
fgene-10-00279 March 29, 2019 Time: 15:35 # 1

PROTOCOLS
published: 29 March 2019

doi: 10.3389/fgene.2019.00279

Edited by:
Monica Bianchini,

University of Siena, Italy

Reviewed by:
Zeeshan Ahmed,

University of Connecticut,
United States

Gaurav Sablok,
Finnish Museum of Natural History,

Finland

*Correspondence:
Alejandro Sanchez-Flores

alexsf@ibt.unam.mx
Leticia Vega-Alvarado

leticia.vega@icat.unam.mx

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology,

a section of the journal
Frontiers in Genetics

Received: 15 December 2018
Accepted: 13 March 2019
Published: 29 March 2019

Citation:
Jiménez-Jacinto V,

Sanchez-Flores A and
Vega-Alvarado L (2019) Integrative

Differential Expression Analysis
for Multiple EXperiments (IDEAMEX):

A Web Server Tool for Integrated
RNA-Seq Data Analysis.

Front. Genet. 10:279.
doi: 10.3389/fgene.2019.00279

Integrative Differential Expression
Analysis for Multiple EXperiments
(IDEAMEX): A Web Server Tool for
Integrated RNA-Seq Data Analysis
Verónica Jiménez-Jacinto1, Alejandro Sanchez-Flores1* and Leticia Vega-Alvarado2*

1 Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma
de México, Cuernavaca, Mexico, 2 Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México,
Mexico City, Mexico

The current DNA sequencing technologies and their high-throughput yield, allowed
the thrive of genomic and transcriptomic experiments but it also have generated
big data problem. Due to this exponential growth of sequencing data, also the
complexity of managing, processing and interpreting it in order to generate results,
has raised. Therefore, the demand of easy-to-use friendly software and websites to
run bioinformatic tools is imminent. In particular, RNA-Seq and differential expression
analysis have become a popular and useful method to evaluate the genetic expression
change in any organism. However, many scientists struggle with the data analysis since
most of the available tools are implemented in a UNIX-based environment. Therefore,
we have developed the web server IDEAMEX (Integrative Differential Expression Analysis
for Multiple EXperiments). The IDEAMEX pipeline needs a raw count table for as many
desired replicates and conditions, allowing the user to select which conditions will be
compared, instead of doing all-vs.-all comparisons. The whole process consists of
three main steps (1) Data Analysis: that allows a preliminary analysis for quality control
based on the data distribution per sample, using different types of graphs; (2) Differential
expression: performs the differential expression analysis with or without batch effect
error awareness, using the bioconductor packages, NOISeq, limma-Voom, DESeq2
and edgeR, and generate reports for each method; (3) Result integration: the obtained
results the integrated results are reported using different graphical outputs such as
correlograms, heatmaps, Venn diagrams and text lists. Our server allows an easy
and friendly visualization for results, providing an easy interaction during the analysis
process, as well as error tracking and debugging by providing output log files. The server
is currently available and can be accessed at http://www.uusmb.unam.mx/ideamex/
where the documentation and example input files are provided. We consider that
this web server can help other researchers with no previous bioinformatic knowledge,
to perform their analyses in a simple manner.
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INTRODUCTION

Transcriptomics experiments have been used widely to
measure the RNA levels expressed in tissues or cells from
practically any organism. This approach has been used
since the implementation of Northern blots hybridization
analysis and was scaled up by the development of microarray
technology. However, transcriptomics has been improved with
the aid of sequencing technologies which recently have been
replacing microarrays by using RNA sequencing (RNA-Seq)
experiments to evaluate gene expression at a genome-wide
scale. Therefore, either microarrays or RNA-Seq technologies
have generated a massive amount of data results that demands
ad hoc methods to fully analyze and compare gene expression
between different conditions, tissues or cell populations for
a given organism.

