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The human brain is one of the last frontiers of biomedical research. Genome-wide
association studies (GWAS) have succeeded in identifying thousands of haplotype
blocks associated with a range of neuropsychiatric traits, including disorders such as
schizophrenia, Alzheimer’s and Parkinson’s disease. However, the majority of single
nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-
coding regions of the genome, hindering their functional validation. While some of
these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers,
we hypothesized that many are also transcribed into non-coding RNAs that are
missing from publicly available transcriptome annotations. Here, we use targeted
RNA capture (‘RNA CaptureSeq’) in combination with nanopore long-read cDNA
sequencing to transcriptionally profile 1,023 haplotype blocks across the genome
containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-
mortem human brain tissue from three neurologically healthy donors. We find that
the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks,
are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in
GENCODE annotations. We validated our findings with short-read RNA-seq, providing
orthogonal confirmation of novel splice junctions and enabling a quantitative assessment
of the long-read assemblies. Many novel transcripts are supported by independent
evidence of transcription including cap analysis of gene expression (CAGE) data and
epigenetic marks, and some show signs of potential functional roles. We present these
transcriptomes as a preliminary atlas of non-coding transcription in human brain that
can be used to connect neurological phenotypes with gene expression.
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INTRODUCTION

Over the past decade, genome-wide association studies (GWAS)
have facilitated a multitude of discoveries in human genetics,
identifying variants associated with a number of complex
phenotypes and diseases (Visscher et al., 2017; Visscher Peter,
2012). This includes many neuropsychiatric traits, such as
schizophrenia, for which over 100 genetic risk loci have been
discovered through GWAS studies to date (Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014).
However, the journey from GWAS hit to biological function has
proven challenging, for several reasons. Firstly, the sentinel SNP
identified by GWAS is rarely the causal variant for the associated
trait, but is instead a marker for a co-inherited genomic region
known as the haplotype block (Bartonicek et al., 2017). The causal
variant could lie anywhere within the haplotype block, which
extends outward to all SNPs that are in linkage disequilibrium
(LD) with the GWAS SNP. This is further complicated by
pleiotropy, whereby one locus can influence multiple seemingly
unrelated phenotypic traits. Second, even if GWAS accurately
pinpoints a variant, the mechanism by which that variant is
causally associated with the trait in question can be uncertain
(Visscher et al., 2017). A third and related challenge is that the
majority of SNPs identified by GWAS fall outside of protein-
coding parts of the genome, which has hindered their functional
characterization (Hindorff et al., 2009; Welter et al., 2013;
Schierding et al., 2014; Xiao et al., 2017).

Several hypotheses exist to explain the preponderance of
GWAS-identified SNPs in non-coding genomic regions. The
most obvious is that these regions contain regulatory elements
that have an influence on the trait in question. These may be cis-
regulatory DNA sequences such as enhancers or silencers (Albert
and Kruglyak, 2015). Alternatively, non-coding variants could
affect chromatin looping, interfere with the binding of proteins
or RNAs to DNA, or disrupt epigenetic marks (Edwards et al.,
2013). These are all plausible, but another, not mutually exclusive,
possibility is that these regions are transcribed into cis- and trans-
acting non-coding (regulatory) RNAs, many of which may not
yet be documented in public databases. Indeed, recent studies
have indicated that human transcriptome annotations are far
from complete, particularly in relation to long non-coding RNAs
(lncRNAs) (Cao et al., 2018; Uszczynska-Ratajczak et al., 2018).

lncRNAs are a diverse class of gene products that qualitatively
constitute the major portion of the mammalian transcriptome,
but which are still poorly cataloged and characterized (Derrien
et al., 2012). The number of annotated lncRNAs has grown
enormously in recent years, with almost 10,000 new lncRNA
loci being added to GENCODE since 2009 (Uszczynska-
Ratajczak et al., 2018), and many more likely to exist
(Carninci et al., 2005; Katayama et al., 2005; Mercer et al.,
2012; Deveson et al., 2018). While only a small subset of
annotated lncRNAs have been functionally characterized (e.g.,
XIST, NEAT1, HOTAIR), many have been shown to play
unexpectedly diverse roles in epigenetic signaling and gene
regulation including genetic imprinting, shaping chromosome
conformation, forming subcellular organelles (Bond and Fox,
2009; Lin et al., 2015), allosterically regulating enzymatic activity,

and acting as scaffolds, guides, decoys or signals (Mercer and
Mattick, 2013; Quinn and Chang, 2015). On average, lncRNAs
are less abundant than protein-coding mRNAs, which can cause
them to be missed (or dismissed as noise) by traditional RNA-
seq assays (Clark et al., 2015). This is due to the expression-
dependent bias of RNA-seq, in which lowly expressed transcripts
are less frequently sampled (Jiang et al., 2011; Hardwick et al.,
2016). However, accumulating evidence shows that lncRNAs are
not simply weakly expressed but rather are precisely expressed
in highly specific patterns (Mercer et al., 2008; Deveson et al.,
2017). For example, approximately 40% of known lncRNAs are
exclusively expressed in brain (Briggs et al., 2015).

In order to address this problem, a technique known as RNA
CaptureSeq has recently been developed. RNA CaptureSeq works
by targeting specific genomic regions of interest for capture using
oligonucleotide probes as baits, providing enhanced sequencing
coverage of those regions (Mercer et al., 2012, 2014; Clark et al.,
2015). RNA CaptureSeq has facilitated the identification of novel
transcript isoforms within even well-studied loci such as TP53
(Mercer et al., 2012), has provided the first genome-wide map
of human splicing branchpoints (Mercer et al., 2015), and has
proven particularly useful for the detection and quantification of
lncRNAs and their many isoforms (Clark et al., 2015; Bussotti
et al., 2016; Lagarde et al., 2017; Deveson et al., 2018). The
increased sensitivity and resolution of RNA CaptureSeq make
it a logical choice for the profiling of unannotated transcripts
arising from non-coding GWAS haplotype blocks. To date,
CaptureSeq has typically been performed using short-read RNA-
seq, which relies on computational assembly of reads (∼100 bp)
into transcript models. This process is notoriously difficult and
error-prone, and does not provide certainty around isoform
structures (Steijger et al., 2013). In contrast, long-read sequencing
can sequence full-length transcripts ‘in one go,’ and is able to
resolve splicing events between distant exons (Tilgner et al.,
2015). However, long-read sequencing typically suffers from
much lower throughput than short-read RNA-seq, and thus has
almost exclusively been limited to profiling highly expressed,
protein-coding genes.

Here, we have used RNA CaptureSeq in conjunction
with Oxford Nanopore Technologies (ONT) long-read cDNA
sequencing in order to achieve an unprecedented level of
sensitivity and resolution. While two recent studies have
coupled CaptureSeq with Pacific Biosciences (PacBio) sequencing
(Lagarde et al., 2017; Deveson et al., 2018), the present study
represents the first use of CaptureSeq in conjunction with
ONT sequencing to profile brain tissue. To investigate the
transcriptional landscape of GWAS-identified genomic loci in
human brain, we performed RNA CaptureSeq targeting 1,023
discrete haplotype blocks containing 1,352 non-coding GWAS
SNPs associated with neuropsychiatric phenotypes. Transcripts
were captured and sequenced from four regions of post-
mortem brain tissue from three neurologically healthy donors.
CaptureSeq was independently performed with both long-read
and short-read RNA-seq, which provided orthogonal validation
of our results. We used our recently developed set of spliced RNA
spike-ins (‘sequins’) (Hardwick et al., 2016) as internal controls
to assess the efficiency of RNA capture, and also to benchmark
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the performance of ONT’s new PromethION instrument. We
find that the majority (62.4%) of targeted haplotype blocks
contain novel, multi-exonic transcripts, including 13% of
targeted intergenic blocks. We uncover a wealth of unannotated
transcripts, many of which are supported by independent
evidence of transcription and show signs of potential functional
roles. We present these transcriptomes as the foundation of
an atlas of non-coding transcription in human brain that
can be used to connect neuropsychiatric phenotypes with
gene expression.

