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The goal of this work was to determine the effect of nonablative syngeneic transplantation

of young bonemarrow (BM) to laboratory animals (mice) of advanced age uponmaximum

duration of their lifespan. To do this, transplantation of 100million nucleated cells fromBM

of young syngeneic donors to an old nonablated animal was performed at the time when

half of the population had already died. As a result, themaximum lifespan (MLS) increased

by 28 ± 5%, and the survival time from the beginning of the experiment increased 2.8 ±

0.3-fold. The chimerism of the BM 6 months after the transplantation was 28%.

Keywords: bone marrow transplantation, mesenchymal stem cells, longevity, life extension, cryobank

INTRODUCTION

Increasein maximum lifespan (MLS) is the most significant indicator of hitting the basic
mechanisms of aging, in particular, regarding age-related loss of stem cells (Colvin et al., 2004)
and cell damage accumulation (Kujoth et al., 2005; Baar et al., 2017). Self-renewal of tissues occurs
continuously: thus, in the heart of rats, about 7% of the cells are replaced yearly (Cheng et al., 1996),
while the renewal of blood and epithelial tissues is much faster. It is believed that tissue renewal
involves special resident stem cells. The participation of circulating stem cells in tissue renewal
is poorly studied. Our in vitro studies showed that under certain conditions undifferentiated
stem cells can effectively differentiate into the cell type to which their cellular microenvironment
belongs (Kovina and Khodarovich, 2011), which supports the possibility of tissue renewal on
intravenous administration of stem cells (SCs). This could explain the effective healing by bone
marrow (BM) transplantation of not only blood diseases, but also of systemic diseases such as
mucopolysaccharidosis, senile hearing loss, and bullous epidermolysis (Birkenmeier et al., 1991;
Iwai et al., 2001; Corti et al., 2004; Willenbring et al., 2004; Wagner et al., 2010). We and other
authors have shown earlier that radiation-free BM transplantation slows aging (Kamminga et al.,
2005; Li et al., 2010; Shen et al., 2011; Kovina et al., 2013; Karnaukhov et al., 2015). Our approach
differs from studies of other researchers by the combination of the following parameters (i) larger
amount of transplanted material, (ii) close relation of donors and recipients, and (iii) absence of
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radiation and chemotherapy toxic to the body. Given future
clinical application, it is desirable to develop this technique in
older animals, because at an earlier age, when the body has a
sufficiently large stock of stem cells, the effectiveness of other
methods of cell damage elimination and life prolongation is high
(Spaulding et al., 1997; Aon et al., 2016), and the risk of invasive
interference is not great.

The purpose of this work was to determine the effect on the
MLS of transplantation initiated at the age when half of the
population has already died of old age. By this age, the content
of SCs in the BM falls by more than 10 times, and substitution
by the transplanted material can occur without the myeloablative
conditioning of the recipients. In the current work, as compared
to our previous study, BM donors were produced within the same
small-sized stock of B10-GFP mice and were differing from the
recipients only by the presence of a green fluorescent protein
(GFP) transgene (heterozygous strain). Also, there were more
mice in the groups. This allowed us to increase the efficiency of
transplantation, to show its effect on the MLS, and to increase
statistical reliability of the result. In the end, we discuss ways to
solve the issue of donation and SC sources, which is very urgent
now and might become even more complicated in the future,
especially in view of geriatric application of stem cells.

MATERIALS AND METHODS

Animals
The animal study was carried out in accordance with the
recommendations of the local ethical committee of Sechenov
First Moscow State Medical University and the study protocol
was approved by the local ethical committee of Sechenov First
Moscow State Medical University (protocol 05-14). Two groups
of recipient mice were used for the experiments. All the recipients
were GFP-negative mice of B10-GFP line, which is heterozygous
for the GFP transgene. Originally there were 20 animals in
the first control group. In the second, experimental group,
there were 56 animals, five of which were used to control the
level of chimerism and were excluded from mortality statistics.
Beginning from the age of 15 months, when about 50% of the
mice remain alive, the experimental animals received a series of
intravenous bone marrow (BM) injections from young donors.
Mice aged 3–15 weeks and heterozygous for the green fluorescent
protein transgene (i.e., expressing GFP) of the same B10-GFP
line were used as BM donors. All mice were purchased from
the same nursery where this mouse line was kept as a small
herd, thereby increasing their inbredness and also reducing their
average lifespan.

