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Given the central metabolic role of the liver, hepatic metabolites and transcripts reflect
the organismal physiological state. Biochemical-clinical plasma biomarkers, hepatic
metabolites, transcripts, and single nucleotide polymorphism (SNP) genotypes of
some 300 pigs were integrated by weighted correlation networks and genome-wide
association analyses. Network-based approaches of transcriptomic and metabolomics
data revealed linked of transcripts and metabolites of the pentose phosphate pathway
(PPP). This finding was evidenced by using a NADP/NADPH assay and HDAC4 and
G6PD transcript quantification with the latter coding for first limiting enzyme of this
pathway and by RNAi knockdown experiments of HDAC4. Other transcripts including
ARG2 and SLC22A7 showed link to amino acids and biomarkers. The amino acid
metabolites were linked with transcripts of immune or acute phase response signaling,
whereas the carbohydrate metabolites were highly enrich in cholesterol biosynthesis
transcripts. Genome-wide association analyses revealed 180 metabolic quantitative
trait loci (mQTL) (p < 10−4). Trans-4-hydroxy-L-proline (p = 6 × 10−9), being strongly
correlated with plasma creatinine (CREA), showed strongest association with SNPs
on chromosome 6 that had pleiotropic effects on PRODH2 expression as revealed
by multivariate analysis. Consideration of shared marker association with biomarkers,
metabolites, and transcripts revealed 144 SNPs associated with 44 metabolites and
69 transcripts that are correlated with each other, representing 176 mQTL and
expression quantitative trait loci (eQTL). This is the first work to report genetic variants
associated with liver metabolite and transcript levels as well as blood biochemical-
clinical parameters in a healthy porcine model. The identified associations provide links
between variation at the genome, transcriptome, and metabolome level molecules
with clinically relevant phenotypes. This approach has the potential to detect novel
biomarkers displaying individual variation and promoting predictive biology in medicine
and animal breeding.
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INTRODUCTION

Metabolites are substrates or products of metabolism. As one
of the main “omics-” technologies, metabolomics can bridge
the phenotype–genotype gap due to the close association of
metabolites to cellular biochemical processes (Cascante and
Marin, 2008). The metabolome represents the final “omics-”
level in the genotype–phenotype map and reflects changes
in phenotype and function, whereas the transcriptome and
proteome act as mediators of flow (Ryan and Robards, 2006).
High-performance metabolic profiling is a high-throughput
analysis suitable for routine measurement of endogenous
metabolites and metabolic signatures related to health issues
(Johnson et al., 2010). Recent advances in bio-analytical
technologies allow genome-wide association studies with
metabolomics (mGWAS) based on the assumption that the
biochemical function of a gene variant is reflected by varied
metabolite levels, which are substrates, products, or ligands of
that gene product (Adamski and Suhre, 2013).

Association of a single nucleotide polymorphism (SNP) with a
metabolic trait indicates that the metabolic phenotype is either
a cause or consequence of the metabolic state. Accordingly, it
allows generation of biological hypotheses about the role of that
metabolite for organismal phenotype (Kathiresan et al., 2009;
Franke et al., 2010). Several studies have reported metabolic
quantitative trait loci (mQTL) or mGWAS for serum metabolite
concentrations in humans (Gieger et al., 2008; Illig et al., 2010;
Nicholson et al., 2011). Genetic influences on blood metabolites
in healthy humans can be detected by combining genetic variants
and metabolic traits (Shin et al., 2014; Draisma et al., 2015).

The regulatory mechanisms between transcript and
metabolite levels are still not well understood. Thus, integrating
transcriptomics and metabolomics can elucidate the relationship
between genes and their transcripts, metabolites, and outcome
levels in cells, as reported in microbial, plant, and animal systems
(Hoefgen and Nikiforova, 2008; Yang et al., 2009; Yabushita
et al., 2013). Expression quantitative trait loci (eQTL) studies
are a powerful functional genomics tool, revealing genetic loci
that affect RNA transcription levels. eQTL studies facilitate
uncovering biological mechanisms that mediate gene regulation
and building complex molecular networks for metabolic,
biochemical-clinical, and hematological traits (Ponsuksili et al.,
2011, 2012, 2016). eQTL studies suggest the potential value of
complementary association studies with other molecular traits,
such as endocrine or metabolic phenotypes (Ponsuksili et al.,
2012; Ghazalpour et al., 2014).

Given the central role of the liver in metabolic and immune
functions, we hypothesized that variation of traits related
to metabolic state and performance are largely reflected by
metabolites and transcripts of hepatic metabolic pathways.
Herein, we characterized the genetic landscape of porcine
liver metabolites and we linked hepatic metabolite profiles
and transcriptomes as well as plasma biochemical-clinical traits
in pigs. Analyses of trait-correlated hepatic metabolites and
mQTL, together with our previous eQTL results, provide a
fine map of loci controlling metabolic profiles. Because pigs
are valuable models, this knowledge provides a rational basis

not only for understanding pig physiology, but also for human
medical research.

MATERIALS AND METHODS

Animals and Sample Collection
Pigs from a German Landrace herd were reared, performance
tested, sampled, and used for genome-wide association studies of
liver metabolites. Animal care and tissue collection procedures
were approved by the Animal Care Committee of the Leibniz
Institute for Farm Animal Biology and carried out in accordance
with the approved guidelines for safeguarding good scientific
practice at the institutions of the Leibniz Association. Measures
have been taken to minimize pain and discomfort in line with
the guidelines laid down in the Council Directive 86/609/EEC
of 24 November 1986. Veterinary inspection of live pigs
and their carcasses and organs after slaughter confirmed a
lack of any impairments, disease symptoms, or pathological
signs to avoid any bias of blood phenotypes. Liver and
blood samples were collected from pigs at an average age
of 170 days at the experimental slaughter facility of the
Leibniz Institute for Farm Animal Biology, between 8.00 and
10.00 in the morning.