To quantify the transcription levels and identify differential
expressed genes under different conditions, using RNA-Seq
data from high-throughput sequencing technologies, a general
workflow can be described: (1) quality control of RNA-Seq reads
(Babraham Bioinformatics - FastQC A Quality Control tool
for High Throughput Sequence Data Babraham Bioinformatics
- FastQC A Quality Control tool for High Throughput
Sequence Data); (2) read trimming or filtering (Chen et al.,
2017; Roser et al., 2018); (3) mapping trimmed/filtered reads
to a reference (genome or transcriptome) (Li and Durbin,
2009; Langmead and Salzberg, 2012; Kim et al., 2013; Wu
et al., 2016); (4) obtaining the read count for each gene
(Quinlan and Hall, 2010; Li and Dewey, 2011; Roberts et al.,
2011) and (5) differential expression analysis (Anders and
Huber, 2010; Tarazona et al., 2011; McCarthy et al., 2012;
Love et al., 2014; Ritchie et al., 2015). Currently, due to
the size of datasets, steps 1 to 4 have to be performed by
the user and many tools for each step are available and
have been widely used and cited elsewhere. However, the
differential expression analysis is probably the most important
step that allows the user to interpret the biological information
regarding the expression profiles of a given organism under
different conditions.

The gene expression profile contains the information regard-
ing genes related to the organism response to a certain condition.
To retrieve such information, the differential expression analysis
has to be performed and it requires statistical methods to
differentiate between expression changes due to the tested
conditions and biological “noise” or variability. Currently,
several computational tools have been developed mainly in
the programming language R and packages are available at
the Bioconductor project repository (Huber et al., 2015).
However, R language and packages have to be used mainly
through a UNIX-based operating system and by command-
line instructions which requires a certain level of programming
skills. Therefore, non-bioinformatics researchers demand either
a Graphical User Interface (GUI) in order to use differential
expression tools or web-based applications. A GUI-based
solution still requires a local installation of all packages needed
for the differential expression analysis and this could remain
challenging. The web-based applications are now emerging

(de Jong et al., 2015; Monier et al., 2018; Zhang et al., 2018) as
friendlier option to perform the differential expression analysis
in a more friendly way and without installing software in
a local computer.

Here, we introduce the IDEAMEX web server (Integrative
Differential Expression Analysis for Multiple EXperiments)
that uses as input an RNA-Seq raw count table in text
format and generates results using bioconductor packages
NOISeq, limma-voom, DESeq2 and edgeR. These packages
have been constanlty benchmarked and presented the most
reliable results with different datasets and gold-standards
(Seyednasrollah et al., 2015; Costa-Silva et al., 2017). In this
work, we demonstrate the functionality of IDEAMEX, using
RNA-Seq data from a previous publication (Olvera et al., 2017)
where the differential expression analysis in tilapia liver was
performed, in addition to other datasets used as examples to
test the website.

Our server has been used in several projects and has been
visited from different world-wide locations as recorded in our
site tracker. IDEAMEX is available and can be accessed at http:
//www.uusmb.unam.mx/ideamex/ where the documentation and
example input files are provided. Our server offers a web
server-based analysis that can help researchers with no previous
bioinformatic knowledge, to perform their transcriptomic
analyses in a simple manner, in order to interpret the biological
data contained in their RNA-Seq experiments.

MATERIALS AND METHODS

Web Server Description
The web page is hosted by the “Unidad Universitaria de
Secuenciación Masiva y Bioinformática” core lab facility, at
the “Instituto de Biotecnología” of the “Universidad Nacional
Autónoma de México, Campus Morelos located in Cuernavaca,
Morelos, México.” A Linux box computer with Ubuntu 14.04
LTS with the following hardware main characteristics: Intel Core
i7 4770 processor; 32 Gbytes of DDR3 RAM and 1 Tbyte of
hard disk storage.

The deployment was implemented using the Apache
HTTP server version 2.4.7 with a PHP v5.5.9 front-end that
coordinates the writing of the input and output files to a SQL
database through a POSGRES Relational Data Base Manager
(RDBM) server (psql version 9.3.22. The installed R version is
3.5.2. The web server can be accessed at http://www.uusmb.
unam.mx/ideamex/.

The web server interface has been tested using different
web browsers and different operative systems. Using Microsoft
Windows 10: Microsoft EdgeHTML 17.17134; Google Chrome
version 72.0.3626.109 (Official Build) (64-bit); Mozilla Firefox
Quantum 63.0 (64-bit). Using MacOS Sierra 10.13.6: Safari 12.0.3;
Google Chrome 71.0.3578.98 (64-bit). Using Linux Ubuntu 16.04
LTS: Mozilla Firefox Quantum 65.0.