RESULTS

Selection of Haplotype Blocks and RNA
CaptureSeq Design
Using the NHGRI GWAS database (Welter et al., 2013;
Macarthur et al., 2017), we identified 1,023 discrete haplotype
blocks across the genome containing 1,352 non-coding
(intronic and intergenic) SNPs associated with neuropsychiatric
phenotypes (see Materials and Methods). These phenotypes
include behavioral traits, predisposition to addiction, mental
illness and neurodegenerative disorders such as Alzheimer’s
and Parkinson’s disease (see Supplementary Table 1). We
designed tiling oligonucleotide probes targeting the selected
GWAS-defined haplotype blocks, with annotated protein-
coding exons (GENCODE v24, Harrow et al., 2012) and repeat
elements (RepeatMasker) omitted (Figure 1). This resulted
in a target territory of 96.2 Mb (∼3% of hg38). Of the 1,023
blocks targeted, 162 were intergenic (i.e., had no overlap on
either strand with any GENCODE transcript). We employed
targeted RNA capture (‘RNA CaptureSeq’) (Mercer et al., 2014)
on RNA samples extracted from post-mortem brain tissue
obtained from three neurologically healthy middle-aged males
of European ancestry (see Materials and Methods). Brains were
dissected into four different regions: caudate, prefrontal cortex
(PFC), primary visual cortex (VCx) and superior colliculus
(SupCol). Samples were spiked with RNA sequins (Hardwick
et al., 2016) (Mix A), a subset of which were also targeted
for capture (25/78 genes; 49/164 isoforms) as part of our
experimental design.

Long-Read Transcriptional Profiling
Using ONT cDNA Sequencing
RNA CaptureSeq was performed as previously described (Mercer
et al., 2014), with some minor modifications for the ONT
libraries (see Materials and Methods). Following capture, we
carried out single-molecule, long-read cDNA sequencing using
ONT’s PromethION platform. This yielded a total of 62,553,766
base-called reads (58.7 Gbp of sequence) with a mean length
of 1,035 nt and a median quality score of 8.9 (Supplementary
Figure 1). Reads were aligned using minimap2 (Li, 2018) to
a combined index comprising the human genome (hg38) and
in silico chromosome (chrIS) (Hardwick et al., 2016). Overall, we
observed an alignment rate of 82.1%, with 56.9% of reads aligning
to hg38 and 25.1% to chrIS (Supplementary Figure 2a). We

retained only reads with a perfect mapping score (mapQ = 60).
Of 22,967,553 reads that aligned to hg38 (mapQ = 60), 13,187,936
mapped to regions targeted for capture, corresponding to an
average on-target rate of 57.4% (Supplementary Figure 2c).
In parallel, we sequenced the same four brain cDNA samples
using Illumina’s HiSeq 2500 instrument, yielding a total of
299,140,569 read pairs. Reads were aligned using STAR (Dobin
et al., 2013) to the hg38 + chrIS reference. We observed an
overall alignment rate of 78.4%, with 64.1% of reads aligning
to hg38 and 14.3% to chrIS (Supplementary Figure 2b).
For the Illumina samples, we observed an average on-target
rate of 83.4% (Supplementary Figure 2c). By analyzing reads
aligned to the chrIS reference sequence, we calculated an
overall error rate for the PromethION of 10.8733% (mismatch
rate 5.11%; indel rate 5.7633%) (Supplementary Figure 2d).
This was ∼50-fold higher than the rate observed for Illumina
reads, which had an overall error rate of 0.2341% (mismatch
0.2241%; indel 0.01%).

Validation of RNA CaptureSeq Design
and Quantitative Accuracy
We used RNA sequins to assess the efficiency of RNA
capture and the quantitative accuracy of ONT sequencing
using the PromethION device. We carried out isoform-level
quantification using Salmon (Patro et al., 2017), finding a
strong correlation between measured abundance (transcripts per
million; TPM) and input concentration for captured (R2 = 0.851,
slope = 0.822) and non-captured (R2 = 0.864, slope = 1.07)
sequins alike (Figure 2A). By calculating the average difference
between captured and non-captured sequins at each matched
concentration point, we observed a ∼230-fold enrichment
of CaptureSeq (Figure 2A). At higher concentrations, we
observed diminishing capture efficiency, which corresponds
to saturation of capture probes but is unlikely to affect
transcripts within the physiological range of gene expression
(Mercer et al., 2014; Clark et al., 2015). While we successfully
detected all captured sequins, we failed to detect the 10
sequin isoforms of lowest input concentration that were not
targeted for capture, equating to a lower limit of detection
(LoD) of 0.059 attomoles/µL. Further, to assess the variation
of expression measurements at different concentrations, we
plotted the coefficient of variation (CV; SD divided by mean)
for each sequin against its input concentration, observing that
CV declined with increasing concentration for both captured
and non-captured standards (Figure 2B). This illustrates
the expression dependent bias of RNA-seq, whereby lowly
expressed transcripts are less accurately quantified. We also
quantified sequins at the gene-level (reads per gene per 10k
reads; RPG10K, Byrne et al., 2017), observing similar results
(Supplementary Figure 3).

Concordance of Splice Junction
Detection Between ONT and Illumina
Our spliced ONT reads aligned to hg38 (mapQ = 60) contained
a total of 939,558 splice junctions. In comparison, we
detected a total of 234,138 uniquely mapped junctions in
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FIGURE 1 | Schematic outline of experimental design. (A) First, haplotype blocks were predicted around 1,352 non-coding GWAS SNPs (colored circles) associated
with neurological phenotypes. Blocks were defined by identifying all SNPs in linkage disequilibrium (LD) with the GWAS SNP (white circles). Of the 1,023 blocks, 780
overlap an annotated exon (GENCODE v24), 81 are located entirely within an annotated intron, and 162 are intergenic. (B) Biotinylated oligonucleotide probes
(orange bars) were designed to tile across haplotype blocks (with annotated protein-coding exons and repeat elements omitted). (C) Probes are used as baits to
capture any transcripts generated from targeted regions, followed by pull-down enrichment and subsequent transcriptional profiling with both long- and short-read
RNA sequencing. (D) Sequence reads are aligned to the genome (hg38) and a hybrid transcriptome is assembled by leveraging the advantages of both long- and
short-read RNA-seq.

the matched Illumina data. We found that 164,183 of these
junctions were shared between the two technologies; that
is, 17.5% of junctions detected using ONT were validated
by Illumina, and 70.1% of junctions detected by Illumina
were validated by ONT (Supplementary Figure 4a). Of
the ‘shared’ junctions, 144,227 (87.8%) were previously
annotated in GENCODE (v29), while the remaining 19,956
junctions were novel (12.2%) (Supplementary Figure 4b).
ONT detected an additional 32,777 GENCODE junctions
that Illumina missed, while Illumina detected an additional
18,860 GENCODE junctions that ONT missed (Supplementary
Figure 4c). Of the 19,956 ‘shared novel’ junctions, we found
that 2,036 (10.2%) were validated by two recent studies
which coupled RNA CaptureSeq with Pacific Biosciences
(PacBio) long-read sequencing (Lagarde et al., 2017;

Deveson et al., 2018), providing independent evidence for
their credibility.