Plasma Analyte Measurement
Plasma cortisol concentrations (total) were determined using
commercially available enzyme-linked immunosorbent assays
(DRG, Marburg, Germany), performed in duplicate according
to the manufacturer’s protocol. Biochemical-clinical parameters
of blood samples were determined using an automated
analyser device (Fuji DriChem 4000i, FujiFilm, Minato, Japan)
including albumin (ALB), ammonia nitrogen (NH3), blood urea
nitrogen (BUN), glucose (GLU), inorganic phosphorus (IP), and
creatinine (CREA).

Metabolic Profiling
A total of 350 individual porcine livers from the same
animals used for biochemical-clinical blood plasma analyses were
subjected to metabolite profiling. Liver was ground under liquid
nitrogen into a homogeneous mixture before being divided for
extraction using two-step extraction methods from Wu et al.
(2008). We homogenized 50 mg frozen liver powder in 4 mL/g
cold methanol and 0.85 mL/g cold water in homogenization
tubes containing ceramic beads. Three internal standards were
used, including 1 mM ribitol and 0.2 mM palmitic acid-
d31 for GC-MS, 250 µM camphorsulphonic acid for LC-MS.
Homogenates were transferred to 1.8-mL glass vials and mixed
with 2 mL/g chloroform. Samples were vortexed for 60 s,
left on ice for 10 min to partition, and centrifuged. Polar
and non-polar layers were removed and dried, although we
only concentrated on polar phase metabolites in this study.
We analyzed samples using non-targeted metabolic profiling
instrumentation combining two platforms, GC-MS and HPLC-
MS. Both methods represent relative metabolite amount per liver
sample (25 mg wet weight of liver per sample). After extraction,
samples were split for GC-MS and HPLC-MS analysis, frozen,
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and lyophilized. Details of GC-MS and HPLC-MS setups are done
according to manufacturer’s instructions. In brief, lyophilized
samples were derivatized and centrifuged. The supernatant was
transferred to a new vial before injection for GC-MS. Qualitative
and quantitative analyses were performed using ChromaTOF
software v4.50.8.0 (LECO Corporation, United States). HPLC-
MS analysis was performed using an Agilent 1100 series liquid
chromatographic system (micrOTOF, Bruker Daltonik GmbH,
Germany). For analysis, lyophilized liver extracts and blank
samples were dissolved in 100 µL water and centrifuged.
For chromatographic separation, 5 µL of each sample were
injected into a Synergi 2.5 µm Fusion RP column attached to a
guard column of the same material (Supplementary Methods,
Data Sheet 1). Metabolite identification was verified and analysis
using the software DataAnalysis v4.0 and QuantAnalysis v2.0
(Bruker Daltonik GmbH, Germany).

SNP Genotype and mRNA Expression
Profile Data
Single nucleotide polymorphism genotyping and mRNA hepatic
expression profiling was performed using samples of identical
animals as for biochemical-clinical blood plasma analyses and
liver metabolite profiling. In brief, genotyping was performed
using the PorcineSNP60 BeadChip (Illumina Inc., San Diego,
CA, United States) per the manufacturer’s SNP Infinium HD
assay protocol. Samples with call rates of <99%, markers with
low minor-allele frequency (<5%), and markers that strongly
deviated from Hardy–Weinberg equilibrium (p < 0.0001) were
excluded. The average call rate for all samples was 99.8% ± 0.2
after filtering.

Total RNA was isolated from liver and amplified using
an Ambion WT Expression kit (Affymetrix, Thermo Fisher
Scientific, Waltham, MA, United States). Subsequently, cDNA
was fragmented, labeled, and hybridized to the microarray
using Affymetrix standard protocols. Affymetrix Porcine
Snowball microarrays containing 47,880 probesets were used to
determine expression profiles. Affymetrix Expression Console
software was used for robust multichip average normalization
and gene detection by applying detection above background
algorithm. Expression data are available in the Gene Expression
Omnibus public repository (GEO accession number GSE83932:
GSM2221843-GSM2222139). Further filtering was done by
excluding transcripts with low signals and probes that were
present in <80% of samples. In total, 24,904 probes passed
quality filtering and were used for further analyses. Both mRNA
and SNPs were mapped to the porcine reference genome using
Sscrofa 10.2 (Ensembl downloaded from NCBI1).

Data Pre-processing and
Statistical Analysis
After quality control and filtering for metabolites of low
concentrations and samples with low concentrations of analytes
as well as outlier animals, 74 out of 90 metabolites from 343
individuals were further analyzed. Z-score for each metabolite

1http://www.ncbi.nlm.nih.gov

was calculated as: (relative metabolite level in the samples –
mean of metabolite level in the samples)/SD of metabolite levels
in the samples. Metabolite data were further pre-processed to
account for systemic effects. Mixed-model analyses of variance
using JMP Genomics (SAS Institute, Cary, NC, United States)
were used to adjust for fixed and random effects. The genetic
similarity matrix between individuals was first computed as
identity-by-descent of each pair for the k-matrix and considered
as a random effect. For control of population stratification,
top principal components (PCs) explaining >1% of variation
were considered as covariates. In total, 15 PCs were included
as covariates. Gender was used as a fixed effect, batches of
metabolite measurement were used as a random effect, and
carcass weight was considered as a covariate. Residuals were
retained for further analysis.