Isolation and Transplantation
Isolation and transplantation of BM were carried out according
to the procedure described by Colvin et al. (2004) with minor
modifications. The animals were sacrificed by cervical dislocation
and sterilized for 3–5min in 70% ethanol. The bones of the
entire skeleton (scull, spine, and femurs) were cleaned of muscles
and crushed in a sterile mortar with a pestle (ethanol- and
UV-treated) in 5ml of sterile Hank’s Balanced Salt Solution
(HBSS) (Life Technologies Gibco BRL) with 10 U/ml heparin.

The resulting suspension was filtered through a 70µm filter
(BD Biosciences), the filter was washed with 2ml of the buffer,
and the two filtrates were pooled and centrifuged for 5min at
340 g. The pellet was resuspended in 8ml of HBSS/heparin and
centrifuged for 5min at 340 g. The pellet was resuspended in
same buffer (total volume 2–4ml), and the cells were counted in
a Goryaev chamber or with an automatic cell counter. The usual
yield was 2–4× 108 nucleated cells (5–6× 107 nucleated cells per
ml) depending on the donor’s age. Immediately before injection
(within 20min), the cells were additionally filtered through a
40µm filter (BD Biosciences).

A total of 15–20 × 106 cells per recipient animal were slowly,
during about 1min, injected in a volume of 200–300 µl per
animal with an insulin syringe (0.33GX12.7mm needle) via the
tail vein; the tail was prewarmed for 2–3min in a 44◦C water
bath. The animal to be injected was restrained inside a plastic
bottle with the tail coming out through a perforated lid, and
clipped during the needle penetration into the vein; the clip was
removed when the needle was inserted and injection begun. Up
to 15 animals were transplanted during each transplantation day.
Transplantations were repeated 6 times within 3 months, with
10–20-day intervals.

Chimerism Estimation
To monitor the level of chimerism (degree of engraftment of
donor cells), the fraction of GFP+ cells in the recipients’ cell
material was assayed. To do this, 200 µl of cell suspension
at 10–20 million cells per ml was placed onto a slide, 10
µl of the NucBlue (Thermo Scientific) solution was added,
and after incubation for 5min the cells were covered with a
cover glass. Images were obtained by taking 10–20 photographs
evenly distributed over the entire preparation, with excitation
wavelengths for NucBlue (Hoechst 33342) and GFP using
Cellinsight CX7 (Thermo Scientific). The mean percentages of
fluorescent cells were determined automatically by the software.
To assay fluorescing structures in solid tissue, a piece of tissue
of ∼1 mm3 volume was squashed between the slide and
the cover glass and pictures were taken on a NICON 2000
fluorescence microscope.

Statistical Treatment of the Data
The maximum lifespan for the experimental group of animals
(MLSexp) was defined as the average lifespan of 10% of the
most long-lived mice. The MLS for the control mice (MLSC)
was determined in two ways. The first value, MLSC1 , was a
direct estimate of average lifespan of 10% of most long-lived
animals from the first group of mice (i.e., 2 out of 20), and the
second,MLSC2 was calculated using approximation of the survival
curve of the experimental group of mice that died from natural
causes before BM transplantations began. The approximation
was done by using the nonlinear approximation function from
NonlinearModelFit of the MATHEMATICA software package.
The confidence interval for P = 0.05 was calculated in the
standard way using the Student criterion. The two values (MLSC1
and MLSC2 ) thus obtained were compared, and the resulting
MLSC value was calculated. This method allowed us to increase
the precision of the MLSC calculation, since the number of
animals was limited.
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RESULTS

Two groups of recipient mice were used for the experiments. All
the recipients were GFP-negative mice of B10-GFP line, which is
heterozygous for the GFP transgene. In the first, control group,
there were originally 20 animals. In the second, experimental
group, there were 56 animals. Beginning from the age of 15
months, when about 50% of the mice remained alive, the
experimental animals received a series of intravenous injections
of BM from young (3–15 weeks-old) donors, which were GFP
positive individuals of the same B10-GFP line. Figure 1 shows
the effect of syngeneic transplantation of BM of young donors on
the lifespan of the recipients.