Additionally, the scripts and binaries used in the web server
can be found in the public repository https://github.com/
leticiaVega/IDEAMEX
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RNA-Seq Examples and Data From
Tilapia Liver Experiment
We used as example to test our website two datasets. The first
example contains data from the Pasilla Bioconductor library
(Brooks et al., 2010), taking in account only the gene level
counts. This dataset contains RNA-Seq count data for treated and
untreated cells from the S2-DRSC cell line. The second example
file which can be used to test the batch effect error awareness,
was taken from the NBPSeq CRAN package (Di et al., 2014). This
dataset contains the Arabidopsis thaliana RNA-Seq data (Cumbie
et al., 2011), comparing 1hrcC challenged and mock-inoculated
samples. In this case, the samples were collected in three batches.

We also obtained RNA-Seq publicly available data already
reported (Olvera et al., 2017) that was generated to determine the
effect of 3,5-di-iodothyronine (T2) and 3,5,3′-tri-iodothyronine
(T3) exogenous treatment on the transcriptome of tilapia
(Oreochromis niloticus) liver. For control and each hormone
treatment, two biological replicates were generated. The FASTQ
raw data can be found under the following SRA identi-
fiers: SRX2630485, SRX2630486, SRX2630487, SRX2630488,
SRX2630489, and SRX2630490.

Briefly, the quality control(QC) and filtering for the raw
data was performed using the FASTQC software (Babraham
Bioinformatics - FastQC A Quality Control tool for High
Throughput Sequence Data Babraham Bioinformatics - FastQC
A Quality Control tool for High Throughput Sequence Data)
and contamination and adapter removal was carried out using
in-house Perl scripts. QC’ed reads were mapped using the
Bowtie 1.1.234 aligner (Langmead et al., 2009) to the annotated
Oreochromis_niloticus (Orenil1.0.cds.all, 21,437 coding genes)
CDS dataset downloaded from Ensembl repository database
(Aken et al., 2016) using the BioMart utility. Quantification
and repetitiveness normalization were carried out using eXpress
software 1.535 (Roberts et al., 2011). Total effective counts for
each sample were merged; a matrix was generated using the
“abundance_estimates_to_matrix.pl” Perl script included in the
Trinity pipeline (Grabherr et al., 2011; Roberts et al., 2011). The
resulting matrix was used as input for the differential expression
analysis in the IDEAMEX web server. The select parameters were:
p-adj/FDR = 0.05; logFC = 2; CPM = 1.

Differential Expression Packages
Based on the parameters defined by the user, 4 different R
(version 3.5.2) packages for differential expression analysis are
run: edgeR version 3.24.3 (Anders and Huber, 2010), using
TMM normalization method (works with or without replicates);
limma-Voom version 3.38.3 (Ritchie et al., 2015), using log2-
counts per million normalization method (works with replicates
only); DESeq2 version 1.22.2 (Love et al., 2014), with DESeq2-
default normalization method (works with or without replicates)
and NOISeq version 2.26.1 (Tarazona et al., 2011), with TMM
normalization method (works with or without replicates). Other
packages used in the server are: VennDiagram 1.6.20; ggplot2
3.1.0; UpSetR 1.3.3; corrplot 0.84 and ComplexHeatmap 1.20.0.
The packages can change depending on the R programming
language version, but all changes are reported to the user in log

files that contain all details about the commands and parameters
used for the analysis.

RESULTS

The IDEAMEX Web Server
Implementation
The general workflow used in the IDEAMEX web server can be
observed in Figure 1. First, the user has to enter a valid email
address that will be used to report the follow up or the differential
expression analysis to the user. In a nutshell, the pipeline starts
with a raw count table for as many desired replicates and
conditions, allowing the user to select which conditions will be
compared, instead of doing all-vs.-all comparisons. After the web
server validates the input format, the user can edit the sample
names select one or more differential expression methods and the
parameters to filter results. Additionally, the user can indicate if
the samples belong to different batches so the selected differential
expression methods, can correct any possible batch effect Then,
the data analysis step is performed where a preliminary quality
control report is generated, based on the data distribution per
sample. Next, the differential expression analysis is performed
using one or more selected methods. Finally, the result from the
different selected methods are integrated and are reported using
Venn diagrams, a upset bar plot graph and text files for further
filtering and analysis. Several additional plots are generated
including correlograms to check the consistency between some
calculations and heatmaps. Further details and study cases for
dataset examples are described in the IDEAMEX User Manual
that can be downloaded from the website. To demonstrate the
functionality of our web server, we used a dataset generated
from an RNA-Seq experiment to compare the effect of thyroid
hormones in tilapia liver (see Materials and Methods).