Benchmarking the Performance of ONT
cDNA Sequencing
We next used RNA sequins to assess the performance of the
PromethION instrument in accurately sequencing full-length
transcripts. In contrast to the ERCC spike-ins, sequins have a
more realistic range of transcript sizes, with 15 isoforms≥ 2.5 kb
in length. Of these 15, only six were fully sequenced ‘in one go’
with a single ONT read. The longest sequin isoform that was
fully sequenced with single reads was R2_26_1, with a 4,375 nt
read that covered all 18 of its exons (Supplementary Figure 5a).
The longest read that mapped to chrIS was 5,213 nt, which
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FIGURE 2 | Validation of CaptureSeq design and ONT sequencing. (A) A subset of RNA sequins were targeted for capture as part of our CaptureSeq design
(n = 25/78 genes; 49/164 isoforms). By plotting the measured abundance (TPM; y-axis) against the known input concentration (x-axis) for captured (red) and
non-captured (green) sequin isoforms, we can compare the quantitative accuracy of captured vs. non-captured transcripts. Open circles indicate sequin isoforms
that were not detected. Vertical dotted green line indicates the limit of detection (LoD) for non-captured transcripts. By comparing the difference between the
measured abundance of captured and non-captured transcripts, we observe a ∼230-fold enrichment of CaptureSeq. Error bars represent standard deviation (SD)
between the four replicate ONT samples. (B) Scatter plot shows the coefficient of variation (SD divided by mean) of each spike-in plotted against its respective input
concentration, indicating the expression dependent bias of RNA-seq.

represented the majority of the R2_19_2 isoform (6.9 kb in total).
Another notable example was a 3,473 nt read which mapped to
R1_24_1 (4.6 kb in total), spanning 33 out of 36 exons. Most
synthetic isoforms < 2.5 kb were fully sequenced with single
ONT reads, allowing complex, alternatively spliced synthetic loci
to be unambiguously deconvoluted (Supplementary Figure 5b).
We observed a similar distribution of mapped reads lengths
aligning to chrIS (mean = 762 nt) and hg38 (mean = 937 nt)
(Supplementary Figure 2e).

We used the gffcompare tool (Pertea et al., 2016) to assess
the sensitivity and precision of our synthetic transcriptome
in relation to the chrIS annotation, at the base-, exon-,
intron-, transcript- and gene-levels. When considering the raw
read alignments, we observed high sensitivity across these
features, but large numbers of false-positive events led to poor
precision scores (Supplementary Figure 6a). This is due to
the higher error rate of ONT sequencing, which leads to
spurious alignments around the boundaries of exon junctions
(Supplementary Figure 5c). We compared the number of
reads spanning annotated chrIS junctions (true-positives) and
unannotated chrIS junctions (false-positives), finding that ONT
performed poorly in comparison to Illumina (Supplementary
Figure 6b). We used the ‘Pinfish’ suite of tools1 to cluster
together ONT reads (mapQ = 60) having similar exon/intron
structures, and then create a consensus of the clusters by
calculating the median of exon boundaries from all transcripts
in the cluster (see Materials and Methods). After clustering, we
observed marked improvements in precision with only minor
drops in sensitivity, validating that the approach was effective
in processing raw ONT reads (Supplementary Figure 6c).
After benchmarking the ‘Pinfish’ clustering approach using

1https://github.com/nanoporetech/pinfish

RNA sequins, we went on to apply this to ONT reads
mapping to hg38 (mapQ = 60). This generated a set of 10,528
consensus multi-exonic transcripts that overlapped targeted
regions, comprising 12,369 unique splice junctions. We found
that the rate of ONT junction validation by Illumina data
increased from only 17.5% before clustering to 83.0% after
clustering (Supplementary Figure 6d).

Using sequins, we observed that ONT sequencing had
a slight length bias, with synthetic transcripts at around
the ∼1 kb size over-represented and transcripts at either
end of the size spectrum under-represented. This effect was
seen for both captured (Supplementary Figure 7a) and non-
captured (Supplementary Figure 7c) sequins, suggesting that
the length bias was caused by ONT sequencing rather than
by the process of capture. Similarly, we observed a slight GC
content bias for captured sequins (Supplementary Figure 7b),
but this effect largely disappeared for non-captured sequins
(Supplementary Figure 7d), implying that GC bias arose due
to the process of capture rather than ONT sequencing. In
most cases, ONT sequencing had more uniform coverage of
exons compared to Illumina (Supplementary Figures 8a,b).
With Illumina sequencing, many exons exhibited highly uneven
coverage profiles that were reproducible between replicates
(Supplementary Figures 8a,b). We calculated the coverage of
each base in every sequin exon targeted for capture (n = 279),
finding that there was significantly less variation between bases
for ONT (median CV = 0.0339) than Illumina sequencing
(median CV = 0.172) (Supplementary Figure 8c). This difference
was statistically significant (paired t-test; p-val < 0.0001).

Defining a Hybrid Transcriptome
Long-read sequencing provides accurate full-length isoform
structures, but suffers from a relatively high sequencing error
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rate that leads to spurious splice junction detection (Tang et al.,
2018). Conversely, short-read sequencing relies on the error-
prone computational reconstruction of short reads into transcript
models, but has highly accurate splice junction detection (Steijger
et al., 2013). We sought to leverage the advantages of both
technologies by defining a hybrid transcriptome that incorporates
ONT reads with splice junctions corrected using matched
Illumina short-read data. To do so we used the FLAIR tool (Tang
et al., 2018), which corrects misaligned ONT splice junctions
using genome annotations and accompanying Illumina junctions
(see Materials and Methods). Of 3,586,593 spliced ONT reads
that mapped to hg38, we were able to successfully correct
2,422,358 of these (67.5%) using GENCODE annotations (v29)
and our matched Illumina splice junction data. These corrected
reads were then collapsed into a non-redundant transcriptome.

Next, we developed a comprehensive pipeline to retain only
high-confidence transcripts that overlapped targeted haplotype
blocks (see Materials and Methods). We filtered out all transcripts
that met any of the following criteria: (i) no overlap with any
capture probe, (ii) contained < 3 exons; (iii) contained an
intron > 1 Mb, (iv) contained a non-canonical splice junction
(i.e., not GT-AG, GC-AG or AT-AC); (v) had any of the following
gffcompare (Pertea et al., 2016) classification codes: ‘e’, ‘p’, ‘r’, ‘s’;
(vi) was < 200 nt in length; or (vii) was redundant or contained
wholly within another transcript. These filtering steps produced
a set of 22,114 multi-exonic transcripts overlapping GWAS
haplotype blocks associated with neuropsychiatric functions.
These transcripts collectively comprised 27,181 unique introns
(splice junctions) and 19,288 discrete internal exons (Figure 3A).
This represents a comparable number of features as are contained
in the GENCODE (v29) annotation across the genomic regions
we targeted for capture (Figure 3B). While our transcriptome
was less comprehensive than the MiTranscriptome annotation
(v2) (Iyer et al., 2015), the latter was generated by merging
∼6,500 independent RNA-seq datasets into a consensus set,
while our dataset was generated in just two experiments using
four brain samples.

