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Motivation: The number of ion channels is increasing rapidly. As many of them are

associated with diseases, they are the targets of more than 700 drugs. The discovery of

new ion channels is facilitated by computational methods that predict ion channels and

their types from protein sequences.

Methods: We used the SVMProt and the k-skip-n-gram methods to extract the feature

vectors of ion channels, and obtained 188- and 400-dimensional features, respectively.

The 188- and 400-dimensional features were combined to obtain 588-dimensional

features. We then employed the maximum-relevance-maximum-distance method to

reduce the dimensions of the 588-dimensional features. Finally, the support vector

machine and random forest methods were used to build the prediction models to

evaluate the classification effect.

Results: Different methods were employed to extract various feature vectors, and

after effective dimensionality reduction, different classifiers were used to classify the

ion channels. We extracted the ion channel data from the Universal Protein Resource

(UniProt, http://www.uniprot.org/) and Ligand-Gated Ion Channel databases (http://

www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php), and then verified the performance

of the classifiers after screening. The findings of this study could inform the research and

development of drugs.

Keywords: ion channel, machine learning, random forest, SVM, feature selection

INTRODUCTION

Ion channels are the pathways for the passive transport of various inorganic ions across
a membrane. The structure and function of cellular ion channels are the basis of life-
sustaining processes, and their genetic variation, and dysfunction are related to the occurrence
and development of many diseases (Gabashvili et al., 2007; Bagal et al., 2013; Cheng
et al., 2018a,c). Usually, ion channels are in a closed state. Under particular stimuli, the
channel protein conformation changes, and the probability of the ion channels opening
increases. Based on their type of gate, ion channels are typically categorized into voltage-gated
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ion channels and ligand-gated ion channels (Wang et al., 2017a).
On the binding of a ligand, a ligand-gated channel undergoes a
conformational change that causes opening of the channel gate
and ion flux. Voltage-gated ion channels predominantly contain
potassium (K+), sodium (Na+), calcium (Ca2+), and anion
channels (Shu-An et al., 2011). They are usually surrounded
by four transmembrane segments of the same subunit. In these
channels, there are some charged groups (potential sensors) that
control the gate. When the membrane potential changes, the
electric sensors undergo a displacement under the effect of the
electric field force, and the gate is opened or closed in response
to the change in the membrane potential. Ion channels are
expressed in practically all tissues and can cause deafness, renal
cysts, cardiac arrhythmias migraines, and epilepsy (Cai et al.,
2002a). Therefore, many drugs are found to target ion channels.
One example is an antiarrhythmic drug, Lidocaine, which acts
as a voltage-gated sodium channel inhibitor (Peters et al., 1993;
Tiwari and Srivastava, 2015). The actions of Lidocaine affect
the conduction system and muscle cells of the heart, raising its
depolarization threshold and making it less likely to initiate or
conduct action potentials (Lin et al., 2015). Another example is
Ziconotide, which targets calcium channels and is used for pain
relief. This compound blocks the calcium influx in the nerve
terminals, which results in a reduced release of glutamate and
neuropeptides, effectively interrupting the spinal transmission of
pain signals (Schmidtko et al., 2010).

Owing to the significance of ion channels in biological
processes, researchers have initiated conducting more in-depth
research on them to establish the relationships between ion
channels and different diseases. Currently, ion channels have
become important targets for disease diagnosis and drug
development. It is known that many chemicals and genetic
disorders can disrupt the normal function of ion channels and
have catastrophic consequences for living organisms (Santos
et al., 2017). Most animal toxins are used to treat diseases such
as chronic pain by modulating ion channels to shut down the
nervous system.

In recent years, ion channels have played an increasingly
important role in the treatment of diseases and drug research
and development. Therefore, several researchers have started to
pay attention to the structure and function of ion channels.
With the rapid growth of proteomics data, earlier prediction
and identification of the type of a particular ion channel
has become important. Therefore, researchers have developed
various bioinformatics software to predict the identification of
ion channels. As researchers are interested in developing drugs
that target ion channel and extending ion channel protein
annotation, a series of high-throughput computational tools
have been developed to predict ion channels and their types
directly from protein sequences. In the last decade, many
computational methods have been developed based on machine
learning algorithms (Yu et al., 2015; Zou et al., 2017a,b;
Stephenson et al., 2019), which are used in different fields,
such as drug repositioning (Yu et al., 2016, 2017). Increasingly,
researchers have applied machine learning algorithms to predict
and classify ion channels. Sudipto et al. (2006) used amino
acid composition and dipeptide composition as the feature