The control group was used to directly determine the
maximum lifespan of untreated mice (MLSC1 ). The number of
animals in the control group vs. their age is shown by black
squares in Figure 1. The ages of death of the last 10% of this
group (two mice) were 17.6 and 19.3 months, which gives a
direct estimate for the control group of mice: MLSC1 = 18.45 ±

2.6 months. This value of MLSC1 has a high standard deviation
due to a rather small size of the control group. In order to
improve precision of MLSC we used data on mortality in the
experimental group before transplantation (e.g., before the age
of 15 months) when the mortality was due to natural causes.
Assuming the standard form of the survival curve in accordance
with the Gompertz–Makeham law (Makeham, 1860)

f (t) = N0 · Exp

(

−
Exp (µ0 + µ1t)

µ1

)

,

where

N0 = 100% · Exp

(

−
Exp (µ0)

µ1

)

,µ1 and µ2 − parameters

and based on the requirement to minimize the quadratic
deviation of the model curve from the natural loss of animals in

FIGURE 1 | Effect of nonablative transplantation of syngeneic BM of young

donors on the population dynamics of aging recipients. Open circles,

experimental group; black squares, control group; gray curve,

Gompertz–Makeham curve of control group; black stepped curve,

experimental group corrected for embolism (embolic animals excluded).

the experimental group (open circles, before transplantation), the
numerical values of the parameters were determined as follows:
µ0 = −11.4 and µ1 = 0.7.

This makes it possible to calculate the maximum lifespan,
i.e., the average lifespan of animals who lived from t10
to ∞, for the mice in the experimental group before
treatment (transplantation), which thus serves as an additional
control (MLSC2 ):

MLSC2 =

∞
∫

t10

t · f (t) dt

∞
∫

t10

f (t) dt

= 17.2± 0.6 months,

where t10 is the time point when there were 10% of the animals
left in the population.

The MLSC2 value is in a good agreement with MLSC1 obtained
with the use of first method of estimating the MLS in the control
group. The relatively small difference between the twomethods of
MLS estimation comes from lesser reliability of the first method
under conditions when accidental deviations become significant,
i.e., if the number of mice is low. However, the first method
is important here, since for the experimental group no curve
fit could be done, and only the first method could be used.
Therefore, to compensate for the low number at the end of the
control study (two mice), we correct this by averaging the values
obtained from the two methods of MLS determination:

MLSC =
12 ·MLSC1 + 11 ·MLSC2

(11 + 12)
= 17, 4± 0.5 months,

where 11 and 12 are standard deviations of MLSC1 and
MLSC2 , respectively.

The initial size of the experimental group, which underwent
transplantation, was 56 mice. By the age of 15 months (the
beginning of injections of donor BM), 31 mice survived. Nine
mice died during the injection on the operating table (embolism),
5 more mice were sacrificed for tissue sampling, and the rest
(42 mice) died naturally (Figure 1; Table 1S). The immediate
death of 9 embolic mice out of ∼150 injections might be caused
by researcher inaccuracy in eliminating aggregates from injected
material as well as by injection-induced platelet activation in the
bloodstream. An additional control conducted on 15 old animals
of a similar breed who received a total of 75 injections of 300
µl of HBSS-heparin showed no lethality. Thus, the embolic risk
requires further investigation. It is possible that the most senile
individuals died after BM injections. Taken this consideration
into account we decided to include embolic mice in statistic
analysis to calculate MLS. In statistic analysis the embolic mice
were treated as if they died from natural causes. The mortality
dynamics in the experimental group is shown as open circles in
Figure 1, and the stepped curve reflects the dynamics ofmortality
corrected for the 9 embolic animals. The 5 sacrificed mice were
excluded from all graphs and the statistics.