Transcriptional Landscape of Haplotype
Blocks Associated With
Neuropsychiatric Functions
We compared our hybrid transcriptome to the GENCODE (v29)
annotation using gffcompare (Pertea et al., 2016). Only 2,830
transcripts (12.8%) were exact matches of (or contained within)
GENCODE transcripts, while the remainder were categorized
as putative novel transcripts (Figure 3B). Most of the novel
transcripts represented unannotated splice isoforms of known
genes, but we also detected 241 novel antisense transcripts (no
GENCODE overlap on the same strand) and 109 novel intergenic
transcripts (no GENCODE overlap on either strand) (Figure 3B).
We assessed the protein-coding capacity (Figure 3C) and
evolutionary conservation (Figure 3D) of our transcriptome,
finding that the novel antisense and novel intergenic transcripts
closely resembled annotated lncRNAs. Overall, we found that
638/1,023 (62.4%) targeted haplotype blocks contained at
least one novel transcript, including 21/162 (13.0%) targeted

intergenic blocks. We used the matched short-read RNA-seq
data to quantify the expression of our hybrid transcriptome
(Figure 3E). We also assessed the concordance between ONT
and Illumina quantitative expression measurements for our
transcriptome. Using Salmon (Patro et al., 2017) with our hybrid
transcriptome as a reference, we quantified the expression of
transcripts in each sample individually, observing reasonably
strong concordance between the two orthogonal technologies
[Spearman correlation coefficient (ρ) for SupCol: 0.612; PFC:
0.616; VCx: 0.650; caudate: 0.615] (Supplementary Figure 9).

Analysis of Novel Intergenic Transcripts
The combined resolution of CaptureSeq with ONT long-read
sequencing enabled us to identify 109 novel intergenic transcripts
overlapping GWAS SNPs associated with neuropsychiatric traits.
Only two of these transcripts were predicted to have protein-
coding potential; the remaining 107 are therefore classed as
putative lncRNAs (Figure 3C). We investigated whether any of
the novel intergenic transcripts were supported by independent
signatures of transcription, such as cap analysis of gene
expression (CAGE) peaks or epigenetic marks. We found that 21
transcripts (19.3%) had an annotated FANTOM CAGE robust
peak (Forrest et al., 2014) in the vicinity of their TSS (within
500 bp on the same strand) (Figure 4A). This represented
a significant enrichment (odds ratio = 1.95) compared to
randomized regions, but did not reach the enrichment of CAGE
peaks in the TSSs of annotated lncRNAs (odds ratio = 2.65)
or protein-coding transcripts (odds ratio = 4.55) (Figure 4B).
Notably, of our intergenic transcripts that were not supported
by CAGE peaks, 8/88 (9.1%) were independently validated by
a recent study that coupled CaptureSeq with PacBio long-read
sequencing(Lagarde et al., 2017), thus providing orthogonal
evidence for their veracity (Supplementary Figure 10). In
several of these examples, our hybrid assembly expanded upon
the PacBio assembly, identifying additional exons and splicing
events. Further, the three epigenetic marks that are typically
associated with actively transcribed promoters (H3K4me1,
H3K4me3, and H3K27ac) were present near the TSS of 80
(73.4%), 94 (86.2%) and 69 (63.3%) of the novel intergenic
transcripts, respectively (Roadmap Epigenomics Consortium,
Kundaje et al., 2015) (Figure 4A). Finally, we overlapped our
novel intergenic transcripts with a recent dataset of conserved
RNA structures (CRSs) (Seemann et al., 2017). We found
that 9/109 transcripts (9.2%) contained one or more CRSs
overlapping their exons, which may be indicative of RNA-
mediated functionality.

For example, we discovered a novel intergenic locus
overlapping a GWAS haplotype block associated with ‘smoking
behavior’ (rs1847461) (Caporaso et al., 2009) on chromosome 12
(Figure 4C, upper). We identified 7 multi-exonic transcripts at
this locus, with all splice junctions confirmed by Illumina short-
read sequencing. Many exons were highly conserved, and the
two TSSs were supported by CAGE peaks (Figure 4C, lower).
Another example included a novel intergenic locus overlapping
a GWAS SNP associated with multiple sclerosis (rs354033) (The
International Multiple Sclerosis Genetics Consortium, 2011) on
chromosome 7 (Supplementary Figure 11). Once again, splice
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FIGURE 3 | Transcriptional landscape of haplotype blocks associated with neuropsychiatric functions. (A) Bar charts show the number of transcripts, introns and
internal exons contained in our filtered hybrid transcriptome (red) compared to existing annotations (four versions of GENCODE and MiTranscriptome v2). Only
multi-exonic transcripts that overlap with targeted haplotype blocks are considered in this analysis. (B) Table shows the classification of transcripts in our hybrid
transcriptome in relation to the latest GENCODE annotation (v29). (C) Cumulative frequency histograms show the coding potential of our transcripts, as assessed by
CPAT. Colors refer to the categories defined in part (B). Vertical dotted line indicates the commonly used cut-off for human transcripts (0.364). GENCODE (v29)
annotated lncRNAs (gray dotted line) and protein-coding genes (gray solid line) are also plotted for reference. (D) Box plots show the distribution of phastCons
scores (Siepel et al., 2005) (vertebrate 100-way alignment) of our transcripts, colored by type. Box edges indicate lower and upper quartiles, center lines indicate
median, notches indicate the 95% confidence interval around the median. (E) Density plots show the mean expression (log10 TPM) of transcripts across all four
samples, as measured by Illumina short-read sequencing.
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FIGURE 4 | Identification of novel intergenic transcripts. (A) Bar charts indicate the fraction of transcription start sites (TSSs) occupied by cap analysis of gene
expression (CAGE) peaks (blue), as well as the three epigenetic marks that are typically associated with actively transcribed promoters: H3K4me1 (red), H3K4me3
(green), and H3K27ac (purple). GENCODE (v29) lncRNAs and protein-coding genes are also plotted for reference. (B) Bar charts show the enrichment of the
promoter regions of transcripts for CAGE peaks. Odds ratio of enrichment is plotted for novel intergenic transcripts compared to lncRNAs and protein-coding genes.
(C, upper) Genome browser view shows a novel intergenic locus identified overlapping a GWAS haplotype block (solid black bar, top) associated with smoking
behavior (rs1847461) on chromosome 12. Transcripts from our filtered hybrid transcriptome are shown below, followed by spliced ONT sequencing coverage (red),
spliced Illumina sequencing coverage (blue), PhyloP conservation track, and CAGE robust peaks. (C, lower) Two separate magnified views show novel TSSs
supported by CAGE peaks and highly conserved promoter regions. ONT read alignments are also shown.
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junctions were validated with Illumina sequencing, several exons
were highly conserved, and most transcripts overlapped a CAGE
peak at the 5′ end.

Identification of Novel Isoforms in
Well-Studied Genes With
Neuropsychiatric Functions
As well as discovering novel gene loci in the vicinity of
GWAS neuropsychiatric SNPs, CaptureSeq enabled us to identify
hundreds of novel splicing events in annotated genes with
established roles in neuropsychiatric function. For example, we
captured a ∼570 kb haplotype block on chromosome 8 that
includes a SNP associated with cocaine dependence (rs75686122)
(Gelernter et al., 2014) (Figure 5A). This SNP is located within
the first intron of the RIMS2 gene, which encodes a protein

that interacts with various synaptic proteins that are important
for normal neurotransmitter release (Kaeser et al., 2012). We
identified three novel internal exons in the first intron of RIMS2
that are highly conserved and are predicted to encode novel
ORFs (Figure 5B). The first novel exon encodes a start codon
and the first 16 amino acids of the novel ORF, while the second
and third exons are in-frame and encode another 11 and 29
amino acids, respectively. Collectively, these novel exons are
predicted to add 56 amino acids to the start of the RIMS2
protein. Whilst interesting, this finding would require further
proteomic validation.