Metabolite QTL (mQTL) analyses were conducted using the
R-package Matrix eQTL (Shabalin, 2012). Matrix eQTL tests for
association between each SNP and residual metabolite levels by
modeling the additive effects of genotypes in a least squares
model (Shabalin, 2012). It performs a separate test for each
metabolite–SNP pair and corrects for multiple comparisons by
calculating the false discovery rate (FDR).

Residuals of mRNA transcript abundances, after correction for
fixed effects (gender), random effects (genetic similarity matrix),
and covariates (17 top PCs explaining >1% variation; carcass
weight), were used to analyze eQTL by the same process used for
mQTL in our previous study (Ponsuksili et al., 2016). We defined
an eQTL as cis if an associated SNP was located within an area
<1 Mb from the probeset/gene.

Residuals of mRNA and metabolite levels were used for
pleiotropic association analyses to identify common regions.
Multivariate analysis of variance (MANOVA) between residuals
of metabolite and mRNA transcript levels and genetic marker
data was used to analyze pleiotropic associations.

Weighted Gene Co-expression Network
Analysis (WGCNA)
Residuals of mRNA and metabolite levels were also used
to construct co-expression/co-abundance networks using the
blockwise modules function of the weighted gene co-expression
network analysis (WGCNA) package in R (Langfelder and
Horvath, 2008; Ponsuksili et al., 2015). Module–trait associations
were estimated using the correlation between module eigengene
which is the first PC of module of transcripts and of
metabolites and plasma biomarkers. Correlations of metabolites
with biochemical-clinical traits and mRNA transcript levels
were estimated using Spearman coefficients and corrected
for multiple comparisons by calculating FDR. Networks of
genes and metabolites were visualized with Metscape 22

(Karnovsky et al., 2012).

NADP/NADPH Measurements
In order to validate the correlations found between transcripts
and metabolites of the pentose phosphate pathway (PPP),
NADPH concentration and NADP/NADPH ratio were

2http://cytoscape.org
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measured from liver tissues of a random subset of animals
(n = 27) using a NADP/NADPH assay kit (Abcam, Cambridge,
United Kingdom) according to manufacturer’s instructions.
Briefly, 50 mg of liver were washed and homogenized
with extraction buffer and then centrifuged to isolate the
NADPH/NADP+-containing supernatant. Supernatant was
filtered through a 10-kD spin column to remove enzymes that
may rapidly consume NADPH. An aliquot of supernatant was
heated at 60◦C for 30 min to decompose NADP+, cooled
on ice, and spun quickly to remove the precipitate. Another
aliquot of supernatant was not heated. Both aliquots were
reacted with NADP+ cycling buffer and enzyme mix for
5 min at room temperature to convert NADP+ to NADPH.
Solutions were then incubated with NADPH developer and
absorbance was measured at 450 nm after 1, 2, or 3 h. Amount
of NADPH (heated sample) and total NADP+ and NADPH
(unheated sample) were quantified from a NADPH standard
curve. In the same samples, expression levels of HDAC4
and G6PD, which is the first limiting enzyme of PPP, were
determined by qPCR validation. Three reference genes (RPL32,
RPS11, and ACTB) were used, and all measurements were
performed in duplicate.

Cell Culture and siRNA Transfection
Human HepG2 cells were cultured in DMEM containing
L-glutamine, 4.5 g/L D-glucose, and sodium pyruvate (Life
Technologies) supplemented with 10% FBS, 100 U/mL penicillin,
and 100 µg/mL streptomycin; the medium was refreshed every
2 days. Cell incubation was performed at 37◦C in a humidified
5% CO2 atmosphere. Synthetic siRNAs were pre-designed by
Qiagen. A total of four pre-designed siRNAs (Qiagen) per gene
were first tested. The most two effective siRNA for HDAC4
were used (Hs_HDAC4_3 FlexiTube siRNA and Hs_HDAC4_7
FlexiTube siRNA). The average values of negative non-silencing
control siRNA (AllStars Negative Control siRNA, Qiagen), mock,
and untreated were used as control. Transfection of siRNA was
carried out using the HiPerFect transfection reagent (Qiagen) at
150 nM final concentration. The complexes were added drop-
wise onto the cells, and the plates were then gently swirled to
ensure uniform distribution of the transfection complexes. Forty-
eight hours after siRNA transfection, cells were rinsed two times
with PBS. The transfected cells were harvested for monitoring
the effect of gene silencing. Three independent experiments
were conducted. We determined the level of knockdown of
HDAC4 and G6DP using quantitative PCR (qPCR) (Roche,
Germany) and normalized data using ß-actin as an internal
control. All statistical analyses were performed using two-tailed
Student’s t-tests.

RESULTS

The links between plasma biomarkers, hepatic metabolites,
transcripts, and genotypes obtained from some 300 animals
reared and performance tested under standardized conditions
were analyzed and integrated in this study. Therefore, networks
were obtained between metabolites and transcripts; both,

from single and weighted correlation network analysis
(WGCNA) of transcripts and metabolites (Langfelder and
Horvath, 2008; Ponsuksili et al., 2015). Genetic regulation
of metabolites (mQTL) was identified and integrated with a
genome wide association study of transcripts levels (eQTL)
(Ponsuksili et al., 2016). Pleiotropic effects of genetic regions
that concertedly regulate transcripts and metabolites were
considered. Finally, mQTL, eQTL, and phenotype of blood
biochemical-clinical were integrated. The experimental flow is
outlined in Figure 1.