vectors and classified them using a support vector machine
(SVM) to predict voltage-gated ion channels and their subtypes.
Liu et al. (2010) proposed a voltage-gated potassium channel
identification method based on local sequence information.
The prediction result of this method was better than that of
voltage-gated potassium channel identification based on global
sequence information (Lin and Ding, 2011). Zhao et al. (2017)
constructed a support vector machine (SVM)-based model to
quickly predict ion channels and their types. By considering
the residue sequence information and their physicochemical
properties, a novel feature-extracted method which combined
dipeptide composition with the physicochemical correlation
between two residues was employed. Recently, Gao et al. (2016)
proposed a model based on a SVM to search for predicted
ion channels and their subfamilies using the sequence similarity
search feature of the basic local alignment search tool. Although
many classifiers have been developed for the identification of ion
channels, there are still some unresolved problems. For example,
ion channel sequence similarity is very high, which may result in
overestimation of the predictive classification performance of the
model (Olivier and Du, 2012).

In this study, SVM and random forest classifiers were used to
identify ion channels and further classify them. The maximum-
relevance-maximum-distance (MRMD) method was introduced
for feature selection to improve the prediction accuracy. We
followed three steps to predict and classify ion channels. First,
a protein sequence was detected to determine if it belonged to
an ion channel. If the test results demonstrated that the sequence
was an ion channel, then the protein sequence was classified as
either a voltage-gated ion channel or ligand-gated ion channel.
Finally, if the protein sequence was found to belong to a voltage-
gated ion channel, we classified it as a potassium (K+), sodium
(Na+), calcium (Ca2+), or anion voltage-gated ion channel.

MATERIALS AND METHODS

Figure 1 shows the basic flow of the processes proposed in this
paper. In this section, we introduce in detail the data set, feature
extraction method, dimension reduction method, and classifier
used in this study.

Benchmark Dataset
The data that we used to establish the prediction model in this
study were collected from Lin and Ding (2011). The sequences
of ion channels were collected from the Universal Protein
Resource (UniProt) and Ligand-Gated Ion channel databases
(Marco et al., 2006). The following measures were taken to obtain
reliable high-quality datasets. Initially, the protein sequences
containing blurred disabilities, such as those with amino acids
“X,” “B,” and “Z” were discarded. Then, the sequences of other
protein fragments were removed. Proteins that were inferred
by homology or prediction were discarded because of their
unreliability. Finally, to avoid any homology bias, the CD-HIT
(Li and Godzik, 2006) program was used to remove highly
homologous sequences, with a 40% sequence identity as the
cutoff (Wei et al., 2012; Chen et al., 2016; Zou et al., 2018a).

Frontiers in Genetics | www.frontiersin.org 2 May 2019 | Volume 10 | Article 399

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Han et al. Predicting Ion Channels Genes

FIGURE 1 | Workflow of the proposed processes.

In strict accordance with the above steps, 148 voltage-gated
ion channels, including 81 potassium channels, 29 calcium
channels, 12 sodium channels, 26 anion channels, and 150
ligand-gated ion channels were finally extracted. To ensure
the reliability and practicability of the ion channel prediction,
and classification and maintenance of the balance between the
positive and negative data, 300 protein sequences were randomly
selected from UniProt as non-ion channels. It was observed that
the consistency of these non-ion channel sequences was <40%.

Feature Extraction of Samples
Section Benchmark dataset mainly discusses the series
of preprocessing steps performed for the dataset. The
reconstruction provided a reliable database for the study on the
positioning method. This section focuses on specific methods of
protein subcellular localization based on machine learning.

The first and most important role of a predictor is to extract
protein sequences (Liu et al., 2015; Ding et al., 2017a,b; Zou
et al., 2018b). We used two feature extraction methods including
the SVMProt 188-D feature extraction method, which is based
on protein composition and physicochemical properties, and the
k-skip-n-gram 400-D feature extraction method.