In another example, we captured a ∼4 kb haplotype block
containing a GWAS SNP associated with schizophrenia
(rs12807809) (Stefansson et al., 2009), located immediately
upstream of the NRGN gene on chromosome 11
(Supplementary Figure 12). NRGN encodes a postsynaptic

FIGURE 5 | Identification of novel internal coding exons in RIMS2 gene. (A) Genome browser view shows a ∼570 kb GWAS haplotype block (solid black bar, top) on
chromosome 8 associated with cocaine dependence (rs75688122). CaptureSeq detected multiple novel splice isoforms of RIMS2, a gene involved in
neurotransmitter release. (B) Magnified views show three novel, highly conserved exons detected in the first intron of RIMS2, which are predicted to collectively add
56 amino acids to the start of the RIMS2 protein. The first novel internal exon includes a start codon (left), while the second and third exons (right) are in-frame (33
and 87 bp, respectively).
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protein that is thought to be a direct target for thyroid
hormone in human brain (Coloma et al., 1999). We identified
a novel TSS located ∼20 kb upstream of the annotated TSS
for NRGN that was supported by a CAGE peak and had
a highly conserved promoter region. The novel transcripts
incorporate annotated exons of NRGN, such that the novel
introns span SNP rs12807809.

Using ONT Sequencing to Detect
Coordination Between Distant
Exon Pairs
One of the promised advantages of long-read sequencing is
that it can deconvolute coordinated alternative splicing events
between distant pairs of exons (Bolisetty et al., 2015; Tilgner et al.,
2015). This type of information cannot be gleaned using short-
read RNA-seq because distant exon pairs are never sequenced
on the same fragment. Since several RNA sequin loci provide
known examples of coordinated splicing between distant exon
pairs, we first used chrIS as a proof-of-principle to verify
that ONT sequencing could reliably detect such events. For
example, the sequin locus R1_22 comprises two alternatively
spliced isoforms that contain a distant mutually associated pair
(dMAP) of exons (Supplementary Figure 13a). With ONT
sequencing, we were able to accurately resolve the long-range
connectivity between these exons. However, with short-read
Illumina sequencing, computational assembly (with StringTie,
Pertea et al., 2015) produced a false-positive transcript structure
in which one exon in the pair was included and the other
excluded. Likewise, the R1_103 sequin locus comprises two
alternative isoforms that contain a distant mutually exclusive
pair (dMEP) of exons (Supplementary Figure 13b). Again,
ONT sequencing enabled their long-range relationship to
be resolved, while short-read sequencing produced a false-
positive transcript structure in which both exons were present.
We used our previously published methods (Tilgner et al.,
2015, 2018) to search for similar examples of coordinated
alternative exon pairing in the human genome. For example,
we detected a dMEP of exons in MBNL2, a gene implicated
in the development of myotonic dystrophy that overlaps a
targeted haplotype block associated with alcoholism (rs9556711)
(Heath et al., 2011) on chromosome 13 (Supplementary
Figure 13c). This exon pair (exons number 7 and 9 of transcript
ENST00000469707.5) was never simultaneously present on
the same molecule, with no reads containing both exons,
19 reads containing only exon 7 but not exon 9, 37 reads
containing exon 9 but not exon 7, and 50 reads which skipped
both exons (Supplementary Figure 13c). This coordination
was highly significant, with a Fisher’s exact test p-value of
1.23× 10−4.

DISCUSSION

This study has successfully employed RNA CaptureSeq to
reveal the rich transcriptional diversity hidden within non-
coding regions of the genome that have previously been
associated by GWAS with neuropsychiatric functions. In

doing so, we have vastly expanded existing transcriptome
annotations of these regions, creating an expression atlas of
thousands of novel isoforms in human brain. Many of these
assembled isoforms show preliminary evidence of functional
roles, including highly conserved exons and promoter regions,
TSSs supported by CAGE peaks and epigenetic marks, and
novel predicted ORFs.

The improved sensitivity of CaptureSeq allowed us to
assemble 109 novel intergenic transcripts in regions of the
genome that were previously thought to be transcriptionally
silent. As a class, these transcripts resemble annotated lncRNAs,
as judged by their protein-coding probability scores, relatively
low overall expression and evolutionary conservation compared
to protein-coding genes, which is typical of regulatory sequences
(Pheasant and Mattick, 2007). While only a minority (∼19%)
of these were supported by CAGE peaks, their TSSs were
nonetheless enriched for CAGE peaks compared to the genomic
background. It is also worth pointing out that CAGE data is
itself expression-dependent, and the fact that ∼9% of our novel
intergenic transcripts lacking CAGE support were independently
validated by a recent study (Lagarde et al., 2017) implies that
the sensitivity of CaptureSeq surpasses that of CAGE over
targeted regions.

To date, a poor understanding of the sequence–function
relationship of lncRNAs (as opposed to protein-coding genes) has
hindered their functional characterization. Promisingly, several
technologies for probing lncRNA functions and mechanisms
have begun to emerge, including ChIRP-seq (for assaying
DNA/protein binding partners) and SHAPE-seq (for RNA
structure) (Chu et al., 2015). Further, two landmark studies
have recently employed CRISPR-Cas9 genome editing to perturb
lncRNA loci in vivo, leading to the identification of hundreds
of lncRNAs that have an effect on cell growth (Liu et al., 2016a;
Zhu et al., 2016). Mechanistically, non-coding GWAS SNPs could
be located within the promoters of lncRNAs, hence influencing
their expression. Alternatively, they could fall within lncRNA
exons, thereby potentially affecting RNA secondary structure (so-
called ‘riboSNitches’) (Wan et al., 2014; Corley et al., 2015).
Indeed, we found that ∼9% of our novel intergenic transcripts
had exonic overlap with one or more CRSs (Seemann et al., 2017),
providing potential evidence for RNA-mediated functionality.
GWAS SNPs located in proximity to exon boundaries can
potentially alter splicing patterns in these loci, which display
complex transcriptional activity.

It is conceivable that some of our novel intergenic transcripts
represent the output of enhancers. Indeed, recent evidence
indicates that most – if not all – enhancers are transcribed into
non-coding RNAs that have been termed ‘eRNAs’ (Li et al., 2016).
However, there is still significant controversy around whether
eRNA transcripts are functional per se, or whether it is merely
the act of their transcription that is indicative of some underlying
function (Li et al., 2016). Of the intergenic haplotype blocks
we targeted for capture, we failed to detect transcription in the
majority of cases. However, it must be borne in mind that we
only polled four brain regions and that many non-coding RNAs
are only expressed in very specific cell populations (Mercer et al.,
2008; Liu et al., 2016b).
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This study also demonstrated the utility of spike-in controls
in analyzing NGS data (Hardwick et al., 2017). The use of
RNA sequins (Hardwick et al., 2016) provided a faithful set
of internal controls that helped to validate our experimental
design, including an assessment of capture efficiency, sensitivity
and quantitative accuracy. Of the 15 sequin isoforms ≥ 2.5 kb
in length, six were fully sequenced ‘in one go,’ including a
∼4.4 kb synthetic transcript comprising 18 exons. Furthermore,
we showed how the in silico chromosome (chrIS) can act as a
comprehensive ‘ground truth’ reference against which FP and
FN findings with RNA-seq can be evaluated. Because chrIS
emulates the features of a real human chromosome, we would
expect similar rates of TP and FP events for human transcripts.
Notably, this type of analysis is not possible with previous spike-
in controls (e.g., the ERCC spike-ins, Jiang et al., 2011), because
they are mono-exonic and do not recapitulate the complexity
of eukaryotic gene splicing. Despite these advantages, this study
also illustrates some of the limitations of spike-in controls. While
sequins were added to samples at a low fractional concentration
(2%), we found that a disproportionally high fraction of reads
aligned to chrIS, thereby sacrificing reads that could otherwise
have come from endogenous transcripts. While we added sequins
in proportion to each sample, the process of capture positively
selects on the targeted genomic regions in a way that is not
entirely predictable, thereby inadvertently changing the ratio of
sample to spike-ins.