Metabolite Profiling
In total, we examined 74 liver metabolites of 343 pigs
using mass spectrometry and found significant correlations
between metabolites (Figure 2). Most metabolites in the same
molecule class, such as amino acids or nucleotides, clustered
together. Metabolite set enrichment analysis of 74 metabolites
identified the highest enrichment for protein biosynthesis
(16/19), followed by gluconeogenesis (14/27) and glycolysis
(12/21) (Figure 3). Pathways which reached FDR < 5% are
listed in Supplementary Table S1 together with metabolites
within these pathways.

Biochemical-Clinical Traits and
Metabolites
Liver metabolites were used for correlation analysis with
approved plasma biochemical-clinical biomarkers (ALB; NH3;
BUN; GLU; IP; CREA; and cortisol levels). Three main classes of
metabolites with the same profile were identified using WGCNA
including carbohydrates, amino acids, and nucleotides. Plasma
GLU was found highly positively correlated with eigengene vector
of the carbohydrate module and negative correlated with amino
acid module (Figure 4A).

At a significance level of FDR < 5%, we identified 197
pairs of correlated hepatic metabolites and plasma biomarkers
(Supplementary Table S2). Correlations between metabolites
and biochemical-clinical traits ranged from 0.12 to 0.78.
Overall, there was divergent correlation of biochemical-clinical
biomarkers with carbohydrate- or amino acid-related metabolites
on the one hand and nucleotide metabolism on the other
hand. In particular, urea in liver was significantly correlated
with BUN in plasma (r = 0.78; p < 10−16), as was liver D-
glucose with plasma GLU (r = 0.45; p < 10−16). Significantly
negative correlations were found between plasma GLU and
cytidine monophosphate (CMP), inosine monophosphate (IMP),
and guanosine monophosphate (GMP) (r = 0.56–0.29; p< 10−8).
Plasma CREA was significantly negatively correlated with
many amino acids, including L-isoleucine, L-tyrosine, L-
leucine, L-threonine, L-valine, and L-asparagine (r = 0.13–
0.17; p < 10−3). In addition, liver 4-hydroxyl-L-proline was
significantly positively correlated with plasma CREA (r = 0.32;
p = 1 × 10−9). Interestingly, plasma cortisol was significantly
negatively correlated with liver D-glucose (r = 0.29; p = 1× 10−7)
and lactate (r = 0.28; p = 1 × 10−7) and positively correlated
with IMP (r = 0.35; p = 9.9 × 10−11) and CMP (r = 0.30;
p = 2.3× 10−8).
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FIGURE 1 | Outline of experimental flow and summary of main results.

Transcripts and Metabolites
Weighted gene co-expression network analysis was performed
using the transcriptome data from 24,904 liver transcripts.
Seven modules of co-expressed transcripts were highly correlated
with metabolite classes, as shown in Figure 4B. The co-
expressed transcripts in each module were assigned to three top
canonical pathways (Figure 4B). The amino acid module was
significantly positively correlated with immune or acute phase
response signaling, whereas the carbohydrate module was highly
enriched in cholesterol biosynthesis. We explored transcriptional
changes not only in terms of gene co-expression networks
but also at the level of individual genes. Pair-wise correlations
between the abundance of 24,904 liver transcripts and 74
metabolites in 297 individuals revealed 5643 metabolite–mRNA
pairs with correlation coefficients of r > |0.40|, corresponding
to p < 3.4 × 10−12 and FDR < 1.1 × 10−9. This covered
47 metabolites and 1099 annotated transcripts (1449 probesets).
Supplementary Table S3 shows the top 20 transcripts that
are correlated with the individual metabolites. A network-
based approach was used to demonstrate the top relationship
among transcripts and metabolites (Figure 5 and Supplementary
Table S3). The most dominant pathways in these top pairs
of metabolites and mRNA were related to PPP (D-ribose 5-
phosphate, amino-D-fructose 6-phoshate, D-sedoheptulose 7-
phosphate, D-erythrose 4-phosphate), purine (GMP, GDP, IMP),
and pyrimidine metabolism (UMP and CMP).

Highly negative correlation was found between
LOC100738008 (thyroid hormone-inducible hepatic protein,

THRSP) with IMP and CMP (r = −0.75 p < 10−16) followed
by HDAC4 with D-erythrose 4-phosphate (r = −0.69,
p < 10−16). Expression levels of HDAC4 were highly
positively correlated with CMP, IMP, and UMP. In contrast,
HDAC4 levels were strongly negatively correlated with
metabolites in carbohydrate metabolism, particularly PPP
metabolites, including D-fructose, D-glucose, glucose 6-
phosphate, D-erythrose 4-phosphate, fructose 6-phosphate,
fumaric acid, L-lactic acid, malate, D-ribose 5-phosphate,
D-sedoheptulose 7-phosphate, and succinic acid. In addition,
strong positive correlation was found between CMP and
NMRAL1 (r = 0.72; p < 10−16). Furthermore, transcript levels
of ARG2, followed by SLC22A7 (organic anion transporter),
XRCC6BP1, SLC38A1, and SLC7A2, were highly correlated with
most amino acids.

