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The timing of daily fluctuations in blood glucose is tightly controlled by the circadian
rhythm. DNA methylation accompanies the circadian clock, and aberrant DNA
methylation has been associated with circadian disruption and hyperglycemia. However,
the precise role of circadian genes methylation in glucose metabolism is unknown. Using
a gene-set approach in monozygotic (MZ) twin pairs, we examined the joint effect of
77 CpGs in five core circadian genes (CLOCK, BMAL1, PER1, PER2, PER3) on glucose-
related traits in 138 middle-aged, male-male MZ twins (69 pairs). DNA methylation was
quantified by bisulfite pyrosequencing. We first conducted matched twin pair analysis to
examine the association of single CpG methylation with glucose metabolism. We then
performed gene-based and gene-set analyses by the truncated product method to
examine the combined effect of DNA methylation at multiple CpGs in a gene or all five
circadian genes as a pathway on glucose metabolism. Of the 77 assayed CpGs, only
one site was individually associated with insulin resistance at FDR < 0.05. However, the
joint effect of DNA methylation in all five circadian genes together showed a significant
association with glucose metabolism. Our results may unravel a biological mechanism
through which circadian rhythm regulates blood glucose, and highlight the importance
of testing the joint effect of multiple CpGs in epigenetic analysis.

Keywords: circadian rhythm, DNA methylation, monozygotic twins, glucose metabolism, epigenetics

INTRODUCTION

Circadian rhythms regulate many vital biological processes including glucose metabolism and
insulin secretion (Qian and Scheer, 2016). Dysregulation of the circadian system has been
associated with metabolic disorders, e.g., hyperglycemia (Leproult et al., 2014), insulin resistance
(Rao et al., 2015), obesity (Krueger et al., 2015), dyslipidemia (Chua et al., 2013), metabolic

Abbreviations: BDI-II, the Beck Depression Inventory-II; BMI, body mass index; DBP, diastolic blood pressures; EWAS,
epigenome-wide association study; FDR, false discovery rate; HbA1c, hemoglobin A1c; HDL-c, high-density lipoprotein
cholesterol; HOMA-IR, the homeostasis model assessment of insulin resistance; LDL-c, low-density lipoprotein cholesterol;
MZ, monozygotic; SBP, systolic blood pressure; THS, the Twins Heart Study; VETR, the Vietnam Era Twin Registry; wTPM,
weighted truncated product method.
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syndrome (Wang et al., 2014), and atherosclerosis
(Jankowiak et al., 2016). However, the molecular mechanisms
underlying the circadian control of glucose metabolism are
incompletely understood.

The circadian clock is under the tight control of an
endogenous transcription-translation feedback loop, which is
regulated by many clock genes. Among these, the clock circadian
regulator (CLOCK), brain and muscle aryl hydrocarbon receptor
nuclear translocator-like 1 (BMAL1), and period circadian
clock (PER1/PER2/PER3) represent the core circadian genes in
peripheral or central tissues (Kalsbeek et al., 2014). Genetic
polymorphisms in these clock genes may also be related to fasting
glucose (Bouatia-Naji et al., 2009; Englund et al., 2009; Dupuis
et al., 2010; Dashti et al., 2015), insulin resistance (Lyssenko
et al., 2009; Dashti et al., 2015), obesity (Garaulet et al., 2014),
and type 2 diabetes (Bouatia-Naji et al., 2009; Voight et al.,
2010; Bonnefond et al., 2012; Gaulton et al., 2015). While
these studies highlight the importance of genetic variants in the
circadian control of glucose metabolism, DNA sequence variation
only explains a small fraction of inter-individual variability in
blood glucose. Epigenetic factors such as DNA methylation
provide an interface between the fixed genome and dynamic
environment, representing a mechanism through which our
changing environment can affect glucose metabolism. In fact,
dysregulation of DNA methylation has previously been related
to various metabolic disorders such as diabetes (Chambers et al.,
2015; Kulkarni et al., 2015; Al Muftah et al., 2016; Florath
et al., 2016; Kriebel et al., 2016; Soriano-Tarraga et al., 2016),
obesity (Demerath et al., 2015; Ding et al., 2015; Al Muftah
et al., 2016; Kriebel et al., 2016), and insulin resistance (Dayeh
et al., 2014; Hidalgo et al., 2014; Kriebel et al., 2016). Moreover,
the circadian clock is epigenetically controlled and circadian
disruption causes changes in DNA methylation of circadian genes
(Zhu et al., 2011; Bhatti et al., 2015). For example, in a weight loss
intervention trial including 60 normal weight and obese women,
DNA methylation variation in promoter regions of the CLOCK,
BMAL1, and PER2 genes was associated with BMI, adiposity,
weight loss, and metabolic syndrome (Milagro et al., 2012). An
EWAS in subcutaneous adipose tissue from five pairs of MZ twins
discordant for diabetes also revealed a significant enrichment of
CpGs in genes involved in the circadian pathway, although no
single CpG methylation was individually associated with diabetes
(Ribel-Madsen et al., 2012). These results suggest that altered
DNA methylation of circadian genes may play an important role
in regulating glucose metabolism.