In conclusion, this study substantially expands the
transcriptome annotations for regions of the genome
associated with important neuropsychiatric traits, including
diseases like Alzheimer’s, Parkinson’s and schizophrenia. These
transcriptomes collectively comprise a valuable atlas that can be
used to connect gene expression with neuropsychiatric traits.
Ultimately, novel transcripts identified herein could act as
biomarkers for disease or potential therapeutic targets.

MATERIALS AND METHODS

Selection of GWAS Haplotype Blocks
The complete GWAS database was downloaded from the NHGRI
catalog (Welter et al., 2013; Macarthur et al., 2017), then
filtered to include only studies with a sample size of n ≥ 1000
that focused on traits associated with the brain (including
behavioral traits, mental illness, as well as neuropsychiatric
disorders like Alzheimer’s, Parkinson’s and schizophrenia). Since
GWAS simply associates traits with regions of the genome
that are in LD, the causative SNP could be anywhere within
the region of LD. In order to ensure the causative SNP is
included, it is necessary to capture the full haplotype block
associated with the SNP reported by GWAS. As such, we
used SNAP (Johnson et al., 2008) to identify all SNPs in
LD, with an LD threshold of R > 0.5 and a maximum
distance between SNPs of 500 kb. All SNPs in LD were
then assumed to comprise a single haplotype block. This
resulted in 1,323 haplotype blocks comprising a total of 1,352
GWAS SNPs associated with neuropsychiatric phenotypes (see
Supplementary Table 1). Since some of these haplotype blocks

overlapped, we merged them into a set of 1,023 discrete, non-
overlapping blocks.

Probe Design
Biotinylated oligonucleotide probes were designed to tile across
the abovementioned 1,023 blocks, excluding any protein-coding
exons (GENCODE v24) and repeat elements (RepeatMasker).
Probes were designed in accordance with previous guidelines
(Mercer et al., 2014). This resulted in a final capture space of
96,234,476 bp. In addition, a subset of our RNA sequins spike-
ins (Hardwick et al., 2016) were targeted for capture (25/78
genes; 49/164 isoforms). In selecting spike-ins to target, we chose
transcripts that spanned across the range of concentrations in
the staggered mixture (Mix A). Probe designs were submitted to
Roche NimbleGen for synthesis.

Human Brain Samples and
RNA Extraction
Brain tissue from three de-identified, neurologically healthy
males of European ancestry was supplied by the NSW Brain
Tissue Resource Centre (BTRC) under Project ID 0379 and ethics
approval number HC15878. Donors were aged between 61 and
64, had cardiac causes of death, with post-mortem intervals of
brain collection between 17 and 41 h. From each brain, 3 mg of
tissue was dissected by the BTRC from four regions: prefrontal
cortex (PFC), primary visual cortex (VCx), caudate, and superior
colliculus (SupCol). RNA was extracted from samples using
the protocol for QIAGEN’s miRNeasy kit: 700 µL QIAzol was
added per sample on ice, which were then transferred to 2 mL
tubes containing a single 5 mm ball bearing and lysed on the
Tissue Lyser II for 2 min at 20 Hz. Upon completion of the
cycle, adapters were rotated and shaken for an additional 2 min
at 20 Hz. Once lysed, the samples were purified according
to the miRNeasy mini kit protocol instructions, including the
on-column DNAse treatment. Elution was in 15 µL nuclease-
free H2O, with the eluate being placed back onto the columns
for an additional run in order to ensure maximum recovery
and concentration.

cDNA Generation for Oxford Nanopore
Technologies Sequencing
RNA CaptureSeq was performed as previously described (Mercer
et al., 2014), with the following modifications for the ONT
platform. One µg of each of 4 human brain samples (SupCol,
PFC, VCx, and caudate) was independently combined with
10 ng of RNA sequins (Hardwick et al., 2016) (Mix A; 2%
fractional abundance). Volumes were adjusted to 11.5 µl per
sample with nuclease-free water, followed by the addition of
0.5 µl of 250 mM Random Primer 6 (S1230S, NEB) and 1 µl
Deoxynucleotide Solution Mix (N0447, NEB). Samples were
mixed by tapping, briefly spun by microfuge, incubated at 65

◦

C
for 5 min and immediately cooled on ice. Four µl of First
Strand buffer and 2 µl 100 mM DTT (SuperScript II Reverse
Transcriptase: 18064014, Thermo Fisher) were added to the
samples, which were mixed by tapping, briefly spun by microfuge
and incubated at 42◦C for 2 min. One µl of SuperScript II Reverse
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Transcriptase was added to the 19 µl reaction mixes, which
were mixed by tapping, briefly spun by microfuge and incubated
with the following thermocycler conditions: RT reaction at 50◦C
for 50 min; denaturation at 70◦C for 15 min; and holding
indefinitely at 4◦C. The second strand synthesis reaction mix
was assembled as follows (NEBNext Ultra II Non-Directional
RNA Second Strand Synthesis Module: E6111S, NEB): 20 µl of
first strand cDNA, 10 µl buffer, 5 µl enzyme mix, and 45 µl
nuclease-free water. Reactions were incubated with the following
thermocycler conditions: second strand synthesis at 16◦C for 1 h;
and holding indefinitely at 4◦C. Resulting cDNA was purified
by a 10 min incubation with 144 µl (1.8X) Agencourt AMPure
XP beads (A63880, Beckman Coulter), 2 × 200 µl washes with
80% ethanol for 30 s each, 5 min air drying, and elution in 52 µl
nuclease-free water.

Following reverse transcription, the four samples had an
average fragment length of 1500 bp with the following
concentrations: 6.99 ng/µl (SupCol), 5.56 ng/µl (PFC), 5.5 ng/µl
(VCx), and 6.5 ng/µl (caudate) according to a genomic DNA
screentape analysis (Agilent 5067-5365, 5067-5366). The samples
were each end-prepped and dA-tailed using the NEBNext Ultra
II End Repair/dA-Tailing Module (E7595) as follows: 45 µl
DNA, 7 µl Ultra II End-prep reaction buffer, 3 µl Ultra end-
prep enzyme mix, and 5 µl nuclease-free water. Each reaction
was incubated at 20◦C for 30 min followed by 65◦C for
30 min. Following end-prep, the samples were purified using
AMPure beads (A63882) at a 1:1 ratio with incubation at room
temperature for 5 min, two 140 µl washes with 70% ethanol, and
elution for 2 min in 31 µl nuclease-free water. The PCA adapters
from the ONT ligation sequencing kit 1D (SQK-LSK108) were
ligated onto the end-prepped samples as follows: 30 µl of the end-
prepped DNA, 20 µl PCR adapters (PCA), and 50 µl Blunt/TA
ligase master mix (NEB) were combined and incubated at room
temperature for 10 min. The adapted DNA was purified using
Agencourt AMPure Beads as described above. The DNA was then
eluted in nuclease-free water. Next, each sample was amplified
in a 100 µl reaction using NEB Long-Amp Taq (M0323) as
follows: 1X LongAmp Taq reaction buffer, 300 µM dNTPs, 2 µl
PRM primers, and 48 µl DNA from the previous step. The
reaction for each sample was divided into two 50 µl reactions
and amplified with the following thermocycler conditions: an
initial denaturation at 95◦C for 1 min; 18 cycles of 95◦C for
15 s, 62◦C for 15 s, and 65◦C for 2 min; a final extension at
65◦C for 10 min; and a 4◦C hold. Following amplification, the
samples were purified using a 1:1 dilution of AMPure beads as
described above.