SVMProt 188-D Feature Extraction
Different types of amino acids possess their own unique
physicochemical properties. These characteristics of amino acid

sequences can be used to predict types of protein. This method
has yielded good predictive results (Cao and Cheng, 2016; Li
et al., 2016b). Dubchak et al. (1995) proposed a composition
transition distribution model based on the composition,
transformation, and distribution of protein sequences, and
achieved better results for the prediction of protein folding
patterns. The physicochemical properties of protein sequences
were fully embodied in this model, where the composition
and physical and chemical properties were independent of each
other. Cai et al. (2003) extracted 188-dimensional features in
combination with amino acid composition and physicochemical
characteristics for the characterization of proteins. SVMProt also
contains nine physicochemical properties besides amino acid
frequencies. The quantities of each of these properties are listed
in Table 1 (Zou et al., 2013a,b).

In the model, 20 amino acids in the query protein sequence
constitute the first 20-dimensional feature vector. The first 20-
dimensional vector is calculated as follows:

Ei=
Ai

L
×100% (1 ≤ i ≤ 20) (1)

where Ai and L denote the number of the amino acids in the
sequence and the length of the sequence, respectively, (Zhu
et al., 2018b A20). {A1, A2, . . . , A20} represents the 20 amino
acids that form the proteins. According to the physicochemical
types, the amino acids can be classified under three categories
based on their content (C), distribution (D), and bivalent
frequency (F) (Bagal et al., 2013). The features of each of the
remaining eight physicochemical properties are obtained using
the following formula:

Ci=
countDi

L
×100 (1 ≤ i ≤ 20) (2)

Ti,j=
DiDj orDjDi

L− 1
×100,

i,j ∈
{(

i=c,j=d
)

,
(

i=c,j=f
)

,
(

i=d,j=f
)}

(3)

D=
Pjth ofDi

L
×100,

(

j=0,1,2,3,4;i=c,d,f
)

(4)

and

Pj=

{

1
countDi
4×j

(

j=1,2,3,4
)

(5)

where Di (i = c, d, f) and countDidenote the physicochemical
properties of the amino acids and number of such properties
present in the sequence, respectively. After calculating all the
physical and chemical properties, we finally extracted all the 188
(20+ (21× 8)=188) feature vectors.
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TABLE 1 | Number of features in SVMPRot.

Ordinal Physicochemical characteristics Dimension

1 Amino acids composition 20

2 Hydrophobicity 21

3 Normalized van der Waals volume 21

4 Polarity 21

5 Polarizability 21

6 Charge 21

7 Surface tension 21

8 Secondary structure 21

9 Solvent accessibility 21

k-skip-n-gram 400-D Feature Extraction
Guthrie et al. (2006) first proposed the k-skip-n-gram model. In
protein sequences, the distance between two amino acids Ai and
Aj is denoted by DT (Ai, Aj), which is defined as the position
interval between two amino acids (Liu et al., 2014). It is calculated
as follows:

DT
(

Ai,Aj

)

=j− i− 1 (6)

where i and j are the positions of the amino acids in a sequence.
The k-skip-n-gram model provides the composition of n

residues with distances k in a sequence. Its features are calculated
as follows:

FVSkipGram=

{

N
(

am1am2 . . .amn

)

N
(

TSkipGram

)

∣

∣

∣

∣

∣

1 ≤am1≤ 20,1 ≤am2≤ 20,. . .,1 ≤amn≤ 20 (7)

where N
(

TSkipGram

)

and N
(

am1am2 . . . amn

)

denote the total
number of elements in set TSkipGram and total number of terms
am1am2 . . . amn appearing in set TSkipGram, which is formulated as

TSkipGram=

{

⋃k

a=1
Skip (DT=a)

}

(8)

where

Skip (DT=a)

={AiAi+a+1. . .Ai+a+n−1|1 ≤ i ≤ L− a, 1 ≤ a ≤ k} (9)

Because only 20 amino acids can form a protein, a sequence has
a total of 20n permutations. Therefore, a protein sequence can be
transformed into 20n feature vector sets FVSkipGram.

As the number of feature vectors exhibits an exponential
distribution, the value of n is quite important. When n= 1, there
are only 20 features. If the number of features is quite small,
the feature representation of a sequence is negatively affected. In
contrast, when the value of n is very high, it affects the calculation
efficiency. In this study, the value of n was considered as 2.
Finally, we obtained 400 feature vectors.