Previous epigenetic studies have largely focused on testing the
individual effect of single CpG site, but as the effect of DNA
methylation at a single CpG site could be very small, testing the
individual effect of a single CpG site on a complex trait such as
glucose metabolism may not be efficient. Statistical methods that
can test the combined effects of multiple CpGs in multiple genes
in a biological pathway may be a preferred approach in unraveling
the genetic basis of complex traits.

Using a gene-set approach, the goal of this study is to examine
the joint effect of DNA methylation at 77 CpG sites in five
core circadian genes (CLOCK, BMAL1, PER1, PER2, PER3) on
glucose metabolism in 69 MZ twin pairs participating in THS.

Because MZ twin pairs share identical genetic materials and early
life familial environment, a MZ co-twin control design rules
out potential confounding by these factors and represents an
ideal model for epigenetic analysis of human complex traits such
as blood glucose.

MATERIALS AND METHODS

Twin Pairs
The THS was designed to investigate the role of psychological,
behavioral, and biological risk factors in subclinical
cardiovascular disease in twins (Zhao et al., 2012b). Briefly,
the study enrolled 180 middle-aged, male-male twin pairs who
were born between 1946 and 1956 from VETR. All twins were
free of overt cardiovascular disease at the time of enrollment
and were examined in pairs at the Emory University General
Clinical Research Center between 2002 and 2010. Venous
blood samples were drawn by trained nurse in the morning
(6:30∼7:00) after an overnight fast and stored at −80◦C until
laboratory tests. Zygosity was determined by DNA typing.
All twins provided written informed consent. The protocols
for both the THS and the current study were approved by
the Emory University Institutional Review Board. Of the
84 MZ twin pairs with available DNA sample and clinical data
for both members of a twin pair, we removed 15 twin pairs
who were either concordant or discordant on overt type 2
diabetes in order to eliminate the potential impact of hypo-
glycemic drugs on the association between DNA methylation
and glucose metabolism. The final data analysis included 69
complete MZ pairs.

DNA Methylation Measurement
DNA methylation levels in the promoter regions of five key
circadian genes including CLOCK, BAML1, PER1, PER2, and
PER3 were quantified by bisulfite pyrosequencing using genomic
DNA isolated from peripheral blood leukocytes, as previously
described (Zhao et al., 2013). In brief, genomic DNA was bisulfite
treated using the EZ DNA Methylation Kit (Zymo Research,
Inc., CA, United States) according to the manufacturer’s
protocol, which converts un-methylated cytosines into uracil,
and leaves methylated cytosines unchanged. Pyrosequencing
was done on the PSQ96 HS System (Pyrosequencing, Qiagen).
The targeted CpG sites in each gene were chosen based
on: (a) CpG probes in the Illumina 450K array and RRBS
databases; (b) regulatory elements such as promoter, enhancer,
transcriptional binding sites, and (c) genomic sequences from
UCSC genome browser. Genomic coordinates in Genome
Reference Consortium Human Build 37 (GRCh37). The genomic
coordinates and targeted sequences for pyrosequencing were
shown in Supplementary Table S1 and schematically illustrated
in Supplementary Figure S1. Methylation level at each CpG
site was calculated as the percentage of the methylated alleles
over the sum of methylated and un-methylated alleles. For
quality control, each experiment included non-CpG cytosines as
internal control to verify completion of sodium bisulfite DNA
conversion. Un-methylated and methylated DNAs were also
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included as controls in each run. Pyrosequencing assay was run
in duplicates, with a high correlation (≥99.8%) of two runs
for a same sample.

Measurement of Glucose Metabolism
Levels of blood glucose, insulin, and HbA1c in fasting plasma
were measured on the Beckman CX7 chemistry auto analyzer
(Beckman Coulter Diagnostics). Insulin resistance was assessed
by the homeostasis model assessment (HOMA-IR) based on
fasting glucose and fasting insulin (Duncan et al., 1995). All
biochemical assays for each twin pair were processed in the
same analytical run.

