with biological age is not the same as the
DNA methylation marks selected by their tight association with
chronological age, called DNA methylation clocks (see earlier).
These DNA methylation clocks perform poorly as predictors of
mortality, side by side with age and FI34 (Kim et al., 2017). For
individuals ≥60 years of age, both chronological age and FI34
are significant measures of the hazard of mortality, while the
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DNA methylation clock in at least three different versions is
not (Figure 1). Interestingly, for individuals ≥90 years of age,
only FI34 remains a predictor of mortality. A caveat applicable
to these tantalizing observations is that they await replication
with larger samples in other populations. It is important to note
that observed mortality begins to depart from the exponential
increase in mortality modeled by the Gompertz equation at age
90 and plateaus at 105 (Barbi et al., 2018). Thus, FI34 may account
for at least a portion of the actual mortality that is not captured
by the Gompertz equation, after the calendar age of 90.

Recently, it has been found that several DNA methylation
clocks and composite-biomarker predictors of age are not
well correlated with each other (Belsky et al., 2018). The
authors concluded that they thus may not measure the same
aspects of aging. However, FI34 appears superior to the DNA
methylation clocks and to chronological age itself at older ages,
when they are all compared together. It remains to be seen
how FI34 performs when assessed together with chronological
age and the biomarker algorithms, to determine whether
they contribute added information related to the phenotypic
variability of biological age.

CONCLUDING REMARKS

The network model of the deficit index takes a systems view
of biological age, and it explains the complexity of the aging
organism by taking into account that the components of
the network (system) interact with each other. Damage to
these components is what the deficit index quantifies. This
damage can be partial or complete. Damaged components are
equivalent to weakening or loss of the interactions between
them. Thus, damage is propagated throughout the network.
Compromised interactions reduce the integration of the system.
Thus, complexity decreases as biological age increases (Figure 2),
and this is the result of damage and loss of components
and the interactions among them. This model extends to all
levels of organization, from molecules, to cells, tissues, organs,
and organisms. Importantly, the host and the microbiome
lose complexity in tandem, with biological age. Thus, the gut
microbiota are simply another component of the aging network.

The increase in RMR with biological age or unhealthy aging
means, by definition, that more energy is expended for the
maintenance of basic body functions. Of course, this may mean
that less energy is available for physical activity if total energy
expenditure remains constant or decreases, as is the case across

the population (Kim and Jazwinski, 2015). The mechanisms
underlying the increase in RMR differ in males and females, but
in each they involve different aspects of mitochondrial function.
The question arises as to how these changes relate to the network
described by the deficit index. One possibility is that the increased
RMR countervails, at least to some extent, the further loss
of complexity of the network. Another alternative is that the
heightened RMR is simply the “cost of doing business” as the
network loses complexity. We favor the latter interpretation.
As mentioned earlier, the variant of UCP3 that interacts with
RMR in association with FI34 is also associated with an increase
in the hazard ratio of mortality. This suggests that the RMR
increase does not favorably impact survival as might be expected
if increased energy maintained the status quo.

It will be of interest to determine which of the alternatives
mentioned above pertains. In any case, there is little doubt
that survival, along with good health outcomes, is supported
by a robust network that retains its complexity. It has
been found recently (Miller et al., 2018) that individuals
with greater functional connectivity in their central executive
network displayed better cardiometabolic health than those with
lower connectivity. This was the case despite the presence of
psychosocial stress, providing a cogent example of resilience. The
growth factor BDNF promotes neurogenesis in the brain, and it
may enhance resilience in humans (Cahn et al., 2017). BDNF in
this case would facilitate the generation of new neurons, perhaps
to replace damaged ones, to keep the complexity of the brain
neurocircuitry intact.
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