Feature Selection (MRMD)
Owing to their limitations, the two feature representation
methods mentioned above were combined to form a new feature
vector containing more than one feature. SVM and random
forest classifiers were used to classify the new feature vector
set. When multiple feature extraction methods are combined,
many dimensions may be generated and the classification result
may be affected (Tang et al., 2017; Liu et al., 2018b; Zhu
et al., 2018b). Feature selection can alleviate the problem of
dimensionality by selecting a subset of features (Zhu et al., 2018c).
Therefore, we employed the dimensionality reduction method
based on MRMD (http://lab.malab.cn/soft/MRMD/index_en.
html) to reduce the dimensionality of the generated feature
vectors (Xu et al., 2016; Zou et al., 2016a,b; Zhu et al., 2017,
2018b; Chen et al., 2018; Tang et al., 2018b). MRMD selects
the feature with the highest correlation and least redundancy
by calculating the maximum relevance and maximum distance.
In this study, Pearson’s correlation coefficients were used to
measure the relevance, and three distance functions were used
to calculate the redundancy of the features. As the value of
the Pearson correlation coefficient increased, the relationship
between the features and target classes became stronger. As the
distance between the features increased, the redundancy of the
feature vectors decreased. Finally, the sub-features generated
after the MRMD dimension reduction were found to possess the
characteristics of low redundancy and a strong relationship. This
could aid in achieving more accurate classification results.

Classifier Models
Random Forest
A random forest is a classifier that uses multiple trees to train and
predict samples; it has been widely used in many bioinformatics
tasks (Xu et al., 2013, 2018b; Liu et al., 2018a; Pan et al., 2018; Su
et al., 2018; Wei et al., 2018a). It was proposed by Leo Breiman in
2001 and combines the Bagging integrated learning theory with
the random subspace method (Verikas et al., 2011). A random
forest is an integrated learning model based on a decision tree. It
containsmultiple decision trees trained by the Bagging integrated
learning technology. Samples are input into a random forest for
classification. The final classification result is governed by the
output of a single decision tree. Since Buntine and Niblett (1992)
proposed the random forest algorithm, it has been widely used,
owing to its good performance, in many practical fields, such
as the classification and regression of gene sequences, action
recognition, face recognition, anomaly detection in data mining,
and metric learning. In this study, we used a random forest
classifier to build a model.

Support Vector Machine
An SVM is a supervised learning model related to learning
algorithms and has achieved good performance in several
bioinformatics (Momot et al., 2010; Cao et al., 2014; Ding et al.,
2016; Li et al., 2016a;Wang et al., 2017b, 2018;Wei et al., 2017a,b,
2018c; Chen and Chuang, 2018; Liu et al., 2018c; Tang et al.,
2018a; Shen et al., 2019; Zhu et al., 2019) and biomedicine (Zeng
et al., 2018a; Zhang et al., 2018) studies. The dual-classification
problem of an SVM can be broadly divided into three cases:
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linear separable, approximate linear separable, and non-linear
separable. The solution for the linear separable problem is an
optimal hyperplane that allows two groups of samples to be
classified appropriately and to have the largest classification
interval. This is shown in Figure 2, where the H plane is
the optimal hyperplane. The approximate linear separability
problem can be solved by adding a relaxation variable, i, in the
optimization function of the linear classification. To solve the
non-linear separable problem, we need to select an appropriate
kernel function, transform the low-dimensional space into a
high-dimensional space, and find the appropriate classification
plane in the high-dimensional space so that the two samples can
be classified appropriately (Cai et al., 2002b; Yu-Dong et al., 2010;
Liu, 2017). Therefore, an SVM can achieve good classification
results even when there are few experimental data. In this study,
we used LIBSVM3.23, which was downloaded from https://www.
csie.ntu.edu.tw/~cjlin/libsvm/index.html. To obtain the optimal
model, we performed a grid search to optimize parameters c and
g. Then, the values of c and g were added to the model to obtain
the optimal classification result. A combination of different types
of features and classifiers can improve the overall performance of
the model (Zhu et al., 2016, 2018a).