Measurement of Risk Factors
Body weight (kg) and height (cm) were measured when twin
participants wore light clothes and no shoes by trained research
staff. BMI was calculated by dividing weight in kilograms
by the square of height in meters (kg/m2). Systolic (SBP)
and DBP were measured by a mercury sphygmomanometer
on the right arm in sitting position after at least 10 min
of rest. Two separate blood pressure measurements, taken
5 min apart, were averaged for analysis. Cigarette smoking
was classified into current smoker (any number of cigarettes)
versus never or past smoker. Pack-years of smoking were
calculated as the number of packs of cigarettes smoked
per day times the number of years smoked. Information
on alcoholic (wine, beer, or cocktail) beverages consumed
within a typical week was obtained and alcohol consumption
(g/week) was estimated as previously described (Zhao et al.,
2012a). Physical activity was assessed by means of the
Baecke physical activity score, which summarizes activity
related to work, sports, and leisure (Richardson et al.,
1995). HDL-c and LDL-c were measured with homogeneous
assays (Equal Diagnostics, Exton, Pennsylvania). Triglycerides
were determined by enzymatic methods (Beckman Coulter
Diagnostics, Fullerton, CA, United States). Depressive symptoms
were measured with BDI-II (Beck et al., 1996).

Statistical Analysis
Monozygotic twin pairs share 100% of their genes and early
life environment including uterine environment, all of which
could influence the epigenome and metabolic risk (Gluckman
et al., 2009). To eliminate the potential confounding by shared
gene and environment, we conducted a co-twin control matched
pair analysis using within-pair differences (Zhao et al., 2015).
To achieve this, we first calculated the intra-pair difference in
DNA methylation, defined as the difference in methylation level
of each CpG site between members of a twin pair. The intra-
pair differences in HOMA-IR, fasting glucose, and HbA1c as
well as continuous covariates including cigarette smoking (pack-
year), alcohol consumption (g/week), physical activity level, BMI,
lipids (HDL-c, LDL-c), SBP, and depressive symptoms (BDI-II
score) were similarly calculated. To examine whether DNA
methylation of circadian genes influences glucose metabolism,
we simultaneously conducted single CpG analysis, gene-based
and gene-set association analyses. All statistical analyses were

performed using SAS statistical software (version 9.4, Cary,
NC, United States).

Single CpG Association Analysis
To examine the association of DNA methylation at each single
CpG site with glucose metabolism, we constructed a linear
regression model (Carlin et al., 2005), in which intra-pair
difference in a glucose trait (e.g., HOMA-IR, fasting glucose,
or HbA1c) was the dependent variable and intra-pair difference
in DNA methylation level at each CpG site was the independent
variable, adjusting for twin age and intra-pair differences in
covariates listed above. Multiple testing was controlled by
adjusting for the total number of CpG sites using FDR, and a
FDR-adjusted P-value (i.e., q-value) less than 0.05 was considered
statistically significant.

Gene-Based and Gene-Set
Association Analyses
To examine the joint effect of DNA methylation at multiple CpG
sites in a circadian gene or all five circadian genes as a pathway
on glucose metabolism, we employed a wTPM as previously
described (Zaykin et al., 2002). This method tests the joint effects
of multiple CpG sites in a gene or multiple genes in a pathway by
combining P-values of all CpGs in a chosen gene or all genes in
a selected pathway. The effect size of DNA methylation at each
CpG site (i.e., regression coefficient) was included as weight in
the TPM statistic. Multiple testing for gene-based analysis was
controlled by adjusting for total number of genes. This method
has been evaluated extensively by simulation studies (Sheng and
Yang, 2013), and our group has used this approach to test the joint
associations of genetic variants in the smoking gene pathway with
diabetes (Yang et al., 2012), subclinical atherosclerosis (Yang et al.,
2013), kidney function (Zhu et al., 2014a), and obesity (Zhu et al.,
2014b). Here we extended this approach to epigenetic analysis.

TABLE 1 | Characteristics of monozygotic twin pairs (N = 69 pairs).