Optionally, the user can perform a full registration at the
IDEAMEX homepage, in order to keep track of all projects
results. The sample name format should have a suffix_[0-9]
structure: nameCond1_1, nameCond1_2, . . . , nameCond1_n,
nameCond2_1, nameCond2_2, . . . , nameCond2_m. Once the
input file is validated, the server can infer the replicates from
the suffix before the underscore symbol and the replicate number
will be the digit after the underscore symbol. However, during
the input loading, the user can edit these names. In case of
samples being prepared in different batches, this information can
be specified in the same window the sample names are edited.
Indicating samples in different batches will turn on the batch
effect error correction of different methods. Importantly, use
this option only if you have knowledge of samples from a given
condition, being prepared in a different batch which can give the
experiment an extra variability. The user manual has a case of
study for samples with batch effect.

In this work, the samples were named liverC_1, liverC_2 for
replicates of control condition (no treatment) and liverT2_1,
liverT2_2, liverT3_1, liverT3_2 for replicates that correspond to
each of the 3,5-T2 and 3’,3,5-T3 (T2 and T3) thyroid hormones
treatments. A raw count table (Supplementary Material S1)
in tab-separated text format, was generated and fed to the
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FIGURE 1 | IDEAMEX workflow diagram. The web server workflow starts with the loading and validation of the raw count table as input. Then, the user selects one
or more methods for differential expression analysis, data analysis and results integration. An optional step to edit the sample names is available. The user designs
the comparison matrix by selecting which conditions will be compared. A link to the results is generated and after a few minutes, the results are presented in the
Analysis Results web page.
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TABLE 1 | Raw count table example.

LiverC_1 LiverC_2 LiverT2_1 LiverT2_2 LiverT3_1 LiverT3_2

ENSONIT00000002512 6.816486 5.866294 11.949044 7.285873 14.838847 7.979772

ENSONIT00000002995 0.000000 0.000000 0.001585 0.009734 0.000334 0.752950

ENSONIT00000006143 33.849657 109.674115 127.148250 141.191874 181.345619 132.397050

ENSONIT00000026691 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ENSONIT00000008087 74.458461 359.525580 149.166187 161.170914 235.990094 237.782394

ENSONIT00000021608 59.602367 101.722543 255.731580 259.076778 364.441300 329.630108

ENSONIT00000008926 0.000000 8.473091 33.032248 28.360464 21.724295 14.028806

ENSONIT00000011237 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ENSONIT00000021761 59.306830 135.526032 162.356881 113.464849 238.652733 233.360459

The sample names denote the condition naming and replicate number. liverC_N, RNA-Seq counts for liver tissue with no treatment. liverT2_N, RNA-Seq counts for
liver tissue with T2 hormone treatment. liverT3_N, RNA-Seq counts for liver tissue with T3 hormone treatment. N, replicate number. Raw count table should be in
simple text format.

IDEAMEX web server. A snipped of the input raw count table
is shown in Table 1.

Input and Data Quality Control
The next step is to select the differential analysis method(s),
the data quality analysis and the result integration by clicking
on each box. It is recommended to click on the “select
all” box to perform a full analysis. Afterward, the cut-off
values for statistical confidence (p-adj and False Discovery
Rate [FDR]), normalization (CPM) and transcript abundance
difference (logFC) can be selected. Also, the comparison matrix
can be defined to establish which samples or conditions
will be compared.

A link to the Analysis Results web page will be generated,
where the user results can find a link to the “(1) Data Analysis”
section. A series of plots are displayed, allowing the user to
have a preliminary analysis for quality control based on the
data distribution per sample. All conditions defined in the raw
count table are depicted as boxplots, CPM bar plots, density
plots, principal components analysis (PCA) plots and multi-
dimensional scaling (MDS) plots. Inspection and evaluation
of these plots are essential steps for the interpretation of the
differential expression analysis.

CPM Plot Evaluation
In gene expression analysis, only a fraction of genes is expected
to show differential expression between experimental conditions.
The Count per million (CPM) plot shows the number of genes
within each sample, having no counts (CPM = 0) or more than
1, 2, 5, or 10 CPM. This plot could help the user to decide
the threshold to remove very low expressed genes in any of the
experimental conditions. The default CPM cut-off value of 1 can
be changed according to the user judgment, but it has to be done
by re-running the analysis.