NADP/NADPH Measurements
Because PPP was dominantly linked with HDAC4, we measured
NADPH concentration and the ratio of NADP/NADPH, i.e., the
main products of PPP, as well as expression levels of HDAC4 and
G6PD, the key enzyme of PPP, in order to provide experimental
evidence of the link of transcripts and PPP activity. Using qPCR,
we found significant correlation between NADPH concentration
and expression levels of HDAC4 and G6PD. We confirmed
expression levels of HDAC4 obtained from the microarray by
qPCR (r = 0.93; p < 0.0001) while G6PD was not available on
the Affymetrix chip. Expression levels of HDAC4 were positively
correlated with NADP/NADPH (r = 0.78; p < 0.0001) and
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FIGURE 2 | Correlation heatmap for 74 metabolites measured in porcine liver. Within the heatmap, red shows a positive correlation and blue shows a negative
correlation.

negatively correlated with NADPH concentration (r = −0.71;
p < 0.0001). G6PD had a significant negative correlation
with HDAC4 (r = −0.44; p = 0.02) but positive correlation
with NADPH concentration (r = 0.61 and p = 0.0007) and
negative correlation with NADP/NADPH (r = −0.47; p = 0.012).
G6PD expression also was correlated with PPP metabolites,
including erythrose 4-phosphate, sedoheptulose 7-phosphate,
D-glucose 6-phosphate, and fructose 6-phosphate (r = 0.58–0.63;
p = 0.0012–0.0004).

HDAC4 Knockdown and G6PD
Expression
To further experimentally elucidate the link of HDAC4 and G6PD
expression, RNAi was used to knockdown HDAC4 expression
in vitro in the Human HepG2 cells line. Subsequently, relative
expression of G6PD was measured using qPCR. siRNA targeting
HDAC4 inhibited its expression to 70–80% relative to control
cells (p < 0.004). At the same time, G6PD showed increased
expression levels to 120–130% compare to control (p < 0.003)

leading to pronounced differential expression between HDAC4
and G6PD (p = 0.0002) (Figure 6).

Genome-Wide Association of
Metabolites (mQTL)
A genome-wide association study covering 48,909 SNP genotypes
and 74 metabolites revealed 180 significant mQTL that
corresponded to 30 metabolites and 173 SNPs at a threshold
of –log10 > 4 (Supplementary Table S4). Table 1 lists top 10
associations. Only hydroxy-L-proline reached the significance
threshold of FDR < 5% while other three metabolites
(citrate, cysteine, and beta-alanine) showed suggestive mQTL
at FDR ≤ 10%. Percent phenotypic variance explained by peak
markers for these four metabolites was 6.7–9.4%. Figure 7
shows associations of these four metabolites across different
pig chromosomes. The strongest association was for trans-4-
hydroxy-L-proline with SNPs at 39.9 Mb on chromosome 6
(p = 6 × 10−9) (Table 1 and Figure 7A). Markers at position
53 Mb of chromosome 18 showed significant association with
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FIGURE 3 | Enrichment analysis of 74 metabolites. Highest enrichment was found for protein biosynthesis (16/19) followed by gluconeogenesis (14/27) and
glycolysis (12/21).

beta-alanine (Figure 7B). For citric acid (Figure 7C) and cysteine
(Figure 7D), significant markers were mapped at various regions
in the genome.

mQTL, eQTL, and Transcript Correlated
Metabolites
Metabolic QTL regions contain numerous positional candidate
genes, depending upon the level of linkage disequilibrium. To
support and narrow down the number of candidate genes
in regions, we integrated our previous eQTL data from the
same pigs (Ponsuksili et al., 2016). Many SNPs associated with
metabolites were also associated with transcripts. In our previous
study, 6865 eQTLs were identified as cis, belonging to 1028
probesets (814 annotated transcripts) at FDR < 5% (p < 10−7).
Further, 687 SNPs that were associated with mRNA transcripts
(332 probesets) were associated with one of the 74 metabolites.

In addition, we considered only metabolites that significantly
correlated with mRNA transcripts at FDR < 5%. In total, 144
SNPs were associated with 44 metabolites and 69 metabolite-
correlated transcripts, representing 176 mQTL and eQTL
(Supplementary Table S5). Nineteen out of these 144 SNPs
on Sus scrofa chromosome (SSC) 6 associated with trans-
4-hydroxy-L-proline (p < 6.0 × 10−9–1.1 × 10−4). These
SNPs were simultaneously associated with transcript levels of
PRODH2 (p < 4.7 × 10−26–4.9 × 10−11). Moreover, trans-
4-hydroxy-L-proline was negatively correlated with PRODH2
(r =−0.40; p = 1.6× 10−12). Pleiotropic association analyses also
showed SNP-directed links between trans-4-hydroxy-L-proline
and PRODH2 with 91 SNPs on SSC 6 (FDR < 5%) (Figure 8A).

At 5% FDR, six SNPs at position 53.4–54.9 Mb on SSC
18 were associated with beta-alanine and transcript levels of
IGFBP-3 (Figure 8B). The correlation between beta-alanine and
transcript levels of IGFBP-3 was r = –0.17 and p = 2.8 × 10−3.
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FIGURE 4 | Correlation matrix of module eigengene values obtained for metabolites, transcripts, and plasma biomarkers. Weighted gene co-expression network
analysis (WGCNA) groups metabolites and transcripts into modules based on correlated abundances. Each of the modules was labeled with a unique color as an
identifier. (A) Three modules of metabolites including amino acids, carbohydrates, and nucleotides showing significant correlation with plasma biomarkers. (B) Seven
modules of co-expressed transcripts showing significant correlation with three modules of metabolites. Within each cell, upper values are correlation coefficients and
lower values are the corresponding p-values. Canonical pathways related to genes of these seven modules of co-expressed genes are given at the left side.