Characteristics Mean ± SD

No. of twins 138

Age (years) 54.8 ± 2.9

Cigarette smoking (pack-year) 22.3 ± 23.8

Alcohol consumption (g/week) 12.5 ± 38.0

Physical activity level 7.5 ± 1.7

BDI-II score 6.0 ± 6.6

Body mass index (kg/m2) 28.9 ± 4.9

HOMA-IR 1.87 ± 1.34

Fasting plasma glucose (mg/dL) 97.2 ± 11.2

HbA1c (%) 5.5 ± 0.5

Systolic blood pressure (mmHg) 129.5 ± 15.4

Diastolic blood pressure (mmHg) 81.6 ± 10.9

High-density lipoprotein cholesterol (mg/dL) 38.5 ± 10.9

Low-density lipoprotein cholesterol (mg/dL) 123.7 ± 35.0

Total cholesterol (mg/dL) 186.9 ± 35.9

Triglycerides (mg/dL) 169.3 ± 96.5

BDI-II, the Beck Depression Inventory-II; HOMA-IR, the homeostasis model
assessment of insulin resistance; HbA1c, hemoglobin A1c.
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RESULTS

The current analysis included 69 male-male MZ twin pairs
(mean age 55 years). All twins are European Caucasians and
were free of overt diabetes and cardiovascular disease at the
time of blood draw. Clinical characteristics of the twins are
presented in Table 1.

Single CpG Association Analysis
Of the 77 assayed CpG sites in the promoter regions of the
five circadian genes, methylation variation at 6 CpG sites
(3 in CLOCK, 2 in BMAL1, 1 in PER2) was significantly

associated with insulin resistance, methylation at 8 CpG sites
(4 in CLOCK, 2 in BMAL1, 2 in PER2) was associated
with fasting glucose, and methylation at 3 CpG sites (2 in
BMAL1, 1 in PER2) was associated with HbA1c (all P < 0.05),
after correction for covariates. After further adjusting for
multiple testing, the association between DNA methylation
at only 1 CpG site in the BMAL1 gene remained to be
statistically significant in relation to insulin resistance at
q < 0.05. Table 2 presents the results of single CpG
association analysis. Supplementary Table S2 shows the mean
intra-pair differences in DNA methylation at each of the
assayed CpG sites.

TABLE 2 | Association of single CpG methylation in five core circadian genes with glucose metabolism (raw P ≤ 0.1).

Genomic

position Relative to Methylation level

(GRCh37) TSS (bp) (%, Mean ± SD) HOMA-IR Fating glucose HbA1c

β (SE) P∗ β (SE) P∗ β (SE) P∗

CLOCK (Chr4)

56413146 158 0.78 ± 1.11 0.160 (0.101) 0.115 2.135 (1.144) 0.068 0.031 (0.048) 0.516

56413153 151 1.06 ± 1.19 0.165 (0.092) 0.073 1.894 (1.042) 0.076 0.044 (0.044) 0.329

56413164 140 1.90 ± 1.35 0.067 (0.092) 0.465 2.207 (1.003) 0.033 0.058 (0.042) 0.169

56413207 97 1.15 ± 1.03 0.204 (0.102) 0.044 1.433 (1.167) 0.226 0.038 (0.049) 0.444

56413229 75 2.20 ± 1.04 0.292 (0.100) 0.003 2.863 (1.130) 0.015 0.087 (0.047) 0.073

56413260 44 0.65 ± 1.18 0.137 (0.079) 0.085 0.760 (0.910) 0.408 −0.004 (0.037) 0.921

56413277 27 0.66 ± 1.00 0.299 (0.116) 0.010 3.213 (1.328) 0.020 0.038 (0.057) 0.506

56413308 −4 1.36 ± 1.24 0.129 (0.086) 0.132 2.326 (0.970) 0.021 0.051 (0.041) 0.216

56413348 −44 0.74 ± 1.06 0.153 (0.108) 0.158 2.300 (1.193) 0.060 0.079 (0.049) 0.118

BMAL1 (Chr11)

13298892 −453 0.85 ± 1.11 0.530 (0.179) 0.003 5.586 (2.097) 0.011 0.228 (0.088) 0.013

13298896 −449 0.38 ± 0.65 0.272 (0.171) 0.110 3.308 (1.988) 0.103 0.149 (0.080) 0.068

13298902 −443 1.24 ± 0.99 0.169 (0.218) 0.439 3.999 (2.441) 0.108 0.230 (0.097) 0.022

13298923 −422 0.34 ± 0.72 −0.389 (0.222) 0.080 −1.291 (2.565) 0.617 −0.105 (0.112) 0.353

13298932 −413 1.59 ± 0.93 0.074 (0.106) 0.484 2.169 (1.160) 0.068 0.065 (0.048) 0.182