As observed in Figure 2, there is an increase of genes with
CPM > 10 in the T2 and T3 samples, compared to the C
condition. Also, the group of genes with CPM = 2 were decreased
in T2 and T3 compared to the C condition. Approximately,∼70%
of the genes presented no counts. This plot is the first glance
to the expression profile for the compared conditions. For this

particular case, CPM = 1 is a convenient cut-off value which was
the default option.

Boxplot Evaluation
Figure 3 presents the boxplots which provide an easy way to
visualize the count distribution in each sample. If the count values
distribution is highly skewed, then data transformation can be
applied to roughly normalize the distribution. Figure 3A presents
the log2 normalized data (pseudo-counts) and Figure 3B depicts
the normalized data using the Trimmed Mean of M-values
(TMM) method which is used for the differential expression
analysis in edgeR and NOIseq packages. As observed, TMM
normalization adjust the data according to the sequencing yield
of each sample. The boxplot is an easy way to visualize the
data distribution since it shows statistical measures such as
median, quartiles, minimum and maximum values. Whiskers are
also drawn extending beyond each end of the box with points
beyond the whiskers typically indicating count outliers. In the
log2 boxplot, the sequencing yield difference per sample is very
evident. In this case, the control samples have fewer reads than
the other samples. However, TMM normalization can fix this
problem and this is why several differential expression methods
have implemented this normalization procedure.

It is important to mention that the user will find a pair of
boxplots, PCA and MDS graphs, since the data is plotted using
pseudo-counts and TMM values.

Density Plot Evaluation
The normalized count distributions can also be summarized
by means of a density plot. Density plot provide more detail
by enabling the detection of a dissimilarity in replicate count
distribution. Ideally, the density plot for each replicate for a given
condition, should greatly overlap indicating lower variability
between replicates. Figure 4 shows a density plot for the
samples where replicates for the C condition, indicating certain
dissimilarity in replicates for that condition.

PCA Plot Evaluation
This type of plot is useful for visualizing the overall effect of
experimental covariates and batch effects. In the context of
RNA-Seq analysis, PCA shows groups of samples that ideally
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FIGURE 2 | CPM plot. A bar plot for each sample is generated where Counts Per Million for each gene are represented.

will correspond to each condition. Clustering first by the most
significant group, then by progressively less significant groups.
Figure 5 depicts how the 3 conditions (C, T2, and T3) form
separate clusters, although some dispersion between replicates
can be observed. This suggest that the variability among
individuals was high, but due to the cluster separation it shouldn’t
affect the analysis. When a replicate is grouped with other
samples from different conditions, is recommended to removed
it from the analysis if there are enough replicates left (at least
two). Also, this plot could indicate if there is a batch effect
problem, where samples in a same condition are very disperse in
the plot. In that case, the user can rerun the analysis indicating
which samples could belong to a different batch. However,
we recommend to confirm this with records from the preparation
of the samples in the wet lab.

MDS Plot Evaluation
Multi-dimensional scaling (MDS) is a technique that is used
to create a visual representation of the pattern of proximities
(similarities, dissimilarities, or distances) among a set of objects.
In the context of RNA-Seq analysis, MDS plot shows variation

among RNA-Seq samples, the more is the distance between
sample, the higher is their dissimilarity. Therefore, samples
belonging to the same condition or treatment should be closer
to each other and distant to other conditions. However, if
different conditions are grouped together, this could mean that
those treatments or conditions have a very similar effect. Worst-
case scenario, the user can suspect of a sample mislabeling.
Conceptually, MDS and PCA plots can provide the same
information and as observed in Figure 6, samples belonging to C,
T2, and T3 form separate clusters with a certain dispersion among
replicates. Similarly, to the PCA plot, this plot could indicate if
there is a batch effect problem, where samples in a same condition
are very disperse in the plot. Again, we recommend to confirm
the preparation of the samples, by checking records from the
preparation of the samples in the wet lab.