In other cases, SNPs located on SSC 7 position 20.5 Mb
associated with transcript levels of ALDH5A1 (p = 5.1 × 10−13)
were also associated with beta-alanine, although at FDR > 5%.
The correlation between ALDH5A1 and beta-alanine was
highly significant (r = –0.24; p = 2.7 × 10−5). The highest
correlation was found between transcripts levels of DPYS and
3-hydroxybutyrate (r = –0.45; p = 2.6 × 10−15). Three SNPs
located on SSC 4 position 35.6 Mb were associated with DPYS
(p = 6.6 × 10−11) and, at a lower significance level, with 3-
hydroxybutyrate (p = 1.9 × 10−3). As shown in Figure 7C,
significant markers associated with citrate mapped to various
regions in the genome. By combining eQTL, mQTL, and the
correlation of corresponding mRNAs and metabolites, we found
two interesting candidate genes in peak regions for citrate: STAB2
on SSC 5 position 84.3 Mb and MFHAS1 on SSC 15 position
63.7 Mb. Ten SNPs on SSC 15 position 63.7 Mb were associated

with bothMFHAS1 (p = 8.2× 10−12) and citrate (p = 3.4× 10−4).
Eight significant markers associated with STAB2 (p = 1.1× 10−7–
1.1 × 10−6) were also associated not only with citrate but also
with malate, succinate, pyruvate, and D-fructose (p = 8.9× 10−3–
4.4× 10−4). These metabolites, which mostly belong to the citric
acid cycle, were also negatively correlated with STAB2 (r = 0.21–
0.31; p = 2.4 × 10−4–5.3 × 10−8). Pleiotropic association
analyses of transcript levels of both STAB2 and MFHAS1 and
the metabolites of citrate, malate, succinate, pyruvate, and D-
fructose showed 47 markers located on SSC 5, with 15 reaching
a significance threshold of 5% FDR (Figure 8C). Another
interesting transcript wasRBBP9, which was negatively correlated
with ribose 5-phosphate (r = 0.16; p = 4.5× 10−3) and D-glucose
6-phosphate (r = 0.30; p = 2.9× 10−7). Transcript levels ofRBBP9
were associated with 6 SNPs that were also associated with both
ribose 5-phosphate and D-glucose 6-phosphate.
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FIGURE 5 | Correlation between mRNA transcript level and metabolites. The top metabolites with strong correlation to transcripts (r > ± 0.5, p < 10-16) are shown.
The red connections indicate positive correlation and blue color shows negative correlation. The level of correlation is demonstrated by the thickness of the line. The
metabolites are shown in green boxes and genes are in white boxes.

DISCUSSION

An improved understanding of non-genetic and genetic
regulation of metabolite levels facilitates their interpretation as
biomarkers for complex traits related to the metabolic status and
in terms of exogenous and endogenous impacts on phenotypes.
Moreover, identification of links between genetic polymorphisms
and transcript and metabolite levels contributes to the elucidation
of biomarkers that are the cause or consequence of changes in
metabolic pathways. However, interpretation of mQTL data is
demanding due to the fact that many metabolites are involved in

various pathways. Here, we investigated a set of metabolites—
mostly amino acids, carbohydrates, and nucleotides—in the
polar phase of liver extracts.

Correlation Between
Biochemical-Clinical Traits, Transcripts,
and Metabolites
To understand the relationship between gene expression,
metabolite levels, and biochemical-clinical traits using a
system genetics approach (Civelek and Lusis, 2014), we
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FIGURE 6 | Knockdown of HDAC4 by RNA interference reveals upregulation of G6PD. Two siRNAs siHDAC4_7 and siHADC4_3 were designed to target HDAC4
and transfected into human HepG2 cells in vitro. Relative mRNA expression was measured by qPCR 48 h after transfection. Expression was normalized to ß-actin
internal controls. Expression of G6PD was significantly increased relative to its expression in control cells and HDAC4 levels at 48 h post-transfection of siRNA. The
data represent means ± SD (n = 3).

integrated these data obtained from the same pigs by calculating
pair-wise correlations and WGCNA. We found significant
intra- and inter-class correlations between metabolites
especially amino acids and carbohydrate reflecting shared
biochemical pathways or regulatory interactions with immune
and cholesterol biosynthesis. The presence of significant
correlations between metabolites categorized and biological
function of co-expression transcripts presumably reflects
either multiple roles of metabolites or interactions between
metabolic pathways and immune system. Correlation of
metabolites with transcripts can be due to enzymes, receptors,
and signals of pathways encoded by corresponding genes or
regulatory factors affecting gene expression. We identified
many associations that show that the approach is suitable

TABLE 1 | Top 10 mQTL results.

Metabolite SNP_ID rs_number p-value SSC10_2 Base pair

Trans-4-
hydroxy-L-
proline

MARC0072609 6.04E-09 6 39960478

Citric acid DRGA0014885 9.31E-08 15 11247606

Cysteine ALGA0077013 rs80979261 6.46E-07 14 40660903

Beta_alanine ASGA0085673 rs81327629 1.17E-06 18 53448342

Ornithine ALGA0110895 rs81339246 2.50E-06 1

Fumaric acid ASGA0090623 rs81308979 5.20E-06 X 12973924

Malate ASGA0090623 rs81308979 6.21E-06 X 12973924

L-Lactic acid H3GA0017168 rs80890289 6.68E-06 5 99642466

6-Phospho-
gluconate

CASI0009941 rs330835858 6.91E-06 16 63944017

NADH ASGA0086564 rs81309680 7.96E-06 16

to identify biologically meaningful links between variation
at the genome, transcriptome, and metabolome level with
clinically relevant phenotypes. Thus, this approach has
the potential to detect novel biomarkers while considering
the contribution of exogenous and endogenous factors to
individual variation.