Targeted Enrichment and Preparation of
ONT Sequencing Libraries
Following ligation of the PCR adapters, the 4 samples had
the following concentrations: 36.0 ng/µl (SupCol), 25.2 ng/µl
(PFC), 30.2 ng/µl (VCx), and 24.6 ng/µl (caudate) according
to genomic DNA screentape analysis (5067–5365/5067–5365,
Agilent). To prepare the hybridization reaction, 1 µg of
each of the samples was combined with 5 µg Cot-1 DNA
(15279011, Thermo Fisher) and 1 µl of 1mM blocking oligo

(5′ AGGTTAAACACCCAAGCAGACGCCGCAATATCAGCA
CCAACAGAA 3′) and dried down in a vacuum concentrator
for 1 h. The dry contents were resuspended by addition of
7.5 µl hybridization buffer and 3 µl hybridization component A
(SeqCap EZ Hybridization and Wash Kit: 05 634 261 001, Roche),
mixed by tapping, briefly spun by microfuge, and denatured
at 95

◦

C for 10 min. The 10.5 µl contents were briefly spun
by microfuge and immediately transferred to a pre-warmed
4.5 µl aliquot of the NimbleGen SeqCap EZ Capture probe
in a 0.2 ml PCR tube housed in a thermocycler set to 47

◦

C
(lid 57

◦

C). Following overnight incubation (∼18 h), 100 µl M-
270 Streptavidin Dynabeads (65305, Thermo Fisher) per sample
were washed twice with 200 µl 1x wash buffer (SeqCap EZ
Hybridization and Wash Kit: 05 634 261 001, Roche), once
with 100 µl, and then placed in the thermocycler set to 47

◦

C.
Incubated samples (15 µl) were transferred immediately to
the beads for 45 min. Non-target DNA was removed through
washing the beads with buffers of the SeqCap EZ Hybridization
and Wash Kit (05 634 261 001, Roche) as per manufacturer’s
instructions with the following modifications: pipette-mixing was
replaced by inversion-mixing and brief centrifugation. Beads
were finally resuspended in 48 µl nuclease-free water. The
following PCR reaction was set up: 48 µl sample; 2 µl PRM
primers; 50 µl LongAmp Taq 2x master mix (M0287S, NEB).
The reaction mixes were split into 50 µl aliquots and amplified
with the following thermocycler conditions: initial denaturation
at 95

◦

C for 3 min; 22 cycles of 95
◦

C for 15 s, 62
◦

C for 15 s,
and 65

◦

C for 10 min; a final extension at 65
◦

C for 10 min; and
holding indefinitely at 4

◦

C. Resulting DNA was purified by a
10 min incubation with 70 µl (0.7X) Agencourt AMPure XP
beads (A63880, Beckman Coulter), 2 × 200 µl washes with 80%
ethanol for 30 s each, 3 min air drying, and elution in 52 µl
nuclease-free water. Sample concentrations were determined by
Qubit as: 43.5 ng/µl (SupCol), 48.6 ng/µl (PFC), 30.5 ng/µl
(VCx), 38.2 ng/µl (caudate).

The captured samples were barcoded using ONT 1D native
barcoding genomic DNA kit (EXP-NBD103), and the library
prep was performed using the 1D genomic DNA by ligation
kit and protocol for the PromethION sequencer (SQK-LSK109).
The preparation was performed according to manufacturer
recommendations with some modifications. Briefly, each sample
underwent end-prep in a 60 µl reaction containing the product
from capture, 7 µl Ultra II End-prep reaction buffer, and 3 µl
Ultra end-prep enzyme mix. The resulting DNA samples were
purified with AMPure beads at a ratio of 1:1 as above. After
end-prep, 120 ng of each sample was barcoded by ligation of a
barcoding adaptor in a 50 µl reaction containing 2.5 µl of the
respective barcode and 25 µl NEB Blunt/TA ligase master mix
(M0367). The reaction was incubated at room temperature for
10 min and the resulting product was purified with AMPure
beads at t a 1:1 dilution as above. Then, 100 ng of each
sample was combined into a final reaction to ligate on the
sequencing adaptor in a 100 µl reaction containing 400 ng
total combined DNA, 25 µl ligation buffer, 10 µl NEBNext
Quick T4 DNA ligase, and 5 µl adapter mix. The reaction was
incubated for 10 min at room temperature and then purified
with AMPure beads at a.55 ratio, to preserve the smaller cDNA
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fragments, at room temperature for 5 min. The DNA bound to
the beads were then washed with and resuspended in 250 µl
short fragment buffer and rebound to the magnets twice before
being eluted from the beads for 10 min in 25 µl of elution buffer.
A PRO002 PromethION flow cell was primed and loaded with
the resulting 41.04 ng of captured and barcoded cDNA according
to the manufacturer’s recommendation. The LSK109 sequencing
protocol was executed, and the sequencing ran for 52 h.

Read Mapping and Clustering of
ONT Reads
Oxford Nanopore Technologies reads were base-called using
Guppy base-calling software (ONT) (v1.8.5). Quality control
of reads was undertaken using ONT ‘fastq deconcatenate’
(v0.6.2) and POREquality2. Demultiplexing base-called reads was
performed using Porechop (v0.2.3)3 with the enforced barcode
detection parameter. Demultiplexed ONT reads were mapped
to a combined index comprising the human genome (hg38)
and in silico chromosome (chrIS) (Hardwick et al., 2016) using
minimap2 (v2.14-r883) (Li, 2018). The following parameters
were used: –ax splice –secondary = no. After retaining only
uniquely mapped reads (mapQ = 60), reads were processed using
the Pinfish suite of tools4. First, BAM files were converted into
GFF files using the ‘spliced_bam2gff’ tool. We then used the
‘cluster_gff’ tool, which clusters together reads having similar
exon/intron structure and creates a rough consensus of the
clusters by taking the median of exon boundaries from all
transcripts in the cluster. The following parameters were used:
–c 3 –d 10 –e 30 –p 1. To assess the performance of ONT in
sequencing RNA sequins, we isolated all clustered transcripts
aligned to chrIS and compared them against the chrIS synthetic
gene annotations using gffcompare (v0.10.6) (Pertea et al.,
2016), with the following non-default parameters: –M –C –K.
A graphical summary of the bioinformatics pipeline is presented
in Supplementary Figure 1.

Illumina Short-Read Sequencing
Samples were spiked with RNA sequins (Hardwick et al., 2016)
(Mix A; 2% fractional abundance) before library preparation.
RNA CaptureSeq was performed as previously described (Mercer
et al., 2014), using the KAPA Stranded RNA-Seq Library
Preparation Kit (Roche). Pre-sequencing quality control qPCR
and LabChip GX results were normal. The samples were
partitioned into capture pools by RNA yield similarity in order
to minimize variation in sample dilution. Sequencing was carried
out on an Illumina HiSeq 2500 instrument in high output mode,
with 2× 125 bp paired-end reads.

Read Mapping and Assembly of
Short-Read Data
Adapters were trimmed from reads using CutAdapt (Martin,
2011) (v1.8.1) and basic quality control undertaken using

2https://github.com/carsweshau/POREquality
3https://github.com/rrwick/Porechop
4https://github.com/nanoporetech/pinfish

FastQC5. Reads were aligned using STAR (v2.5.3a) (Dobin et al.,
2013) to a combined index comprising hg38 and chrIS. STAR
was run with the following parameters: –alignMatesGapMax
1000000 –alignIntronMax 1000000 –outFilterIntronMotifs
RemoveNoncanonicalUnannotated. Alignments were then
assembled into transcript models using Stringtie (v 1.3.3) (Pertea
et al., 2015), without providing any reference annotations to
guide the assembly process. The minimum isoform abundance
of predicted transcripts for each locus was required to be at least
1% (–f 0.01). Library type was set as –rf.