Prediction Assessment
In machine learning, dividing experimental data into training
sets is necessary to build a prediction model (Cao et al.,
2017; Xu et al., 2017; Cheng et al., 2018b; Hu et al., 2018).
Experimental data need to be further divided into test sets
so that the final results of the training can be validated. To
divide experimental data into training and test sets, a large
amount of experimental data is needed. However, in practice,
the number of experimental data is often limited. Therefore,
researchers often use cross-validation for testing. Three types of
cross-validation methods are commonly used in bioinformatics:
independent data testing, folding cross-validation, and n-fold
cross-validation. Among these, the folding knife test has been

FIGURE 2 | Optimal hyperplane of SVM.

widely used in bioinformatics owing to its excellent results.
However, this test is time and resource intensive (Lin et al., 2012;
Zeng et al., 2016; Lai et al., 2017; Liu et al., 2017b; Manavalan
et al., 2018). The n-fold cross-validation is commonly used to
test the accuracy of an algorithm. The dataset was divided into
10 parts, nine of which were used as the training data and one as
the testing data. After several experiments were conducted using
numerous amounts of varied data, the best error estimates were
obtained by dividing the dataset into 10 parts. There is sufficient
theoretical basis to prove this approach (Chen et al., 2017; Zeng
et al., 2018b).

Performance Evaluation
To obtain clearer classification prediction results and estimate
the accuracy of the prediction model, we used other evaluation
criteria as well (Feng et al., 2013, 2018; Chen et al., 2017; Zhang
and Liu, 2017; Dao et al., 2018; Yang et al., 2018). The prediction
accuracy was estimated using the sensitivity (Sn), overall accuracy
(OA), and average accuracy (AA), which are defined as follows:

Sn (i)=
TPi

TPi+FN i
(10)

OA=

n
∑

i=1

TPi

N
(11)

and

AA=

n
∑

i=1

Sn(i)/n (12)

where TPi and FNi denote the true positives and false positives of
the ith class, respectively, (Liu et al., 2017a; Zeng et al., 2017a).
N and n are the total number of sequences and number of
species, respectively.

RESULTS

Prediction Results of Ion and
Non-ion Channels
We compared the predictive effects of the SVM-based and
random forest-based methods on both ion and non-ion channels
in different dimensions. The results obtained are listed inTable 2.
The 10-fold cross-validation results of the 188-dimensional
features, 400-dimensional features, and mixed features (188-
dimensional features combined with 400-dimensional features)
are listed in Table 2. We then applied the MRMD method to
reduce the dimensions of the 588-dimensional features to obtain
587-dimensional features. However, the average classification
accuracy of the 587-dimensional features was found to be
lower than that of the 400-dimensional features. The results
also revealed that the SVM classifier was the best method for
classifying the 400-dimensional features, with an average overall
accuracy (OA) rate of 85.1%. As can be seen in Table 2, 86.6%
of the ion channels and 83.7% of the non-ion channels can be
appropriately identified using the SVM classifier, with a total
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TABLE 2 | Prediction results of ion channels and non-ion channels.

Method Ion channel (%) Non-ion channel (%) OA (%)

Random forest (188D) 90.3 77.2 83.7793

SVM (188D) 87.0 78.5 82.7759

Random forest (400D) 87.7 77.5 82.6087

SVM (400D) 86.6 83.7 85.1171

Random forest (588D) 77.5 90 83.7793

SVM (588D) 83.2 80 81.6054

Random forest (587D) 77.2 89.7 83.4448

SVM (587D) 77.2 83.3 80.2676

TABLE 3 | Prediction results of voltage-gated and ligand-gated ion channels.

Method Voltage-gated

ion channels (%)

Ligand-gated

ion channels

(%)

OA (%)

Random forest (188D) 93.9 86.0 89.9329

SVM (188D) 91.9 86.7 89.2617

Random forest (400D) 88.5 82.7 85.5705

SVM (400D) 82.4 83.3 82.8859

Random forest (588D) 89.2 86.0 87.5839

SVM (588D) 91.9 86.7 89.2617

Random forest (188D) 92.6 86.7 89.5973

SVM (188D) 91.9 86.7 89.2617

accuracy rate of 85.1%. The feature vectors of the 188- and 400-
dimensional features yield good prediction results. This result
reveals that the SVM can moderately improve the predictive
performance of the model. And we also try to use other classifiers
to classify ion channels, but the classification effect is obviously
worse than that of random forest and SVM classifiers, so we
finally choose the two classifiers for comparison.