For example, D-erythrose 4-phosphate, fructose 6-phosphate,
D-ribose 5-phosphate, and D-sedoheptulose 7-phosphate,
which belong to PPP, were highly negatively correlated with
transcript levels of HDAC4. PPP is one of the fundamental
components of cellular carbohydrate metabolism and is
especially crucial for cancer cells (Kowalik et al., 2017). We
confirmed the association by measuring ratio of NADP/NADPH
and concentration of NADPH, for which PPP is the major
source, as well as expression of HDAC4 and G6PD. Here we
show an association of PPP and HDAC4 in healthy animals,
indicating a possible epigenetic-based link between the histone-
modifying HDAC4 and the PPP-driving G6PD. NMRAL1,
which encodes an NADPH sensor protein, is another transcript
negatively correlated with PPP metabolites and contributes to
regulation of the oxidative phase of PPP (Barcia-Vieitez and
Ramos-Martínez, 2014). In addition, knockdown of HDAC4
using RNAi was shown to be associated with increasing
G6PD expression.

The liver plays a central role in processes of glycogenesis,
glycogenolysis, and gluconeogenesis and thus glucose
homeostasis (Nordlie et al., 1999). Our results demonstrate
that plasma GLU is highly positively correlated with liver
D-glucose. This also matches the finding that transcript levels
of both HDAC4 and NMRAL1 are negatively correlated with
plasma GLU and liver D-glucose, with the latter two being
positively correlated.
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FIGURE 7 | Manhattan plots visualizing genome wide associations of SNPs and metabolites (mQTL). (A) Trans-4-hydroxy-L-proline, (B) beta-alanine, (C) citric acid,
and (D) cysteine. The dotted line depicts the genome-wide significance thresholds at negative log 10 > 4.

Many transcripts positively correlated with plasma
GLU and also correlated with liver metabolites like CMP
and IMP, including THRSP, SCD, and GPAM, most of
which are involved in lipid metabolism. Thyroid hormone
responsive protein (THRSP) is involved in lipogenic
processes and is associated with obesity (Ortega et al.,
2010) and differential intramuscular fat in cattle (Hudson
et al., 2015). Stearoyl-CoA desaturase (SCD) is a rate-
limiting enzyme in fatty acid biosynthesis and thus a
crucial control point of hepatic lipogenesis and lipid

oxidation. Glycerol-3-phosphate acyltransferase (GPAM)
encodes a mitochondrial enzyme that preferentially accepts
saturated fatty acids as substrates for glycerolipid synthesis.
Together, we show a link between liver metabolites and
transcripts involved in lipid metabolism and plasma
biochemical-clinical traits.

We found plasma cortisol levels were negatively correlated
with liver metabolites that are mostly involved in glucose
metabolism. Plasma cortisol levels also positively correlated
with liver metabolites like CMP, IMP, and GMP, which
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FIGURE 8 | Pleiotropic associations of metabolites and mRNAs. Manhattan plots of pleiotropic associations between metabolites and mRNA expression. The
pleiotropic association of these transcripts and metabolites (all traits) was significant (FDR ≤ 5%). (A) cis-eQTL of PRODH2 and mQTL for trans-4-hydroxy-L-proline
in close vicinity on chromosome 6, (B) cis-eQTL of IGFBP3 and mQTL for beta-alanine in close vicinity on chromosome 18, and (C) cis-eQTL of STAB2 on
chromosome 5 and MFHAS1 on chromosome 15 with mQTL for citrate, malate, pyruvate, succinate, and D-fructose. The x-axis indicates chromosome locations
and y-axis shows –log10 of the p-values of multivariate analysis of variance (MANOVA). The dashed line shows the levels of p-values which are significant at 5% FDR.

in turn correlated with transcripts involved in lipid
metabolism. This finding confirms our previous study,
where we demonstrated these linked biological functions
and molecular pathways using an integrative multi-omics
approach (Ponsuksili et al., 2012).

Administration of two nucleotides, CMP and UMP,
favors the entry of glucose in muscle and maintenance of
hepatic glycogen levels during exercise (Gella et al., 2008).
Interestingly, we found that cortisol-mediated homeostasis of
lipid and carbohydrate metabolism in liver was associated with
transcript levels of CREM. Abundance of CREM transcripts
negatively correlated with plasma GLU and liver metabolites
of carbohydrate metabolism (D-fructose, D-glucose, ribose
5-phosphate, erythrose 4-phosphate, sedoheptulose 7-phosphate,
and lactate) and, at the same time, positively correlated
with cortisol levels. CREM encodes a transcription factor
that binds to cAMP responsive elements to mediate signal
transduction during complex processes (Kirchhof et al., 2013;
Ella et al., 2014). Previous studies show that Crem knock-
out mice exhibit less anxious behaviors than wild-type mice
(Maldonado et al., 1999). CREM is involved in cancer (Passon

et al., 2012) and circadian regulation of cholesterol synthesis
in the liver (Acimovic et al., 2008). Together, our results link
hormone levels in plasma with metabolite and transcripts
levels in liver.

ARG2 encodes arginase, which is the enzyme of the final
step of the ornithine-urea cycle converting L-arginine to L-
ornithine and urea. In the present study, expression of ARG2 was
highly correlated with most amino acids, including L-isoleucine,
L-leucine, L-lysine, L-methionine, L-ornithine, L-proline, and L-
valine. These amino acids were also negatively correlated with
plasma CREA. Transcript levels of ARG2 also were negatively
correlated with plasma CREA and positively correlated with
plasma BUN. Arg2−/− mice have lower plasma CREA and
BUN levels after renal injury (Raup-Konsavage et al., 2017).
Our study shows that ARG2 plays a central role for most
amino acid metabolites in liver and is linked to biochemical
properties of blood.