For the calculation of MLS after BM transplantations, we used
the maximal ages of 10% of the most long-lived mice from the
experimental group, which correspond to ages of the 5 last mice:

Frontiers in Genetics | www.frontiersin.org 3 April 2019 | Volume 10 | Article 310

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kovina et al. Maximal Lifespan After Bone Marrow Transplantation

21.0, 22.5, 22.7, 23.8, and 24.2 months, which gives MLSexp =

22.8± 0.8 month.
Thus, the nonablative syngeneic BM transplantation increased

the maximum lifespan of the mice by 100% × (22.8–17.4)/17.4
= 31 ± 5%, and the survival time from the beginning of
transplantation increased (22.8–15)/(17.4–15)= 3.25± 0.3-fold.

At the age 19.3 months, when the last mouse of the control
group died sedentary, almost immobile, and hunchback with
poor hair, the transplanted mice were active, had an even
spine, and shiny even hair (Videos S1A,B of control and
experimental mice at age 19.3 months are presented in the
Supplemental Material).

Six months after the transplantation, GFP-fluorescence was
detected in 7% of recipient bone marrow nucleated cells
(Figure 2, panel 3). Considering that only a quarter of nucleated
cells fluoresce in the BM of a heterozygous donor (25%, panel 1 of
Figure 2), the degree of chimerism of the transplanted recipient
was (7/25) × 100% = 28%. Thus, more than one fourth of
recipient BM cells 6 months after nonablative transplantation
were of donor origin; therefore, the extension of the lifespan
must be a consequence of not only the paracrine effect, but
also of cellular replacement. Fluorescent structures were also
visualized in other tissues of the recipients, such as liver, spleen,
kidneys, and muscles 6 months after the last injection (Figure S1
of Supplementary Material).

DISCUSSION

In this study, a significant (30%) increase in maximum lifespan
of mice was found after nonablative transplantation of 100
million nucleated bone marrow (BM) cells from young donors,
initiated at the age that is equivalent to 75 years for humans.
Moreover, rejuvenation was accompanied by a high degree of
BM chimerism for the nonablative approach. Sixmonths after the
transplantation, 28% of recipients’ BM cells were of donor origin.
The degree of chimerism obtained in the Quesenberry laboratory
ranged from 17.5 to 15.5% per 100 million injected cells [7% per
40 million BM cells injected or 31% per 200 million BM cells

injected (Colvin et al., 2004)]. This is about half the integration
efficiency observed in our work (28% per 100 million BM cells
injected). The relatively high chimerism efficiency that we found
is most likely due to the advanced age of our recipients having a
depleted BM pool, in contrast to the young nonablative recipients
in the work by the cited authors.

In addition to the higher incorporation rates, there are
more reasons why the nonablative setting is preferable for old
recipients. These are lesser risks of infections and of graft-vs.-
host disease, threatening to ablated patients, while graft rejection
by nonablated recipients is less probable in the elderly than
at a younger age because of naturally weaker immune system
in the elderly. Even in the absence of histocompatibility, when
allogeneic BM was used in a nonablative experiment instead of
syngeneic BM, no lifespan shortening of the experimental group
was observed (Karnaukhov et al., 2015). Obviously, at an old
age the immune system is already too passive to reject donor
BM, but it still efficiently suppresses infection and graft-vs.-host
reaction, which makes it unnecessary and undesirable to use
ablative conditioning in the elderly.

The advantages of lowly ablative transplantation in older age
groups were shown for hematooncologic human patients older
than 50 years: the 95% survival line decreased 5 months after
a myeloablative transplantation, while 95% of nonmyeloablative
patients were alive for at least 13 months; both 1 and 2
year survival rates were 50% higher in the nonmyeloablative
than in myeloablative cohorts over 50 years of age (Alyea
et al., 2005). Nonablative or lowly ablative transplantation of
SCs has already proved its usefulness in clinical practice for
some human pathologies: multiple sclerosis, blood oncology,
hereditary diseases (Mielcarek et al., 2003; Alyea et al., 2006).