13298934 −411 0.74 ± 0.89 0.254 (0.122) 0.037 2.795 (1.404) 0.053 0.114 (0.058) 0.054

13298975 −370 1.19 ± 0.98 0.133 (0.102) 0.193 2.286 (1.135) 0.050 0.026 (0.048) 0.594

13299014 −331 2.56 ± 1.48 0.046 (0.068) 0.501 1.426 (0.739) 0.060 0.039 (0.031) 0.207

13299033 −312 2.03 ± 1.21 0.137 (0.078) 0.080 1.917 (0.900) 0.039 0.059 (0.037) 0.120

PER1 (Chr17)

8055788 −36 1.29 ± 1.03 0.155 (0.138) 0.261 2.873 (1.519) 0.065 0.030 (0.065) 0.643

8055794 −42 1.82 ± 0.95 0.186 (0.134) 0.163 2.935 (1.493) 0.055 0.055 (0.062) 0.380

8055831 −79 1.16 ± 0.96 −0.219 (0.122) 0.073 −0.597 (1.409) 0.674 0.027 (0.058) 0.646

8055883 −131 0.93 ± 1.08 −0.186 (0.104) 0.074 −0.356 (1.209) 0.770 0.021 (0.049) 0.674

PER2 (Chr2)

239197609 −361 1.19 ± 0.79 0.123 (0.118) 0.299 2.315 (1.360) 0.096 0.068 (0.056) 0.235

239197627 −379 0.37 ± 0.40 0.494 (0.253) 0.051 4.415 (2.868) 0.131 0.164 (0.118) 0.173

239197634 −386 0.41 ± 0.51 0.509 (0.213) 0.017 6.068 (2.382) 0.014 0.127 (0.102) 0.217

239197649 −401 0.73 ± 0.43 0.368 (0.283) 0.193 7.025 (3.202) 0.033 0.316 (0.132) 0.021

PER3 (Chr1)

7844662 −53 41.73 ± 5.94 −0.041 (0.033) 0.222 −0.207 (0.379) 0.589 −0.030 (0.015) 0.051

7844735 20 45.60 ± 14.09 −0.014 (0.008) 0.068 0.074 (0.091) 0.418 0.001 (0.004) 0.86

7844743 28 44.36 ± 14.96 0.015 (0.009) 0.091 −0.096 (0.103) 0.357 0.000 (0.004) 0.954

∗Adjusted for twin age and intra-pair differences in pack-year, alcohol consumption, physical activity, body mass index, systolic blood pressure, low and high-
density lipoprotein cholesterol, and depressive symptoms. P-values in bold indicate significant association at q < 0.05 after adjusting for multiple testing. TSS,
transcription start site.
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TABLE 3 | Gene-based and gene-set associations of DNA methylation in five core
circadian genes with glucose metabolism.

Circadian genes HOMA-IR Fasting glucose HbA1c

Raw P q-Value Raw P q-Value Raw P q-Value

Gene-based association analysis

CLOCK 0.0003 0.0008 0.0003 0.0007 0.4556 0.4556

BMAL1 0.0012 0.0024 0.0001 0.0007 0.0003 0.0011

PER1 0.0407 0.0543 0.0255 0.0357 0.3364 0.4052

PER2 0.0054 0.0086 0.0014 0.0025 0.0404 0.0943

PER3 0.4474 0.4474 0.3730 0.373 0.1048 0.1834

Gene-set association analysis

Circadian pathway 0.0001 0.0001 0.0005

Gene-Based and Gene-Set
Association Analyses
At the level of q < 0.05, gene-based analysis detected significant
associations of DNA methylation in four circadian genes
(CLOCK, BMAL1, PER1, and PER2) with insulin resistance,
fasting glucose, or HbA1c. Gene-set analysis revealed that DNA
methylation in all five circadian genes as a pathway jointly
contributed to insulin resistance (P = 0.0001), fasting glucose
(P = 0.0001), and HbA1c (P = 0.0005). Results for gene-based and
gene-set association analyses are shown in Table 3.

DISCUSSION

Using a gene-family approach, we demonstrated that altered
DNA methylation in five circadian genes jointly contributed to
glucose metabolism in a well-matched MZ twin sample. Our
results may unravel a molecular mechanism through which
circadian rhythms affect glucose metabolism, and suggest that
simultaneously testing the joint effects of multiple CpG sites in
a gene or multiple genes in a pathway is a powerful approach in
epigenetic analysis of human complex traits.