Differential Expression Analysis
The “(2) Differential Expression Results” section has links with
the name of each selected method, where the user can display the
analysis output. A detailed description of each method output
can be found in the User Manual at the IDEAMEX web page.
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FIGURE 3 | Boxplot with normalized counts. The frequency distribution and some statistics like mean, median and outliers are represented in these plots. (A) log2
normalized counts. (B) TMM normalized counts.
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FIGURE 4 | Density plots. The count distribution between replicates and conditions.

However, here we describe the generated graphs for a better
interpretation. Table 2 shows the output plots generated by
each method, contributing with different representations of the
genes that were differentially expressed. Some of these plots were
already used in the “(1) Data Analysis” section (PCA and MDS
plots). If the user indicated that samples for a given condition
belonged to different batches, the batch error effect correction for
several methods will be applied.

Expression, MA, MD and Smear Plots
These plots depict all expressed genes but those with
differential expression are represented in other color than

black. Basically, in all of them we can see the distribution
of the gene expression according to a certain value. For
example, in the expression plot (Supplementary Figure S1)
the average expression values for each gene of the compared
conditions are plotted and those highlighted in red are
genes with a significant difference compared to the rest.
In simple terms, the differentially expressed genes are those with
outlier mean values.

In the MA-plot (Supplementary Figure S2), the log2 fold
change (logFC) expression and the normalized mean counts
of each gene in the compared conditions are plotted. Features
declared as differentially expressed are highlighted in different
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FIGURE 5 | PCA plots. Groups of samples can be analyzed using Principal Component Analysis (PCA) plots where replicates of a certain conditions are clustered
together. Clusters from different conditions are separated. (A) log2 normalized counts. (B) TMM normalized counts.
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FIGURE 6 | MDS plots. Groups of samples can be analyzed using Multi-dimensional scaling (MDS) plots where the distance between samples and conditions reflect
their similarity. (A) log2 normalized counts. (B) TMM normalized counts.
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TABLE 2 | Plots generated by each differential expression package.

Plot/Method edgeR limma NOISeq DESeq2

Expression X X Yes X

MA X X X Yes

MD X Yes Yes X

Smear Yes X X X

Volcano Yes X X X

colors according to the logFC threshold defined by the user and
the expression directionality (UP or DOWN).

The mean-difference (MD) plot (Supplementary Figure S3)
shows the average expression (mean: x-axis in limma or D for
NOISeq) against logFC (difference: y-axis in limma or M for
NOISeq). Again, values declared as differentially expressed are
highlighted in red.

The smear plot allows to visualize the results of the analysis
in a similar manner to the MA-plot, this plot shows the logFC
against log-CPM, where genes declared as differentially expressed
highlighted in red.

In summary, all these plots compare the expression rate or
difference between conditions and the normalized values. The
proportion of black and highlighted dots gives an idea of the
expression change magnitude between the treatment and the
control or untreated conditions.

Volcano Plot
Arguably, the volcano plot (Figure 7) is the most popular
and probably, the most informative graph since it summarizes
both the expression rate (logFC) and the statistical significance
(p-value). It is a scatter-plot of the negative log10-transformed
p-values from the gene-specific test (on the y-axis) against
the logFC (on the x-axis). The graph depicts datapoints with
low p-values (highly significant) appearing toward the top of
the plot. The logFC values are used to determine the change
direction (up and down) appearing equidistant from the center.
Features declared as differentially expressed are highlighted in
red, according to the selected cut-off values.

Results Integration
Finally, the “(3) Results Integration” section of the Analysis
Results in the IDEAMEX web page contains several text files
and graphs that integrates the results from all selected methods.
In Figure 8, we present the results from the C vs. T2 comparison,
using a Venn diagram (Figure 8A), upset bar (Figure 8B) and
correlograms (Supplementary Figure S5) plots. For the analyzed
data, the Venn diagram showed all method intersections and it is
observed that 852 genes were validated as differentially expressed
by all four methods, being NOIseq the main contributor as also
observed in the upset bar plot. It is interesting that limma-
Voom reported that 43 genes that no other method found as
differentially expressed but agreed with the other methods in

FIGURE 7 | Volcano plot. Red dots represent differentially expressed genes according to the p-adj and logFC cut-off values.
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FIGURE 8 | Result Integration summary. (A) Venn diagram representing the result intersection for each selected method. (B) Upset plot representing the contribution
of each selected method.
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TABLE 3 | Example of intersect results table.

edgeR limma NOISeq DESeq2 Regulation

ENSONIT00000000023 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000075 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000081 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000102 1 1 1 1 UP_liverC_DOWN_liverT2

ENSONIT00000000120 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000129 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000206 1 1 1 1 DOWN_liverC_UP_liverT2

Snippet of the liver CvsT2 treatment. Original table is in simple text format. The Regulation column indicates the directionality of the gene expression.