Classification Results of Voltage-Gated
and Ligand-Gated Ion Channels
We evaluated the accuracy of the 188-dimensional features,
400-dimensional features, and mixed features (188-dimensional
features combined with 400-dimensional features), and the 88-
dimensional features obtained after the dimensional reduction
using the MRMD method for discriminating between the
classification results of voltage-gated and ligand-gated ion
channels. The results are tabulated in Table 3. They reveal
that the random forest classifier is the best for classifying the
188-dimensional features, with an average overall accuracy rate
of 89.9%. As seen in Table 3, 93.9% of the voltage-gated ion
channels and 86.0% of the ligand-gated ion channels could
be correctly identified using the random forest method. The
results reveal that the random forest classifier is better than the
SVM classifier in some cases and can improve the prediction
performance model.

The results listed in Tables 2, 3 reveal that the difference
between the voltage-gated and ligand-gated ion channels appears
to be more distinct than that between the ion and non-ion

TABLE 4 | Prediction results for four types of voltage-gated ion channels.

Method K (%) Ca (%) Na (%) Anion (%) OA (%) AA (%)

Random forest (188D) 97.5 37.9 50 46.2 72.973 57.9

SVM (188D) 96.3 48.3 58.3 69.2 79.0541 68.0

Random forest (400D) 97.5 6.9 50 23.1 62.8378 44.4

SVM (400D) 85.2 62.1 50 73.1 75.6757 67.6

Random forest (588D) 97.5 34.5 50 57.7 74.3243 59.9

SVM (588D) 96.3 48.3 58.3 69.2 79.0541 60.2

Random forest (424D) 98.8 34.5 58.3 46.2 73.6486 59.5

SVM (424D) 96.3 48.3 58.3 69.2 79.0541 68.0

channels. This may be due to the obvious differences between
voltage-gated ion channels and ligand-gated ion channels with
respect to some specific components.

Classification Results of Four Types
Voltage-Gated Ion Channels
Finally, we classified the four types of voltage-gated ion channels,
i.e., K, Ca, Anion, and Na, using the SVM and random forest
methods. The prediction accuracy of the 188-dimension features,
400-dimensional features, 424-dimensional features, and mixed
features were calculated individually. The results are listed in
Table 4. This table shows that the best classification effect is
achieved when the SVM classifier, which had a maximum
overall accuracy rate of 72.973%, is used to extract the 188-
dimensional features. We applied the MRMD method to reduce
the dimensions of the 588-dimensional features to obtain
424-dimensional features. However, the average classification
accuracy of the 424-dimensional features was lower than that
of the 188-dimensional features. After dimension reduction,
the dimension of ion channel feature vectors did not decrease
significantly, and the accuracy was even decreasing, which
indicates that MRMD was not effective in classifying ion channel
feature vectors.

In general, the robustness of the results can be improved
by using the minimum dimensions of the feature vector
data. Therefore, we recommend using 188-dimensional
feature vectors to predict the four types of voltage-gated
ion channels.

DISCUSSION AND CONCLUSIONS

In this study, new features were used to extract the features
of ion channels, and good prediction results were obtained.
To accurately predict and classify ion channels and their types,
we constructed SVM-based and random forest-based models
that used SVMProt 188- dimensional feature extraction and
k-skip-n-gram to extract features. Then, we combined the
188-dimensional features with the 400-dimensional features
to obtain 588-dimensional features. To achieve a higher
accuracy with fewer features, the MRMD method was used
to reduce the dimensions of the 588-dimensional features.
Finally, the SVM and random forest models were used to
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model 188-dimensional features, 400-dimensional features, 588-
dimensional features, and the MRMD-reduced features. The
experimental results revealed that the features extracted by
the SVMProt 188-dimensional feature extraction and k-skip-
n-gram methods could effectively predict and classify the ion
channels. Such a fast and accurate method can accelerate
the prediction of ion channels and promote the discovery of
drug targets.

Although this method can guide the study of ion channel
discovery, it has some limitations. With the rapid increase
in ion channel types and data, more perfect prediction and
classification models need to be developed by researchers.
We believe that more in-depth research using computational
intelligence (Mrozek et al., 2009; Zeng et al., 2014; Cabarle et al.,
2017; Xu et al., 2018a) and machine learning (Zeng et al., 2017b;
Song et al., 2018; Zhu et al., 2018c) can result in the development
of additional feature extraction methods (Wei et al., 2018b)
and more accurate prediction classification models (Wang et al.,
2016), and contribute to drug research and development.
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