Several aspects of our results merit discussion. First, in line
with previous studies,(Shah et al., 2015) we also found that
individual effect of a single CpG methylation on glucose
metabolism is small. Of the 77 CpG sites assayed in our sample,
DNA methylation at 10 CpG was nominally associated with
one or more glucose traits (raw P < 0.05), with only one site
survived multiple testing (q < 0.05). However, the combined
effects of multiple CpG sites could be large. For example, in
our single CpG analysis, DNA methylation at two out of the
nine assayed CpG sites in the PER2 gene showed marginal
association with fasting glucose, but both disappeared after
multiple testing correction. In contrast, gene-based test revealed
a significant association of all nine CpG sites in this gene
with fasting glucose. Similarly, of the 30 CpG sites measured
in the promoter region of the CLOCK gene, only 4 CpG
sites showed nominal individual associations with either blood
glucose or insulin resistance, but gene-based approach detected
a significant association of all 30 CpG sites in this gene with
both blood glucose and insulin resistance. This highlights the
importance of testing the joint epigenetic effect of multiple CpGs

on human complex traits. Second, a complex trait such as glucose
metabolism is most likely regulated by many genes in one or
more biological pathways. Testing the individual effect of each
individual gene may not be efficient and also does not reflect
the true biology. We thus examined the combined effect of five
core circadian genes as a pathway on glucose metabolism. It
shows that, although not all genes showed significant individual
association, the circadian pathway as a whole was significantly
associated with glucose measures. Together, our findings suggest
that testing the joint epigenetic effects of multiple CpG sites
in a gene or a pathway represents a preferred approach for
epigenetic analysis of human complex traits. Finally, although
several previous studies reported associations of individual CpG
methylation in the CLOCK, BMAL1, and PER2 genes with
glucose-related traits, e.g., insulin resistance, obesity (Milagro
et al., 2012), no study has systematically tested the joint effect of
multiple CpGs in a candidate gene or the circadian pathway on
glucose metabolism.

Our study has several limitations. First, given that DNA
methylation is tissue- or cell-type specific, it is unclear whether
or to what extent the results derived from peripheral blood
could reflect methylation changes in the target organs of glucose
metabolism, e.g., pancreas, liver, fat and muscle. However,
accumulating evidence indicated that epimutations may not be
limited to the affected tissue but could also be detected in
peripheral blood (Menke and Binder, 2014). Second, as the
original THS was designed to examine the role of psychosocial
factors in subclinical atherosclerosis, the study included multiple
twin pairs discordant on major depression (37 MZ discordant
pairs were included in the current analysis). It is unclear whether
and how such bias will affect our results. However, we believe
this should not be a major concern because we controlled for
depressive symptoms in all statistical analyses. Third, as all
observational studies, we cannot establish the causal role of
DNA methylation in glucose metabolism. Moreover, as all studies
using MZ twins, the sample size of our study is small. We
cannot rule out the possibility of false positive or false negative
findings, and thus our results need further replication. Fourth,
the present study is a secondary data analysis based on genes
assayed in a previous candidate gene-based study that did not
include all the circadian genes (e.g., CRY2). Fifth, there is a
time interval (about 5–9 years) between the biochemical and
methylation assays. However, we believe that this should not
be major concern because it has been shown that methylation
profiles are stable in DNA or blood samples archived for up
to 20 years under appropriate storage conditions (Li et al.,
2018). Finally, as all twins included in the current analysis are
European Caucasians, the generalizability of our results to other
racial/ethnic groups is uncertain.

Nonetheless, our study has several strengths. First, as MZ twin
pairs share identical genotypes, age, and sex, as well as many
other socioenvironmental factors including in utero and familial
environment, the use of a MZ co-twin control design minimizes
or eliminates potential confounding by these factors. Moreover,
our analyses also controlled for many lifestyles and metabolic
factors. Second, we used innovative statistical approaches to test
the combined effects of multiple CpG sites in a gene or multiple
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genes in the circadian pathway in well-matched MZ twins. To the
best of our knowledge, we are the first to systematically test the
joint epigenetic effect of multiple CpGs in the circadian pathway
on glucose traits in MZ twins. Our results provide initial evidence
that altered DNA methylation of key circadian genes may play an
important role in glucose metabolism.

In summary, our results demonstrated that DNA methylation
of the five core circadian genes jointly contributed to blood
glucose metabolism. These findings also highlight the importance
of testing the effect of DNA methylation jointly rather than
separately on human complex traits in epigenetic analysis.
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