920 genes (5+ 51+ 852+ 12). This gives the option to the user to
work with either only the intersection or the union of all methods.
However, working with all methods can be overwhelming for the
user although using an enrichment analysis using the GO term or
metabolic annotation from KEGG could help.

As mentioned, other generated plots are heatmaps
(Supplementary Figure S4) and correlogram (Supplementary
Figure S5) plots. Since each method has different normalization
methods, fold change or statistical metrics (p-adj, FDR or
Probability) to determine if a gene is differentially expressed,
the correlograms can help the user to evaluate the correlation
of these values among the different used methods. Also,
heatmaps are created to observe samples clustered by their fold
change, allowing the user to spot groups of genes with a similar
expression change.

Among all the text file results that are explained in
detail in the User Manual (Supplementary Material S2),
the IntersectTopRegulation.txt file provides the list of all
differentially expressed genes with a 0| 1 matrix that can be
used select genes depending on how many and which methods
reported them as differentially expressed. In the last column
of the file, a description of the gene regulation can be found,
where is indicated how and in which condition the genes
was expressed. Table 3 has a snipped of the liverCvsliverT2_
IntersectTopRegulation.txt file where the Regulation structure
results is as follows: UP_conditionX_DOWN_conditionY or
DOWN_conditionX_UP_conditionY. Therefore, the user can
select which genes were up or down regulated in a certain
condition and be sure of the directionality of the expression
without checking the fold change directionality.

DISCUSSION

The IDEAMEX web server is a useful resource for transcriptome
experiments designed for differential expression analysis
involving several condition comparisons. The methods for
differential expression analysis in the workflow, were selected
based on their performance in several benchmark analyses
since the emergence of RNA-Seq data as a powerful alternative
to microarrays (Anders et al., 2013; Soneson and Delorenzi,
2013; Seyednasrollah et al., 2015; Costa-Silva et al., 2017).
In particular, our web server uses R packages that use different
algorithms and normalization methods giving a broader view of

the results with a higher confidence based on their agreement,
based on the idea that no statistical modeling can fully capture
biological phenomena. In the case of limma and NOIseq, they
use non-parametric methods that are statistical techniques for
which we do not have to make any assumption of the gene
expression; whereas DESeq2 and edgeR use parametric methods
assuming a binomial distribution for the data and that no genes
are differentially expressed.

Once the user had loaded the input data in the right format,
our server allows the user to design which comparisons will
be made and which cut-off values will be used, instead of
running an all-vs.-all comparison and default parameters for
each package. For parametric methods like edgeR and DESeq2,
the FDR and p-adj values are the statistical parameters that
define the probability of a gene to be differentially expressed
in a multiple comparison and are used to define if a gene was
differentially expressed or not from the statistical point of view.
However, other parameters such as the CPM or logFC can have
a biological meaning and also can be used a cut-off value. Is not
straightforward how to select which cut-off values will be the best
for a certain experiment but IDEAMEX allow users to try many
combinations of them by running the comparisons several times
and inspecting the different results.

Is very important that the user select which comparisons have
a sense in terms of their experimental design. For example, in this
work we used three conditions where one was used as a control
to study the effect of two thyroid hormones treatments in tilapia
liver (T2 and T3). The comparison between T2 and T3 has to be
performed by comparing the results from comparing each one to
the control or untreated condition. A direct comparison between
T2 and T3 could miss several results since even if we can observe
a gene with a certain expression change, the difference could not
be statistically significant. Let’s say that “gene A” has a differential
expression of 10 times in T2 vs. C comparison and of 12 times
in the T3 vs. C comparison. Roughly, the difference between T2
vs. T3 comparison for the same gene, will be 2 times which might
not be statistically significant. For this reason, is very important to
select the which comparisons make sense, instead of performing
all possible comparison.