On the bases of the above and our data, we advocate a
more rapid implementation of nonablative SC transplantation
into the clinic not only for pathology treatment, but also
for rejuvenation. The efficiency of SC transplantation can be
further increased by optimizing the methods of preparation,
storage, conditioning, and selection of SCs, in particular, a
significant increase in SC homingwas found during antiapoptotic

FIGURE 2 | Fluorescence images of preparations of bone marrow suspension of donor, control, and transplanted mice. Overlay of fluorescence microphotographs at

380 nm (nuclei stained by NucBlue, shown in blue here), and 485 nm (GFP+, shown in green). Cellinsight CX7, magnification 200X. (A) donor BM, the content of

nucleated GFP+ cells is 25%; (B) BM of a control GFP-mouse without transplantation, the content of nucleated GFP+ cells is 0%; (C) BM of a recipient 6 months

after transplantation, the content of nucleated GFP+ cells is 7%.
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treatment (Kollek et al., 2017). Cultured mesenchymal cells
were shown to effectively prolong the life of myeloablated
mice and reduce their osteoporosis (Shen et al., 2011); human
mesenchymal SCs transplanted to rats extended their lifespan
and increased their stamina and memory (Dajeong et al.,
2015). Good effect in elderly patients was demonstrated recently
with allogeneic mesenchymal stem cells, and a clinical trial
has started (Tompkins et al., 2017). The richest source of
highly proliferative mesenchymal stem cells is menstrual blood
(Kovina et al., 2018). Since not only freshly isolated but also
cryopreserved SCs could be effective, the cryobanking of bone
marrow SCs, cord blood SCs, andmenstrual SCs would eliminate
the shortage of histocompatible donor SCs. In the light of the
above, the present work on rejuvenation potential of stem cell
therapy, as well as other studies that compare effectiveness
of different stem cells, donor age, and isolation and storage
methods are deemed to be important for the development of
antiaging therapy.

CONCLUSIONS

1. For the first time rejuvenation therapy was started so late, at
the point when half of the animals had already died, and the
high (31± 5%) extension inmaximal lifespan of the remaining
animals was found. such significant effect on the maximal
lifespan, unlike the median lifespan fluctuations, indicates that
BM transplantation affects the intrinsic agingmechanism. The
life-extending effect was significantly stronger than in earlier
works with similar design (no irradiation or chemotherapy, no
hereditary pathologies in recipients, advanced age at the start
of the BM administration) because of (i) the larger amount
of transplanted material and (ii) the close relation of the
donors and recipients. The result is encouraging for clinical
adaptation for aged humans (70–80-years old).

2. The observed lifespan extension was accompanied by
extension of an active and healthy life period.

3. The bone marrow chimerism of recipients after BM
transplantation was significant (28% of nucleated BM cells
were of donor origin) and permanent (it lasted for at least 6
months after the transplantation), indicating that rejuvenation
is caused not only by the paracrine effect but also by direct
cell replacement.
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Figure S1 | Fluorescence and phase-contrast photographs of tissues of recipient

mice 1–6 months after the transplantation are given in the overlay. Fluorescent

cells of donor origin are present. Upper panel: from left to right: spleen x200,

kidney x200 (2 photos). Lower panel: liver x400, liver x200 and liver of the

non-transplanted control x200.

Video S1 | (A) – the last control mouse at the age of 19.3 months, 1 day before

natural death. (B) – mice of the treated group of the same age of

19.3 months.

Table 1S | Life span and cause of death of mice from control and experimental

groups. Before age of 15, 5 months for the control group and 13 months for the

experimental group the age of death was not monitored regularly. From this

moment onwards the mice were monitored twice a week. For the calculation of

MLS after BM transplantations, we used the maximal ages of 10% of the most

long-lived mice from the experimental group, which correspond to ages of the 5

last remaining mice: 21.0, 22.5, 22.7, 23.8, and

24.2 months.
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