Quantification of Gene Expression
We compared quantitative gene expression measurements for
ONT and Illumina using Salmon (v0.11.3) (Patro et al., 2017),
providing the chrIS annotation and our hybrid transcriptome
as a reference. For ONT samples, we used the following non-
default parameters: –fldMean 1000 –fldSD 100 –libtype U.
For Illumina samples, we used –libtype ISR. Salmon outputs
expression measurements in TPM.

Assessment of Capture Efficiency and
Quantitative Accuracy
Uniquely mapped reads were isolated from BAM files using
samtools (v1.6) (Li et al., 2009) ‘view’ (–q 60 for ONT or –q 255
for Illumina). BAM alignments were converted to BED12 files
using BEDtools (v2.25.0) (Quinlan and Hall, 2010) ‘bamtobed’
tool (using the –split flag). We retrieved reads that mapped to
targeted regions using BEDtools ‘intersect’; the on-target rate was
calculated as the number of reads mapping to targeted regions as
a fraction of all reads mapping to hg38.

To assess the performance of CaptureSeq, we plotted the
observed abundance (TPM) of each sequin isoform against
its input concentration (log10 scale). We then carried out
simple linear regression of captured and non-captured sequins
separately. The LoD was defined as the spike-in transcript of
lowest abundance that was detected in more than one sample.
To estimate the enrichment provided by capture, we compared
the measured abundance (TPM) of captured vs. non-captured
standards at each of the shared concentration points. At each
shared point, we divided the average TPM for captured standards
by the average TPM for non-captured standards, and then
averaged all of these to obtain an overall enrichment. CV was
calculated by dividing the standard deviation (SD) of each spike-
in by its mean TPM across all four samples. To assess quantitative
accuracy at the gene-level, we first counted the number of reads
mapping uniquely to annotated sequin loci with featureCounts
(v1.6.3) (Liao et al., 2013) (using the –L option for ONT data).
We then quantified gene expression by calculating the number of
reads per gene per 10k reads (RPG10K) (Byrne et al., 2017) for
each sequin locus.

Assessing the Uniformity of
Sequencing Coverage
To assess the uniformity of sequencing coverage, we calculated
the read coverage of every base in every sequin exon targeted for

5https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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capture (n = 279) using BEDtools (v2.25.0) (Quinlan and Hall,
2010) ‘coverage’ (with –d and –split options). We then computed
the mean and SD for each exon using BEDtools ‘groupby,’ then
calculated coefficient of variation (SD/mean) from these metrics.
We compared the difference between ONT and Illumina using a
paired t-test (two-tailed).

Generating a Hybrid Transcriptome
To generate a hybrid transcriptome that leverages both long- and
short-read data, we used the FLAIR tool (v1.2) (Tang et al., 2018).
First, we used FLAIR ‘correct’ by inputting spliced ONT read
alignments (from minimap2) and correcting misaligned ONT
splice junctions using genome annotations (GENCODE v29; with
the –f option) and our accompanying Illumina splice junctions
(with the –j option). We used the default window size of 10 bp for
correcting splice sites. We then collapsed corrected reads into a
non-redundant transcriptome using FLAIR ‘collapse’ with default
parameters. This produced a PSL file containing corrected ONT
reads, which we converted to BED and GTF files using the UCSC
Table Browser6.

We then undertook a number of steps in order to produce
a high-confidence set of multi-exonic transcripts overlapping
GWAS haplotype blocks associated with neuropsychiatric
functions. First, we filtered our transcripts using gffread (Pertea
et al., 2016) with the following options: –i 1000000 –U –N
–M –K –T. We then annotated our transcripts using gffcompare
(Pertea et al., 2016) (v0.10.6), providing GENCODE v29 as
a reference annotation (and using the options –C –K). Any
transcript with any the following gffcompare classification codes
was removed: ‘e’, ‘p’, ‘r’ or ‘s’. Finally, we removed any transcript
that met any of the following criteria: (i) was < 200 nt in length,
(ii) had < 3 exons, or (iii) had no overlap with any capture probe.

Comparison of Our Transcriptome to
Existing Annotations
Our set of filtered transcripts was split into unique introns
and internal exons using in-house Perl scripts (we disregarded
terminal exons because their boundaries are imprecise). We
compared these feature counts with the current version
of GENCODE (v29), three previous GENCODE releases
(v3c, v10 and v19) and MiTranscriptome (v2) (Iyer et al.,
2015). Only multi-exonic transcripts that overlapped targeted
haplotype blocks were considered in this analysis. Hg19
annotations were converted to hg38 coordinates using LiftOver
(Kuhn et al., 2013).

Assessing the Protein-Coding and
Evolutionary Conservation of Transcripts
We assessed protein-coding capacity of all assembled transcripts
with CPAT (v1.2.3) (Wang et al., 2013), using the prebuilt
hexamer frequency table and training model (human) obtained
from https://sourceforge.net/projects/rna-cpat/files/v1.2.2/
prebuilt_model/. For putative coding transcripts (coding
probability≥ 0.364), open reading frames (ORFs) were predicted

6https://genome.ucsc.edu/cgi-bin/hgTables

and annotated using TransDecoder (v5.3.0) (Haas et al.,
2013). Protein homology searches were carried out on selected
transcripts using the BlastP (Altschul et al., 1997) and UniProt
(The UniProt Consortium, 2008) databases. Evolutionary
conservation of transcripts was investigated using the phastCons
100-way vertebrate alignment (Siepel et al., 2005); the average
score of all nucleotides in each transcript was computed using
UCSC’s ‘bigWigAverageOverBed’ script (Kuhn et al., 2013). For
both analyses, previously annotated protein-coding transcripts
and lncRNAs (GENCODE v29) were included as controls.

Overlapping Transcripts With
Independent Signatures of Transcription
We retrieved promoter coordinates from our transcripts using
BEDtools ‘flank’ (with –l 1 –r 0 –s options). We downloaded the
latest dataset of cap analysis of gene expression (CAGE) robust
peaks (hg38) from the FANTOM5 consortium (Forrest et al.,
2014). We used the BEDTools (Quinlan and Hall, 2010) ‘window’
feature to identify transcripts whose TSS was within 500 bp of a
CAGE robust peak on the same strand. We calculated odds ratios
of enrichment using the script from Bartonicek et al. (2017). We
also overlapped our transcript TSSs with the epigenetic marks
that are typically associated with actively transcribed promoters
(H3K4me1, H3K4me3, and H3K27ac). We downloaded broad
peak calls for these marks (human brain) from the Roadmap
Epigenomics Consortium (Kundaje et al., 2015), again lifting
them over to hg38 coordinates. Again, previously annotated
protein-coding transcripts and lncRNAs (GENCODE v29) were
included as controls. Finally, we overlapped our transcripts
with a recently published dataset of conserved RNA structures
(CRSs) which may be indicative of RNA-mediated functionality
(Seemann et al., 2017).

Long-Range Exon Coordination Analysis
We used our previously developed scripts (Tilgner et al., 2015,
2018) to look for coordination between distant pairs of exons.

Visualizing Genomic Data
Genomic alignments were visualized using the UCSC
genome browser (Kuhn et al., 2013) and IGV (v2.4.10)
(Robinson et al., 2011).

Statistical Analyses
Statistical analyses and plotting were carried out using Prism
(v7) and R (v3.5.0).
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