The results in the “Data Analysis” section, are several plots
that allow the user to inspect the distribution of their data
based on different metrics. This quality control check point is
very important, since biological data tend to be very noisy. It is
expected that the data from biological replicates within a certain
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condition, will have the same distribution and a similar trend
than those in other conditions. In particular, PCA and MDS plots
allow the users to see if biological replicates of a certain condition
are grouped together and if each condition forms a separate
group. In this particular case, it was known that the samples
didn’t present any batch effect but as observed in Figure 6, there
is some dispersion between samples. It is not trivial to determine
if samples present a dispersion attributable to a batch effect.
Therefore, it is important to obtain the information regarding
the sample preparation to discriminate between high “biological”
variability and “noise” from batch effect.

The distance or dispersion of the replicates and groups
indicates how reproducible was the tested condition in different
individuals or how variable were individuals despite the
treatment. The more replicates available, the better statistical
significance is observed. Having very disperse groups or
samples from different conditions grouping together, should be
considered as noisy or highly variable results that can skew
the analysis and lead to misinterpretation of the experiments.
However, NOIseq could be a good option when no biological
replicates are available and as reported elsewhere, it delivers
reliable results that have been confirmed by using quantitative
PCR (qPCR) reactions.

The results from different methods are not mutually exclusive.
From the statistical point of view, one of them, neither or
all may be true. Therefore, working with the intersection or
the union of all results is a decision that the user has to
evaluate after exploring them based not only on the statistical
significance but on the biological meaning that will depend on
the gene annotation. The main problem with all statistics is
the “fakeness” and misrepresentation of the results. However,
if four different methods agreed with a certain result it
could be assumed that those genes are differentially expressed,
bearing in mind that an experimental orthogonal validation
using a different technology like qPCR, should be necessary to
confirm the result.

In the “Results Integration” section, there are several text
lists and graphs that can guide the users to make sense out
of the results from their experiments. As mentioned, the Venn
diagram (Figure 8A) shows the intersection and union of the
selected different methods. The user can choose one or more
methods by evaluating the agreement between them since one
method could generate either an overwhelming amount of
results or very few of them. In the former case, the user can
choose to work with the intersection of all methods or in the
latter case, the union will provide the maximum amount of
reported results.

In this work, we provide heatmaps and correlograms for
different values obtained from each method. For example,
heatmaps (Supplementary Figure S4) are useful to spot gene
clusters with the same fold change pattern, suggesting that
those genes could belong to a certain pathway of are regulated
by the same mechanism. However, users have to be very
careful when determining gene clusters since there is no
straightforward method to do so. Defining the cluster size is
not trivial and usually is a trial and error process. In terms
of novelty, the most interesting plot could be the statistical

parameter correlogram (Supplementary Figure S5), where the
threshold values such as p-adj (limma-Voom and DESeq2),
FDR (edgeR) and Prob (NOISeq) values are correlated. To our
knowledge, this correlation has not been reported in other
studies. Surprisingly, methods usually correlate very well since
the statistical threshold denotes the error probability of each
result. In our experience, we have observed that NOISeq is the
method with lower correlation regarding the error probability
since this is calculated using a very different approach (Tarazona
et al., 2011) compared to the rest of the methods. However, is
somehow refreshing that all methods present a good correlation,
suggesting that are consistent identifying differentially expres-
sed genes and those with no significant change, despite using
different statistics.

Finally, there are several other methods to continue the
differential expression analysis, that can help users to put
their results in a certain biological context. Probably the most
popular methods are those based on Gene Ontology (GO) terms
enrichment (Maere et al., 2005; Eden et al., 2009; Reimand et al.,
2016) which will require of a well curated gene annotation. Other
enrichment methods like Gene Set Enrichment Analysis (GSEA)
determine whether a defined set of genes shows statistically
significant based on molecular signatures (Subramanian et al.,
2007; Liberzon et al., 2011) or metabolic pathway enrichment
analysis (Luo et al., 2009; Liu et al., 2017; Ulgen et al., 2018) can
provide a better picture of the biological meaning of the observed
changes in gene expression for a given treatment or condition.
These enrichment methods along with the heatmaps, can help the
researcher to spot regulation networks or pathways which could
be subject to further studies.

CONCLUSION

We consider that the IDEAMEX web server can help other
researchers with no previous bioinformatic knowledge, to
perform their analyses in a simple manner. Also, more
experienced users with some bioinformatics skills can use the
results and perform a more detailed analysis and a different
integration of them, since all the results are provided in simple
text files which are very convenient to parse and handle using
regular expression searches.
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