Our study highlights the value of integrating data from
the same animals from various -omics levels, including
transcriptome, metabolome, and biochemical-clinical traits that
share biological pathways or functions. We found that epigenetic
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modifications mediated by HDAC4 may play a significant
role in PPP. Further, liver metabolites of the nucleotide
class linked transcripts involved in lipid metabolism and
cortisol. Finally, significant transcripts, such as ARG2, linked
most amino acids in liver and biochemical-clinical traits,
including CREA and BUN.

Comprehensive metabolite screens in the porcine model
have identified novel associations among transcript levels,
metabolites, and biochemical-clinical traits. Several studies
have addressed the genetic regulation of metabolites serving
as biomarkers for diseases (Illig et al., 2010; Wang et al., 2011;
McMahon et al., 2017; Zhang et al., 2017). However, most
studies have measured metabolites in blood serum or urine,
while few have focused on genetic regulation of metabolites
in other tissues, such as liver or fat (Ghazalpour et al., 2014;
Parks et al., 2015). In this study, we integrated genetic-regulated
liver metabolites, liver transcripts (mQTL and eQTL), and
plasma biochemical-clinical traits. We prioritized genes based
on cis-eQTL. For genome-wide significant loci associated
with trans-4-hydroxy-L-proline, we identified PRODH2 as
significantly associated with the same SNPs. In addition,
we demonstrated that these SNPs show pleiotropic effects
by simultaneously affecting trans-4-hydroxy-L-proline and
PRODH2 expression. Further, we identified PRODH2 as a
high-confidence candidate gene within a locus associated
with trans-4-hydroxy-L-proline, which in turn strongly
correlated with plasma CREA. Trans-4-hydroxy-L-proline
is metabolized by the liver and kidneys (Knight et al., 2009).
Proline dehydrogenase 2 (PRODH2) catalyzes the first enzymatic
step in the hydroxyproline catabolic pathway in liver and
kidney mitochondria. In addition, PRODH2 is reported
as a molecular target for treating primary hyperoxaluria
(Summitt et al., 2015). Mutations in PRODH2 cause human
hydroxyprolinemia, which hampers dehydrogenation of
hydroxyproline to delta1-pyroline-3-hydroxy-5-carboxylic acid
(Staufner et al., 2016).

In this study, we found a highly negative correlation between
DPYS and 3-hydroxybutyric acid and identified three SNPs
regulating both. Moreover, we found 3-hydroxybutyric acid
correlated with cortisol. DPYS encodes dihydropyrimidinase,
which is the second enzyme of the pyrimidine degradation
pathway. The facts that patients with dihydropyrimidinase
deficiency show mainly neurological and gastrointestinal
abnormalities (van Kuilenburg et al., 2010) and that
hydroxybutyric acid passes through the blood–brain barrier
into the central nervous system (Sleiman et al., 2016) provide
a possible link between DPYS and hydroxybutyric acid.
Our study provides further evidence for this relationship.
However, the link to cortisol as shown here is novel
and still unclear.

IGF-binding protein-3 (IGFBP-3) is the major carrier
protein for IGF-1 and plays a role in cancer, apoptosis, and
pathogenesis of ischemia reperfusion after liver injury (Lee
et al., 2014; Zhou et al., 2015; Wang et al., 2017). High
IGFBP-3 levels impact myogenesis and enhance muscle protein
degradation (Huang et al., 2016). Patients with non-alcoholic
steatohepatitis have increased levels of hepatic alanine (Kim

et al., 2017). In this study, we found for the first time a link
between genetic regulated alanine levels (mQTL) and IGFBP-
3 (cis-eQTL)x.

Genetically regulated metabolites belonging to the citrate
cycle (D-fructose, malate, succinate, pyruvate, and citrate)
share SNPs that also are associated with transcript levels
of STAB2 and MFHAS1 (cis-eQTL). The biological function
of both transcripts linked via common SNPs and to liver
metabolites is still unknown. Here, SNPs located on SSC
17 position 27.4 Mb were associated with transcript levels
of RBBP9 (cis-eQTL) and also with ribose 5-phosphate and
glucose 6-phosphate levels, both PPP metabolites. Glucokinase
phosphorylates glucose to glucose 6-phosphate in liver as a
substrate for several metabolic pathways, including PPP, which is
particularly important in rapidly dividing cells like cancer cells
for DNA replication. Further, previous studies have reported
retinoblastoma binding protein 9 (RBBP9) is a tumor-associated
protein in pancreatic neoplasia, affecting cell cycle control and
contributing to the TGF-β signaling pathway (Acimovic et al.,
2008; Vorobiev et al., 2012).

CONCLUSION

In summary, this study is the first to combine metabolomics,
transcriptomics, and genome-wide association studies in a
porcine model. Our results improve understanding of the
genetic regulation of metabolites which link to transcripts
and finally biochemical-clinical parameters. Further, high-
performance profiling of metabolites as intermediate
phenotypes is a potentially powerful approach to uncover
how genetic variation affects metabolic and health status.
Our results advance knowledge in areas of biomedical
and agricultural interest and identify potential correlates
of biomarkers, SNPs-metabolites, SNPs-transcripts, and
biochemical-clinical traits.
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